

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

December 23, 2020

Bluecats US LLC 6767 Old Madison Pike Suite 300 Huntsville, Alabama 35806 USA

Dear Kurt Nehrenz,

Enclosed is the EMC Wireless test report for compliance testing of the Bluecats US LLC, BC4520 ProxPoint as tested to the requirements of the FCC Certification rules under Title 47 of the CFR Part 27 Subpart L for Broadband Radio Service (BRS) Devices.

Thank you for using the services of Eurofins E&E North America. If you have any questions regarding these results or if MET can be of further service to you, please contact me.

Sincerely yours, EUROFINS E&E NORTH AMERICA

Arsalan Hasan Wireless Laboratory

Reference: (\Bluecats US LLC\WIRS109093-FCC-27 Rev 0)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E North America. While use of the A2LA logo in this report reflects MET accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

Electromagnetic Compatibility Criteria Test Report

for the

Bluecats US LLC BC4520 ProxPoint

Tested under FCC Certification Rules Title 47 of the CFR, Part 27 Subpart L

Report: WIRS109093-FCC-27 Rev 0

December 23, 2020

Prepared For:

Bluecats US LLC 6767 Old Madison Pike Suite 300 Huntsville, Alabama 35806 USA

> Prepared By: Eurofins E&E North America 3162 Belick St. Santa Clara, CA 95054

Bluecats US LLC BC4520 ProxPoint

Electromagnetic Compatibility Criteria Test Report

for the

Bluecats US LLC BC4520 ProxPoint

Tested Under

FCC Certification Rules Title 47 of the CFR, Part 27 Subpart L

This Nung

Felix Huang Engineer, Wireless Laboratory

Arsalan Hasan Manager, Wireless Laboratory

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 27 L of the FCC Rules under normal use and maintenance.

Eleazar Zuniga

Eleazar Zuniga, PhD. Director, Wireless Technologies

Bluecats US LLC BC4520 ProxPoint

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	December 23, 2020	Initial Issue.

Bluecats US LLC BC4520 ProxPoint

Table of Contents

I.	Executive Summary	7
	1.1 Purpose of Test	8
	1.2 Executive Summary	8
II.	Equipment Configuration	9
	2.1 Overview	
	2.2 References	
	2.3 Test Site	
	2.4 Measurement Uncertainty	
	2.5 Description of Test Sample	
	2.6 Equipment Configuration	
	2.7 Support Equipment	
	2.8 Ports and Cabling Information	
	2.9 Mode of Operation	
	2.10 Method of Monitoring EUT Operation	
	2.11 Modifications	
	2.11.1 Modifications to EUT	7
	2.11.2 Modifications to Test Standard	
	2.12 Disposition of EUT	
ш.	Electromagnetic Compatibility Criteria for Intentional Radiators	14
	§ 27.50(d)(4) Effective Isotropic Radiated Power	
	§ 2.1053 Radiated Spurious Emissions	
IV.	Test Equipment	28

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBµA/m	Decibels above one microamp per meter
dBµV/m	Decibels above one microvolt per meter
DC	Direct Current
Е	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
ТWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

Electromagnetic Compatibility CFR Title 47 Part 27

I. Executive Summary

E&E

1.1 Purpose of Test

An EMC evaluation was performed to determine compliance of the Bluecats US LLC BC4520 ProxPoint, with the requirements of Part 27. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the BC4520 PROXPOINT. Bluecats US LLC should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the BC4520 ProxPoint, has been **permanently** discontinued.

1.2 Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 27, in accordance with Bluecats US LLC, purchase order number PO-BCUS-00608.

