

FCC TEST REPORT FCC ID: 2AHW8BT400RUC

Product Name	:	Cassette Radio				
Model Name	Name LT-BT400RUC, LT-BT1715UF, LT-BT1716UF, LT-8400, LT-8500, LT-448, LT-T100					
Brand Name	:	N/A				
Report No.	:	PTC18082226803E-FC01				
		Prepared for				
	LEC	DTEC ELECTRONICS CO.,LTD				
No.106,Wentang	No.106,Wentang North Road, Wenzhou Road, Dongcheng District, Dongguan China					
		Prepared by				
D	ongguan F	Precise Testing & Certification Corp., Ltd.				
Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China						

1TEST RESULT CERTIFICATION

Applicant's name	:	LEOTEC ELECTRONICS CO.,LTD
Address	:	No.106,Wentang North Road, Wenzhou Road, Dongcheng District, Dongguan China
Manufacture's name	:	LEOTEC ELECTRONICS CO.,LTD
Address	:	No.106,Wentang North Road, Wenzhou Road, Dongcheng District, Dongguan China
Product name	:	Cassette Radio
Model name	:	LT-BT400RUC, LT-BT1715UF, LT-BT1716UF, LT-8400, LT-8500, LT-448, LT-T100
Standards	:	FCC CFR47 Part 15 Section 15.247
Test procedure	:	ANSI C63.10:2013
Test Date	:	September 10, 2018 to September 20, 2018
Date of Issue	:	September 20, 2018
Test Result	:	Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Technical Manager:

Leo Yong

Leo Yang / Engineer

chim

Chris Du / Manager

Page 2 of 79

Contents

Page

1 TEST RESULT CERTIFICA	ΓΙΟΝ	2
2 TEST SUMMARY		5
3 TEST FACILITY		6
4 GENERAL INFORMATION.		7
4.1	GENERAL DESCRIPTION OF E.U.T.	7
4.2	Test Mode	8
5 EQUIPMENT DURING TEST	٢	10
5.1	Equipments List	10
5.2	Measurement Uncertainty	12
5.3	DESCRIPTION OF SUPPORT UNITS	13
6 CONDUCTED EMISSION		14
6.1	E.U.T. OPERATION	14
6.2	EUT SETUP	14
6.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
6.4	Measurement Procedure:	15
6.5	CONDUCTED EMISSION LIMIT	15
6.6	MEASUREMENT DESCRIPTION	15
6.7	CONDUCTED EMISSION TEST RESULT	15
7 RADIATED SPURIOUS EMI	SSIONS	18
7.1	EUT OPERATION	18
7.2	TEST SETUP	19
7.3	SPECTRUM ANALYZER SETUP	20
7.4	Test Procedure	21
7.5	SUMMARY OF TEST RESULTS	22
8 CONDUCTED BAND EDGE	AND SPURIOUS EMISSION	27
8.1	REQUIREMENT	27
8.2	TEST PROCEDURE	27
8.3	TEST SETUP	27
8.4	EUT OPERATION CONDITIONS	28

8.5	TEST RESULTS	
9 20 DB BANDWID	TH MEASUREMENT	
9.1	TEST PROCEDURE	
10 MAXIMUM PEAP	K OUTPUT POWER	
10.1	TEST PROCEDURE	
10.2	TEST RESULT	
11 HOPPING CHAN	INEL SEPARATION	
11.1	TEST PROCEDURE	
11.2	TEST RESULT	
12 NUMBER OF HC	OPPING FREQUENCY	
12.1	TEST PROCEDURE	
12.2	TEST RESULT	
13 DWELL TIME		
13.1	Test Procedure	
13.2	TEST RESULT	
14 ANTENNA REQU	UIREMENT	
14.1	ANTENNA REQUIREMENT	
14.2	RESULT	
15 TEST PHOTOS		
16 EUT PHOTOS		

2 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

3 TEST FACILITY

Dongguan Precise Testing & Certification Corp., Ltd. Address: Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

Test Lab: Shenzhen BCTC Testing Co., Ltd.
Address: BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China
FCC Registered No.: 712850
Test items: Radiated Spurious Emission(18GHz to 25GHz)

4 General Information

4.1 General Description of E.U.T.

Product Name	:	Cassette Radio
Model Name	:	LT-BT400RUC, LT-BT1715UF, LT-BT1716UF, LT-8400, LT-8500, LT-448, LT-T100 (Note: The samples are the same except appearance and model number. So LT-BT400RUC was selected full tested.)
Bluetooth Version	:	BT 2.1+EDR
Operating frequency	:	2402-2480MHz
Numbers of Channel	:	79 channels
Antenna Type	:	Internal PCB Antenna
Antenna Gain	:	-0.58 dBi
Type of Modulation	:	GFSK, Π/4-DQPSK, 8DPSK
Power supply	•	AC 120V/60Hz DC 4*1.5V Battery
Hardware Version	:	N/A
Software Version	:	N/A

4.2 Test Mode

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, Π /4-DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

During the test, the dutycycle >98% and test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Channel	Frequency(MHz)
0	2402
39	2441
78	2480

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Apr. 07, 2019
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Oct. 09, 2018
Antenna Connector	Florida RF Labs	N/A	RF01#	N/A	Aug. 26, 2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2019
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug 31, 2019
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug 31, 2019
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep. 03, 2019
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep. 03, 2019
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Oct. 13, 2018
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Aug. 31, 2019
Power Amplifier	LUNAR EM	LNA1G18-40	J1010000081	1GHz-26.5GHz	Aug. 31, 2019
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep. 03, 2019

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Radiated Emission (Test Frequency from 18GHz-25GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-26.5GHz	Aug. 25, 2019
Test Receiver	R&S	ESPI	101396	9KHz-7GHz	Aug. 25, 2019
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	Aug. 25, 2019
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	Aug. 25, 2019
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 25, 2019

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2019
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 03, 2019
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 03, 2019

5.2 Measurement Uncertainty

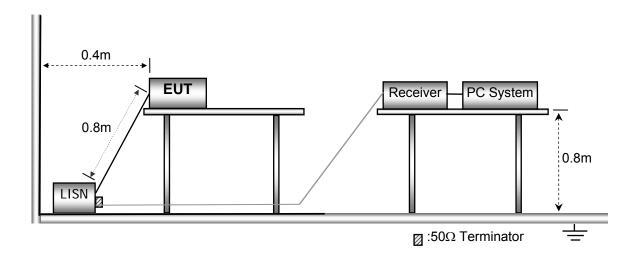
Parameter	Uncertainty				
RF output power, conducted	±1.0dB				
Power Spectral Density, conducted	±2.2dB				
Radio Frequency	± 1 x 10 ⁻⁶				
Bandwidth	± 1.5 x 10 ⁻⁶				
Time	±2%				
Duty Cycle	±2%				
Temperature	±1°C				
Humidity	±5%				
DC and low frequency voltages	±3%				
Conducted Emissions (150kHz~30MHz)	±3.64dB				
Radiated Emission(30MHz~1GHz)	±5.03dB				
Radiated Emission(1GHz~25GHz)	±4.74dB				
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%					

5.3 Description of Support Units

Equipment	Model No.	Series No.
N/A	N/A	N/A

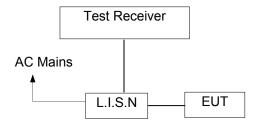
6 Conducted Emission

Test Requirement:	:	FCC CFR 47 Part 15 Section 15.207
Test Method:	:	ANSI C63.10:2013
Test Result:	:	PASS
Frequency Range:	:	150kHz to 30MHz
Class/Severity:	:	Class B
Detector:	:	Peak for pre-scan (9kHz Resolution Bandwidth)


6.1 E.U.T. Operation

Operating Environment :