Reference	Description	Compliance
§2.1046; §27.50(d)	Radiated Output Power	Compliant
§2.1049	Occupied Bandwidth	Data valid from module original certification FCC ID: XMR201707BG96
§27.50	Peak to Average Ration	Data valid from module original certification FCC ID: XMR201707BG96
§2.1051; §27.53(m)	Spurious Emissions at Antenna Terminals	Data valid from module original certification FCC ID: XMR201707BG96
§2.1053(g): §2.1053(h)	Radiated Spurious Emissions	Compliant
§2.1055	Frequency Stability	Data valid from module original certification FCC ID: XMR201707BG96

 Table 1. Executive Summary of EMC ComplianceTesting

Rationale: Per KDB KDB 996369 D04 "Modular Transmitter Integration Guide – Guidance for Host Product Manufacturers" only worst-case radiated measurements are reported in this filing.

Bluecats US LLC BC4520 ProxPoint Electromagnetic Compatibility CFR Title 47 Part 27

II. Equipment Configuration

2.1 Overview

Eurofins E&E North America was contracted by Bluecats US LLC to perform testing on the BC4520 ProxPoint, under Bluecats US LLC's purchase order number MOB2016.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Bluecats US LLC BC4520 PROXPOINT.

Model(s) Tested:	BC4520 ProxPoint	BC4520 ProxPoint					
Model(s) Covered:	BC4520 ProxPoint	BC4520 ProxPoint					
Filing Status:	Original						
	Primary Power: 120V (A	C/DC Adaptor)					
	FCC ID: 2AHXCBC4520						
	Module Original Report N Part 27: Report R2007A04	Number(s): 435-R6 Date Available in FCC Database: 09/04/2020					
	Type of Modulations:	QPSK, 16QAM					
EUT Specifications:	Equipment Code:	РСВ					
Specifications.	Technology	Frequency Range	(Measured) Power Output	(Rated) Power Output			
	LTE CAT-M1 Band 4	1710 – 1755 MHz	29.07 dBm EIRP	29.98 dBm EIRP			
	LTE CAT-M1 Band 12	699 – 716 MHz	26.72 dBm ERP	27.79 dBm ERP			
	LTE CAT-M1 Band 13	777 – 787 MHz	26.58 dBm ERP	27.17 dBm ERP			
Analysis:	The results obtained relate	e only to the item(s) tes	sted.				
	Temperature: 15-35° C						
Environmental Test Conditions:	Relative Humidity: 30-60%						
	Barometric Pressure: 860-1060 mbar						
Evaluated by:	Arsalan Hasan						
Date(s):	December 23, 2020						

The results obtained relate only to the item(s) tested.

E&E

 Table 2. EUT Summary Table

2.2 References

CFR 47, Part 27	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 27: Rules and Regulations for Advanced Wireless Services
KDB 996369 D04	Modular Transmitter Integration Guide – Guidance For Host Product Manufacturers
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.26: 2015	Compliance Testing of Transmitters Used in Licensed Radio Services
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories
EIA/TIA-603-A-2001	Land Mobile FM or PM Communication Equipment Measurement and Performance Standards
KDB 971168 v02r02	Measurement Guidance For Certification Of Licensed Digital Transmitters

Table 3. Standard References

2.3 Test Site

All testing was performed at Eurofins E&E North America, 3162 Belick St. Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 5 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

MET Laboratories is a ISO/IEC 17025 accredited site by A2LA, California #0591.02.

2.4 Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	К	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.32 dB	2	95%
RF Power Conducted Spurious Emissions	±2.25 dB	2	95%
RF Power Radiated Emissions	±3.01 dB	2	95%
Radiated Emissions, (30 MHz – 1 GHz)	±3.24	2	95%
Radiated Emissions, (1 - 25 GHz)	±3.92	2	95%
Conducted Emission	±3.53	2	95%
CEV Telecom Port	±2.44	2	95%

Table 4.	Uncertainty	Calculations	Summary
----------	-------------	--------------	---------

2.5 Description of Test Sample

E&E

The Bluecats US LLC BC4520 ProxPoint is an RTLS gateway that receives Bluetooth transmissions from beacons and tags, filters and processes location and sensor information, and forwards to a server via Ethernet, Wi-Fi, or LTE.

2.6 Equipment Configuration

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Revision
	NA	BC4520 ProxPoint	BC4520	NA	NA	NA
	BT1, BT4	Bluetooth Stick Antenna, Right Angle	W5029	NA	NA	NA
	BT2, BT3	Bluetooth Stick Antenna, Straight	W5029RPGT	NA	NA	NA
	LTE	LTE Flat Bar Antenna, 2m cable	ANT-LTE-VDP- 2000-SMA	NA	NA	NA
	GNSS	GPS GLONASS SMA, 3m cable	ANT-GPS-SH2- SMA	NA	NA	NA
	PWR	Power Adapter	GST25A12-P1J	NA	NA	NA
	ETH	M12 X-Coded to RJ45 10m cable	ETH	NA	NA	NA

 Table 5: Equipment Configuration

2.7 Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
	Laptop with Windows 10	HP	NA	N/A

 Table 6: Support Equipment

2.8 Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
	BT1	W5029 Antenna	1	NA	NA	NA	NA
	BT2	W5029RPGT Antenna	1	NA	NA	NA	NA
	BT3	W5029RPGT Antenna	1	NA	NA	NA	NA
	BT4	W5029 Antenna	1	NA	NA	NA	NA
	LTE	ANT-LTE-VDP-2000-SMA Antenna	1	2m	NA	Yes	NA
	GNSS	ANT-GPS-SH2-SMA Antenna	1	3m	NA	Yes	NA
	ETH	M12 X-Coded connector to RJ45	1	10m	NA	Yes	NA
	PWR	M12 A-Coded terminated GST25A12- P1J Power Adapter	1	NA	NA	NA	(120v/60hz)

 Table 7: Ports and Cabling Information

Bluecats US LLC BC4520 ProxPoint

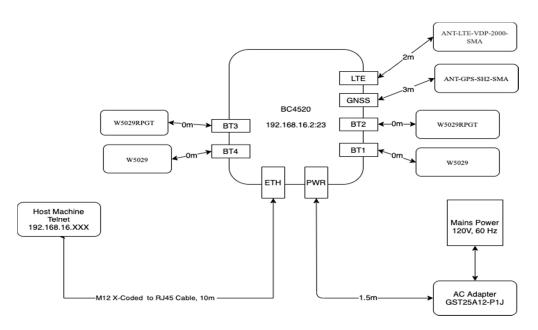


Figure 1: EUT configuration

2.9 Mode of Operation During Testing

Standard test mode was used. Allows independent activation of all radios in their various test modes, as well as methods to generate traffic similar to normal operation on all digital busses.

The BC4520 ProxPoint was paired with CMW500 and the callbox on screen indication was used to monitor proper connection.

2.10 Method of Monitoring EUT Operation

The signal will be displayed on a spectrum analyzer.

2.11 Modifications

2.11.1 Modifications to EUT

No modifications were made to the EUT.

2.11.2 Modifications to Test Standard

No modifications were made to the test standard.

2.12 Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Bluecats US LLC upon completion of testing.

Bluecats US LLC BC4520 ProxPoint

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 27.50 Radiated Output Power

Test Requirement(s): §27.50 (b)(10): Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

§27.50 (b)(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

§27.50 (d)(4): Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

Test Procedures: The EUT was tested according to the average power integration procedures of ANSI C63.26 (2015) 5.5.3.

Radiated measurements shall be performed using the test arrangement shown in Figure . After a direct field strength measurement of the maximum emission amplitude level (maximized as described previously), a signal generator and transmit antenna are substituted in place of the EUT, as shown in Figure 7. The output power of the signal generator is adjusted to replicate the maximized signal amplitude measured in the direct field strength measurement. The signal generator power setting is then used to determine the ERP or EIRP of the EUT spurious emission(s). These measurements shall be performed in accordance with the common requirements specified in 5.5.2 and the specific requirements provided in this subclause.

A step-by-step procedure is as follows.

- Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- **b**) Each emission under consideration shall be evaluated:
 - 1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - 2) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - 3) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

Bluecats US LLC BC4520 ProxPoint

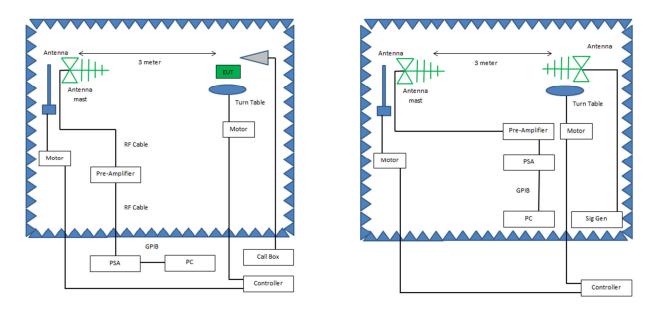


Figure 2. ERP / EIRP, Block Diagram, Test Setup Below 1GHz

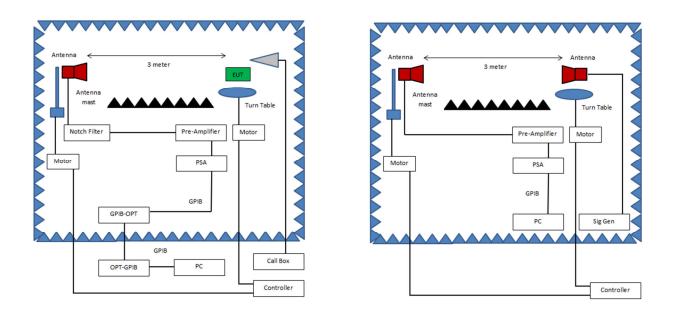


Figure 3. ERP / EIRP, Block Diagram, Test Setup Above 1GHz

Bluecats US LLC BC4520 ProxPoint

- d) Set-up the substitution measurement with the reference point of the substitution a antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- e) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- f) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- **g**) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
 - 1) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - 2) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
 - 3) Record the output power level of the signal generator when equivalence is achieved in step 2).
- **h**) Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- i) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE-dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- j) Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- Test Results: The EUT was found compliant with the requirements of this section.

Test Engineer(s): Felix Huang

Test Date(s): 12/07/2020

Test Results

Mode	Bandwidth	Channel/ Frequency	Index	RB#	Conducted Power (dBm)	
Mode		(MHz)	muex	RBstart	QPSK	16QAM
		20000/1725	3	1#0	22.39	21.96
			0	4#0	22.22	22.10
			0	1#0	22.34	22.03
Band 4	10 MHz	20175/1732.5	0	4#0	22.14	22.08
		20250/1550	4	1#5	22.39	22.15
		20350/1750	7	4#2	22.28	22.23

 Table 8. Module Original Conducted Powers from Module Report R2007A0435-R6

Note:

Highest conducted power listed in green. Channels with highest conducted power were selected for spot checking.

Mode	Freq. (MHz)	SG (dBm)	CL (dB)	AG (dBi)	Ant. Pol.	EIRP Level (dBm)	Limit (dBm)	Margin
LTE Band 4 10 MHz BW QPSK	1750	1.02	1.26	29.31	Vertical	29.07	30.00	0.93
LTE Band 4 10 MHz BW 16QAM	1750	0.24	1.26	29.31	Vertical	28.29	30.00	1.71

 Table 9. ERP, Test Results, Part 27, LTE Band 4

Note:

		Channel/		RB#	Conducted Power (dBm)		
Mode	Bandwidth	Frequency (MHz)	Index	RBstart	QPSK	16QAM	
			3	1#0	22.72	23.18	
		23060/704	0	4#0	22.51	22.69	
		23095/707.5	0	1#0	23.05	22.78	
Band 12	10 MHz		0	4#0	22.59	22.86	
			4	1#5	23.35	22.97	
		23130/711	7	4#2	22.59	22.76	

Table 10. Module Original Conducted Powers from Module Report R2007A0435-R6

Note:

Highest conducted power listed in green. Channels with highest conducted power were selected for spot checking.