Temperature:	:	25.5 °C
Humidity:	:	51 % RH
Atmospheric Pressure:	:	101.2kPa
Test Voltage	:	AC 120V/60Hz


6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

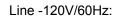
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

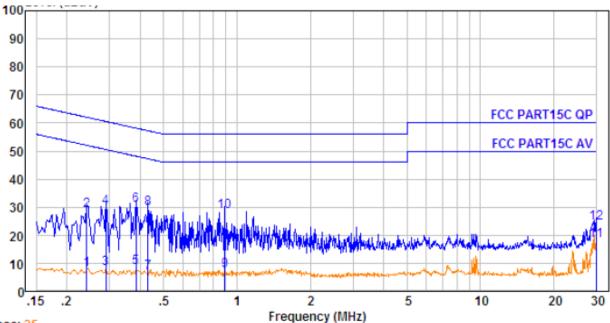
Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

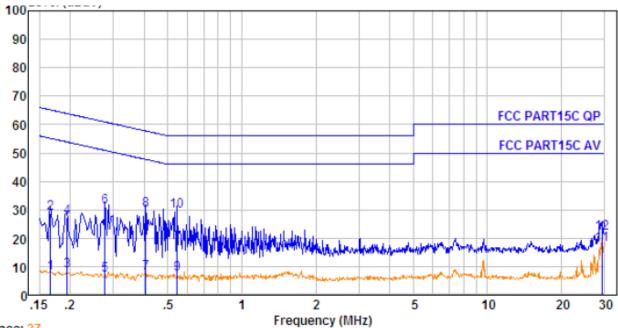
6.6 Measurement Description


The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.


6.7 Conducted Emission Test Result

Pass.

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.



Trace: 25

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emissio Level dBuV	n Limit dBuV	O∨er Limit dB	Remark
1.	0.242	0.32	9.63	-2.15	7.80	52.04	-44.24	Average
2.	0.242	0.32	9.63	18.83	28.78	62.04	-33.26	QP
3.	0.289	0.36	9.67	-2.09	7.94	50.54	-42.60	Average
4.	0.289	0.36	9.67	19.93	29.96	60.54	-30.58	QP -
5.	0.385	0.40	9.73	-1.58	8.55	48.17	-39.62	Average
6.	0.385	0.40	9.73	20.47	30.60	58.17	-27.57	QP
7.	0.431	0.41	9.75	-3.52	6.64	47.24	-40.60	Average
8.	0.431	0.41	9.75	19.45	29.61	57.24	-27.63	QP
9.	0.890	0.45	9.81	-2.94	7.32	46.00	-38.68	Average
10.	0.890	0.45	9.81	18.04	28.30	56.00	-27.70	QP
11.	29.841	0.47	9.94	7.80	18.21	50.00	-31.79	Average
12.	29.841	0.47	9.94	13.82	24.23	60.00	-35.77	QP

Neutral -120V/60Hz:

_	
Trace:	27

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emissio Level dBuV	n Limit dBuV	O∨er Limit dB	Remark
1.	0.166	0.23	9.56	-1.87	7.92	55.16	-47.24	Average
2.	0.166	0.23	9.56	19.14	28.93	65.16	-36.23	QP -
3.	0.194	0.27	9.61	-1.55	8.33	53.84	-45.51	Average
4.	0.194	0.27	9.61	17.49	27.37	63.84	-36.47	QP -
5.	0.277	0.35	9.69	-3.16	6.88	50.90	-44.02	Average
6.	0.277	0.35	9.69	20.81	30.85	60.90	-30.05	QP
7.	0.406	0.41	9.77	-2.41	7.77	47.73	-39.96	Average
8.	0.406	0.41	9.77	19.53	29.71	57.73	-28.02	QP
9.	0.546	0.43	9.82	-2.84	7.41	46.00	-38.59	Average
10.	0.546	0.43	9.82	19.13	29.38	56.00	-26.62	QP
11.	29.216	0.48	10.13	7.12	17.73	50.00	-32.27	Average
12.	29.216	0.48	10.13	11.10	21.71	60.00) -38.29	QP -