Mode	Freq. (MHz)	SG (dBm)	CL (dB)	AG (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin
LTE Band 12 10 MHz BW QPSK	711.0	26.07	0.80	3.6	Vertical	26.72	34.77	8.05
LTE Band 12 10 MHz BW 16QAM	704.0	25.54	0.79	3.7	Vertical	26.30	34.77	8.47

 Table 11. ERP, Test Results, Part 27, LTE Band 12

Note:

Bluecats US LLC BC4520 ProxPoint

Mode	Bandwidth	Channel/ Frequency (MHz)	Index	RB# RBstart	Conducted Power (dBmQPSK16QAM	
			0	1#0	23.07	23.70
Band 13	10 MHz	23230/782	0	4#0	22.77	22.95

 Table 12. Module Original Conducted Powers from Module Report R2007A0435-R6

Note:

Highest conducted power listed in green. Channels with highest conducted power were selected for spot checking.

Mode	Freq. (MHz)	SG (dBm)	CL (dB)	AG (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin
LTE Band 13 10 MHz BW QPSK	782.0	26.24	0.83	3.1	Vertical	26.36	34.77	8.41
LTE Band 13 10 MHz BW 16QAM	782.0	25.46	0.83	3.1	Vertical	26.58	34.77	8.19

Table 13. ERP, Test Results, Part 27, LTE Band 13

Note:

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 2.1053 Radiated Spurious Emissions

Test Requirement(s): § 2.1053 Field strength of spurious radiation.

§ 2.1053 (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of § 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.

§ 2.1053 (b): The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.

(2) All equipment operating on frequencies higher than 25 MHz.

(3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.

(4) Other types of equipment as required, when deemed necessary by the Commission.

§ 27.53(h): For operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

§ 27.53(g): For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

\$ 27.53(f): For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Procedures:		CUT was tested according to the average power integration procedures of ANSI C63.26) 5.5.3.
	direct describ EUT, a maxim genera emissio	ed measurements shall be performed using the test arrangement shown in Figure. After a field strength measurement of the maximum emission amplitude level (maximized as bed previously), a signal generator and transmit antenna are substituted in place of the as shown in Figure 7. The output power of the signal generator is adjusted to replicate the nized signal amplitude measured in the direct field strength measurement. The signal tor power setting is then used to determine the ERP or EIRP of the EUT spurious on(s). These measurements shall be performed in accordance with the common ements specified in 5.5.2 and the specific requirements provided in this subclause.
	A step	-by-step procedure is as follows.
	k)	Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
	I)	 Each emission under consideration shall be evaluated: 6) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height. 7) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position. 8) Return the turntable to the azimuth where the highest emission amplitude level was observed. 9) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude. 10) Record the measured emission amplitude level and frequency using the appropriate RBW.
	m)	Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
	n)	Set-up the substitution measurement with the reference point of the substitution a antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.

Bluecats US LLC BC4520 ProxPoint

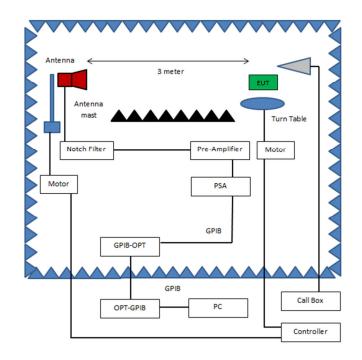


Figure 4. Radiated Spurious Emissions, Block Diagram, Test Setup

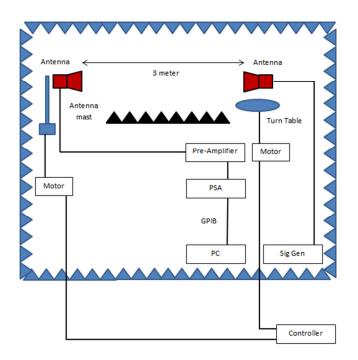


Figure 5. Radiated Spurious Emissions, Block Diagram, Test Setup

Bluecats US LLC BC4520 ProxPoint

- **o**) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- p) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- **q**) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
 - 4) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - 5) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
 - 6) Record the output power level of the signal generator when equivalence is achieved in step 2).
- **r**) Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- s) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

- Pe = equivalent emission power in dBm
- Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- **Test Results:** The EUT was found compliant with the requirements of this section.

Measurements were made in each configuration. Data is presented for the worse case configuration.

Test Engineer(s): Felix Huang

Test Date(s): 12/08/2020

Radiated Spurious Emissions Test Results,

	LTE Band 4 - QPSK											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	3500	-93	1.85	32.73	Vertical	-64.27	-13	51.27				
3	5250	-92	2.51	34.48	Vertical	-62.18	-13	49.18				
4	7000	-91	2.94	35.49	Vertical	-60.60	-13	47.60				
5	8750	-90	3.48	36.01	Vertical	-59.62	-13	46.62				
6	10500	-89	3.84	37.43	Vertical	-57.56	-13	44.56				
7	12250	-87	4.38	38.84	Vertical	-54.69	-13	41.69				
8	14000	-85	4.51	38.78	Vertical	-52.88	-13	39.88				
9	15750	-84	4.48	41.01	Vertical	-49.62	-13	36.62				
10	17500	-82	5.16	41.32	Vertical	-47.99	-13	34.99				

 Table 14. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 4

	LTE Band 4 – 16QAM											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	3500	-92	1.85	32.73	Vertical	-63.27	-13	50.27				
3	5250	-91	2.51	34.48	Vertical	-61.18	-13	48.18				
4	7000	-90	2.94	35.49	Vertical	-59.60	-13	46.60				
5	8750	-89	3.48	36.01	Vertical	-58.62	-13	45.62				
6	10500	-87	3.84	37.43	Vertical	-55.56	-13	42.56				
7	12250	-85	4.38	38.84	Vertical	-52.69	-13	39.69				
8	14000	-83	4.51	38.78	Vertical	-50.88	-13	37.88				
9	15750	-82	4.48	41.01	Vertical	-47.62	-13	34.62				
10	17500	-81	5.16	41.32	Vertical	-46.99	-13	33.99				

Table 15. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 4

Note:

	LTE Band 12 - QPSK											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	1422	-91	1.13	28.76	Vertical	-65.52	-13	52.52				
3	2133	-90	1.45	31.78	Vertical	-61.82	-13	48.82				
4	2844	-89	1.68	32.30	Vertical	-60.53	-13	47.53				
5	3555	-88	1.84	32.82	Vertical	-59.17	-13	46.17				
6	4266	-86	2.05	33.14	Vertical	-57.06	-13	44.06				
7	4977	-84	2.49	33.90	Vertical	-54.74	-13	41.74				
8	5688	-83	2.70	34.62	Vertical	-53.23	-13	40.23				
9	6399	-82	2.75	35.50	Vertical	-51.40	-13	38.40				
10	7110	-81	3.07	35.57	Vertical	-50.65	-13	37.65				

 Table 16. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 12

	LTE Band 12 – 16QAM											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	1408	-90	1.14	28.91	Vertical	-64.38	-13	51.38				
3	2112	-89	1.45	31.82	Vertical	-60.78	-13	47.78				
4	2816	-88	1.65	32.38	Vertical	-59.42	-13	46.42				
5	3520	-86	1.83	32.78	Vertical	-57.20	-13	44.20				
6	4224	-84	2.03	33.24	Vertical	-54.94	-13	41.94				
7	4928	-82	2.31	33.45	Vertical	-53.01	-13	40.01				
8	5716	-82	2.56	34.34	Vertical	-52.37	-13	39.37				
9	6336	-81	2.34	35.35	Vertical	-50.14	-13	37.14				
10	7040	-80	2.87	35.76	Vertical	-49.26	-13	36.26				