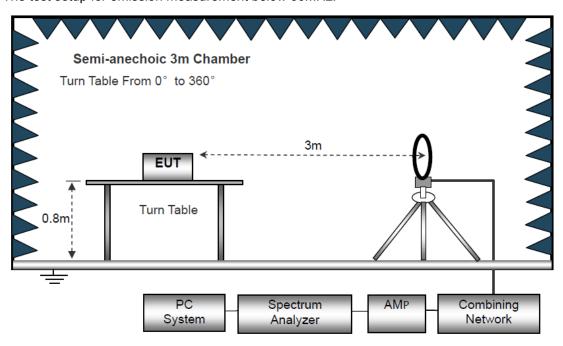
-

7 Radiated Spurious Emissions

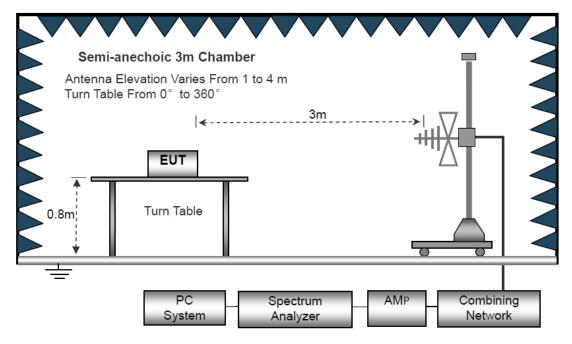
Test Requirement	:	FCC CFR47 Part 15 Section 15.209 & 15.247	
Test Method	:	ANSI C63.10:2013	
Test Result	:	PASS	
Measurement Distance	:	3m	
Limit	:	See the follow table	

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

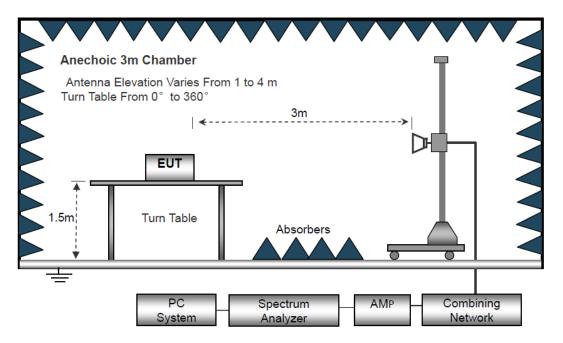

Operating Environment :	Operating	Environment :	
-------------------------	-----------	---------------	--

Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa
Test Voltage	:	DC 4*1.5V Battery



7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / <i>10Hz</i> for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

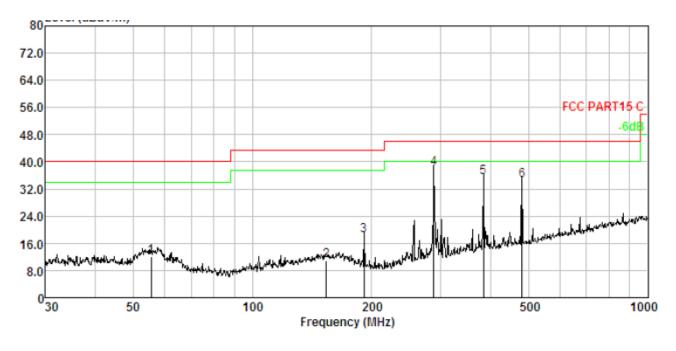
7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

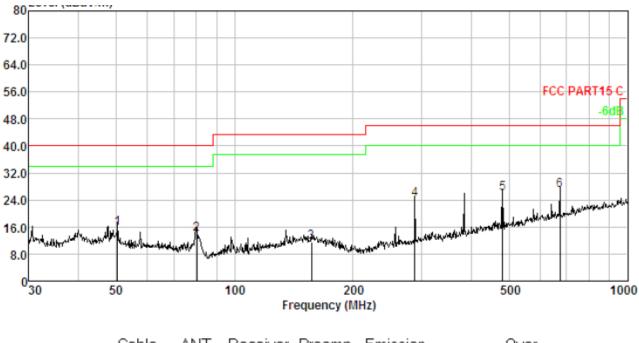
The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots:

All the modulation modes were tested the data of the worst mode (GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.