 Table 17. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 12

Note:

	LTE Band 13 - QPSK											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	1564.0	-93	1.26	28.57	Vertical	-67.84	-40	27.84				
3	2346.0	-91	1.48	32.53	Vertical	-62.10	-13	49.10				
4	3128.0	-90	1.71	33.29	Vertical	-60.57	-13	47.57				
5	3910.0	-89	1.91	33.85	Vertical	-59.21	-13	46.21				
6	4692.0	-87	2.2	34.52	Vertical	-56.83	-13	43.83				
7	5474.0	-86	2.69	35.03	Vertical	-55.81	-13	42.81				
8	6256.0	-85	2.73	36.05	Vertical	-53.83	-13	40.83				
9	7038.0	-84	3.03	35.95	Vertical	-53.23	-13	40.23				
10	7820.0	-83	3.38	36.08	Vertical	-52.45	-13	39.45				

 Table 18. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 13

	LTE Band 13 – 16QAM											
Harmonic	Freq. (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Ant. Pol.	ERP Level (dBm)	Limit (dBm)	Margin				
2	1564.0	-92	1.26	28.57	Vertical	-66.84	-40	26.84				
3	2346.0	-90	1.48	32.53	Vertical	-61.10	-13	48.10				
4	3128.0	-89	1.71	33.29	Vertical	-59.57	-13	46.57				
5	3910.0	-88	1.91	33.85	Vertical	-58.21	-13	45.21				
6	4692.0	-87	2.2	34.52	Vertical	-56.83	-13	43.83				
7	5474.0	-85	2.69	35.03	Vertical	-54.81	-13	41.81				
8	6256.0	-84	2.73	36.05	Vertical	-52.83	-13	39.83				
9	7038.0	-82	3.03	35.95	Vertical	-51.23	-13	38.23				
10	7820.0	-80	3.38	36.08	Vertical	-49.45	-13	36.45				

 Table 19. Radiated Spurious Emissions, Test Results, Part 27, LTE Band 13

Note:

Electromagnetic Compatibility CFR Title 47 Part 27

IV. Test Equipment

E&E

Bluecats US LLC BC4520 ProxPoint

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1\$4075	RADIO COMMUNICATION TESTER	ROHDE & SCHWARZ	CMW500	09/20/2020	09/20/2022
1S2399	TURNTABLE/MAST CONTROLLER	SUNOL SCIENCES	SC99V	SEE NOTE 1	
1\$2600	BILOG ANTENNA	TESEQ	CBL6112D	03/19/2019	03/19/2021
182733	BILOG ANTENNA	TESEQ	CBL6112D	06/05/2019	06/05/2021
1\$3826	DRG HORN ANTENNA	ETS-LINDGREN	3117	12/03/2020	12/03/2022
1S2198	DRG HORN ANTENNA	ETS-LINDGREN	3117	10/07/2019	10/07/2021
1S2003	PXA Signal Analyzer	Keysight	N9030B	09/15/2020	09/15/2021
1\$2587	PRE AMPLIFIER	AML COMMUNICATIONS	AML0126L3801	SEE NOTE 1	
1\$2653	AMPLIFIER	SONOMA INSTRUMENT	310 N	SEE NOTE 1	
1S2486	5 METER CHAMBER	PANASHIELD - ETS	5M	SEE NOTE 2	
1\$3824	SIGNAL GENERATOR	ROHDE & SCHWARZ	SMA100B	11/06/2019	05/06/2021

Table 20. Test Equipment List

Note 1: Functionally tested equipment is verified using calibrated instrumentation at the time of testing. Note 2: Latest NSA and VSWR data available upon request.

Bluecats US LLC BC4520 ProxPoint Electromagnetic Compatibility CFR Title 47 Part 27

End of Report