Test plot for Horizontal: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	O∨er Limit dB	Remark
1.	55.415	1.61	11.92	28.79	30.18	12.14	40.00	-27.86	QP
2.	153.739	2.53	13.89	25.07	30.54	10.95	43.50	-32.55	QP
3.	191.745	2.73	10.97	35.29	30.62	18.37	43.50	-25.13	QP
4.	287.990	3.10	12.96	52.77	30.76	38.07	46.00	-7.93	QP
5.	383.932	3.36	14.97	47.92	30.86	35.39	46.00	-10.61	QP
6.	480.528	3.57	16.89	44.88	30.94	34.40	46.00	-11.60	QP

Test plot for Vertical: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	O∨er Limit dB	Remark
1.	50.409	1.52	12.24	31.89	30.15	15.50	40.00	-24.50	QP
2.	80.081	1.94	8.77	33.50	30.31	13.90	40.00	-26.10	QP
3.	157.007	2.55	13.89	25.55	30.55	11.44	43.50	-32.06	QP
4.	287.990	3.10	12.96	38.89	30.76	24.19	46.00	-21.81	QP
5.	480.528	3.57	16.89	36.58	30.94	26.10	46.00	-19.90	QP
6.	672.845	3.87	19.80	34.23	31.05	26.85	46.00	-19.15	QP

Test Frequency 1GHz-18GHz

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4824	26.35	AV	V	8.22	8.24	9.07	33.74	54	-20.26
4824	27.14	AV	Н	8.22	8.24	9.07	34.53	54	-19.47
4824	33.09	PK	V	8.22	8.24	9.07	40.48	74	-33.52
4824	34.25	PK	Н	8.22	8.24	9.07	41.64	74	-32.36
14248	25.68	AV	V	8.36	8.29	9.22	33.11	54	-20.89
14248	28.15	AV	Н	8.36	8.29	9.22	35.58	54	-18.42
14248	34.02	PK	V	8.36	8.29	9.22	41.45	74	-32.55
14248	35.62	PK	Н	8.36	8.29	9.22	43.05	74	-30.95

Low Channel (2402MHz) Worst case GFSK

Middle Channel (2441MHz) Worst case $\pi/4$ -DQPSK

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4882	25.33	AV	V	8.2	8.19	9.05	32.67	54	-21.33
4882	26.18	AV	Н	8.2	8.19	9.05	33.52	54	-20.48
4882	33.08	PK	V	8.2	8.19	9.05	40.42	74	-33.58
4882	35.49	PK	Н	8.2	8.19	9.05	42.83	74	-31.17
15562	24.59	AV	V	8.35	8.34	9.17	32.11	54	-21.89
15562	26.19	AV	Н	8.35	8.34	9.17	33.71	54	-20.29
15562	34.12	PK	V	8.35	8.34	9.17	41.64	74	-32.36
15562	36.08	PK	Н	8.35	8.34	9.17	43.6	74	-30.40

High Channel (2480MHz) Worst case GFSK

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4960	25.43	AV	V	8.33	8.22	9.04	32.94	54	-21.06
4960	26.12	AV	Н	8.33	8.22	9.04	33.63	54	-20.37
4960	34.09	PK	V	8.33	8.22	9.04	41.6	74	-32.4
4960	35.22	PK	Н	8.33	8.22	9.04	42.73	74	-31.27
15429	26.08	AV	V	8.41	8.19	9.12	33.56	54	-20.44
15429	28.18	AV	Н	8.41	8.19	9.12	35.66	54	-18.34
15429	35.46	PK	V	8.41	8.19	9.12	42.94	74	-31.06
15429	36.22	PK	Н	8.41	8.19	9.12	43.7	74	-30.3

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Bluetooth (GFSK, Pi/4-DQPSK, 8DPSK, Hopping)mode have been tested, and the worst result(GFSK, Hopping) was report as below

	Test Mode: GFSK Frequency: Channel 0 2402MHz							
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over	
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)	
2386.845	Н	44.05	74	-29.95	26.18	54	-27.82	
2384.106	V	45.21	74	-28.79	28.04	54	-25.96	

	Test Mode: GFSK Frequency: Channel 0 2402MHz						
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)
2484.245	Н	47.22	74	-26.78	30.24	54	-23.76
2485.223	V	46.35	74	-27.65	29.13	54	-24.87

	Test Mode: GFSK Frequency: Hopping							
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over	
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)	
2390.00	Н	40.22	74	-33.78	28.24	54	-25.76	
2483.50	Н	45.13	74	-28.87	29.35	54	-24.65	
2390.00	V	41.06	74	-32.94	28.14	54	-25.86	
2483.50	V	42.59	74	-31.41	30.23	54	-23.77	

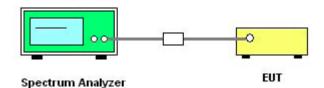
Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

8 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

8.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


8.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

. For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2300 – 2403 MHz Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

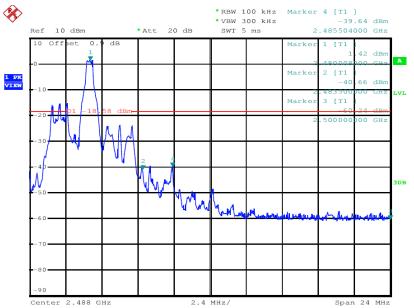
8.3 TEST SETUP

1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.

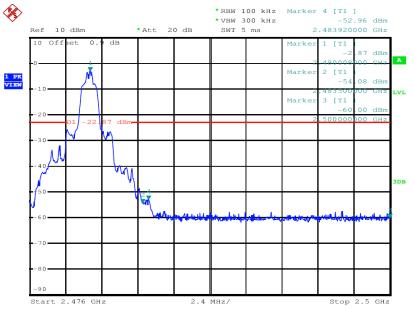
2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

8.4 EUT OPERATION CONDITIONS

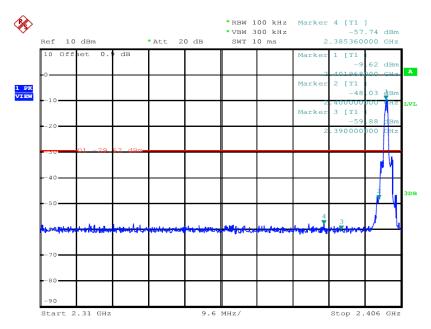
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.


8.5 TEST RESULTS

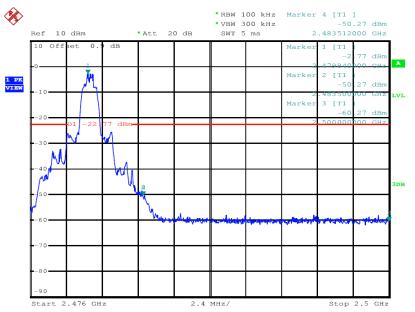
For Non-Hopping Mode:

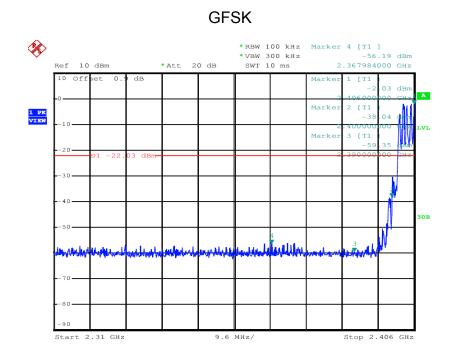


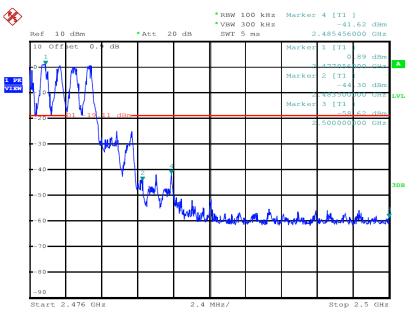
\$ *RBW 100 kHz Marker 4 [T1] *VBW 300 kHz -57.82 dBm SWT 10 ms 2.323344000 GHz Ref 10 dBm * Att 20 dB 10 Off dB [T] Marke 40 dE A Marke 2 [T1 1 PK VIEW -4 VL Marke 3 [Т1 20 39000 DB 4 90 Start 2.31 GHz 9.6 MHz/ Stop 2.406 GHz


π/4-DQPSK

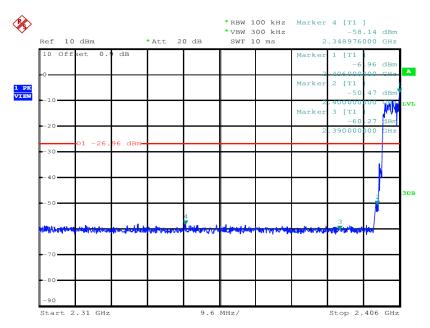
Page 29 of 79



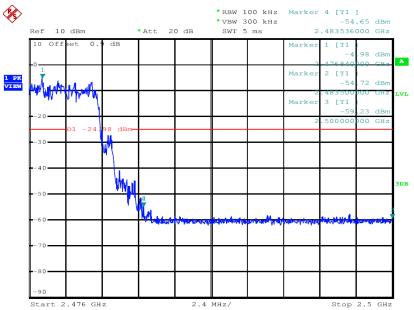

8DPSK



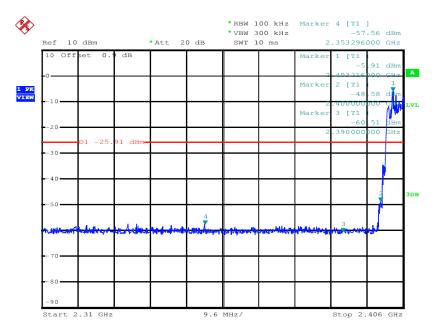
For Hopping Mode:

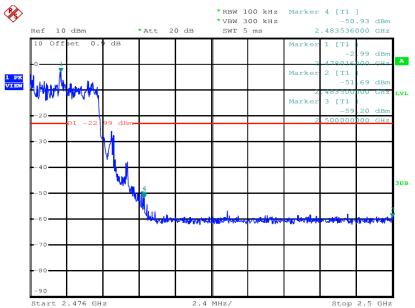



Page 31 of 79



π/4-DQPSK





8DPK

For Conduct spurious emissions

GFSK

Low Channel

Ref Level 2 Att	0.00 dBm 30 dB		8.00 dB 👜 🖡 30.1 ms 👜 🎙			Auto Sweep			
Count 10/10									
1Pk Max									
					M	1[1]			49.75 dBm 0.0150 MHz
0 d8m								040	.0150 MH2
d8m									
10 d8m									
10 GDIII									
20 dBm									
20 0bm 01	-22.420	dBm							
30 d8m									
SU GBIII									
40 d8m									
40 dbm									
						M1			
50 dBm	ما طفح روب	inter desident	المعادية ورقارته	and a substitution	الارومانية العار	() of the balance of the	and for plans	Henrich Hales im	يعتبر إذار والعريد
and disards in the	and the second s	in the second second	p the second part	No. of the local data	and the second section	Contract do Oth	hard a state of a board	adamp (branced	A series and series of the
60 dBm									
70 dBm —									

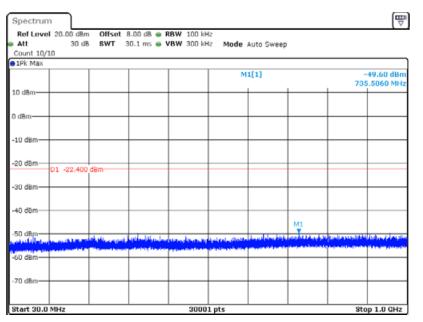
Ref Level	20.00 dBm 30 dB			RBW 100 kH VBW 300 kH	-				
Count 10/10		SWI	250 ms 🖷 🖲	VBW 300 KH	z Mode	Auto Sweep			
1Pk Max									
					м	1[1]			26.08 dB 03333 GH
10 dBm							-		
0 dBm									
-10 d8m									
-20 dem									
-20 08 11 0	1 422.420	dBm							
-30 dem									
-40 d8m	_					familie debi	to be a line of		
		والمطافر من	2 hours day you	in house	100	distant second		Hallmar	of the second
-50 d e n -la	and the second second	-	and the second s	a na an an an Antoine An	AND ADDRESS OF			Children des alle	and a new off
and hit has	Party of the local data								
-60 d8m									
-70 dBm									
			1	1					

Middle Channel

Spectrum				Ē
Ref Level 20.00 dBm Att 30 dB Count 10/10			de Auto Sweep	
• 1Pk Max			M1[1]	-50.18 dBm 988.5060 MHz
10 dBm				
0 d8m				
-10 dBm				
-20 dBm 01 -21.320	dBm			
-30 dBm				
-40 dBm				
-50 dBm	التحريبا وروقا فالرجر عارية وماه	denote and the second	AND IN STREET OF IT	M1
-60 dBm	All of the first starting of the	and for the state of the state of the	The second s	
-70 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Ref Level 20. Att	30 dB SWT	t 8.00 dB 👄 1 250 ms 👄 1	VBW 300 kH		Auto Sweep			
Count 10/10 1Pk Max								
				м	1[1]			27.53 dB 81667 GF
10 dBm								
0 dBm								
-10 dBm								
-20 dBm01 -	21.320 d8m							
-30 dBm	Ť –							
-40 dBm				للاشموري	القاربون ومطالقا	ALCONTRACT, 6	6 J	المعلى القرر ويرتطوه
50 d8	and the sheet her	AL DAMAGE	and a subsection	and a state	links, since	antherin, a	hel, kalenstant	damper la
Contraction of States	- Port		11					
-60 d8m								
-70 dBm			ļ					

High Channel


Spectrum				
Ref Level 20.00 dBm Att 30 dB Count 10/10	Offset 8.00 dB • RB SWT 30.1 ms • VB		uto Sweep	
• 1Pk Max		MI	[1]	-49.29 dBm 799.0710 MHz
10 dBm				
0 dBm				
-10 dBm				
-20.dBm 01 -20.670 dB	m			
-30 dBm				
-40 dBm				
-50 dBm	ويستعدد وراويتهم والرور ترويتهم	en son sins has been tilte take bester	M: V In St. , Anna Alan and Ala	
-60 dBm	Content on Lagran & State Mark State States on Lagrand & States on Lagr		an a tha an tha an the second	a laga manang sina a sefer ing dan di sana manana ana an
-70 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Count 10/3 1Pk Max	.0								
					М	1[1]			29.64 dB 59167 G
10 dBm									
0 d8m									
-10 d8 n									
20 d8m	D1 -20.670) d8m							
30 d8 n	M1								
-40 dBm					and start Dist.	الماري ويعطأه	andia atra d		
		فمطيبين	danashaada	ang pantana ang kanakana		difference and the	mar Algorith, J	and an annual second	planteter partie
-50 dBh arr	o ha contrati da	n and a state of the							
and the second second									
-60 d8m		1							
-60 d8m			1	1					

π/4-DQPSK

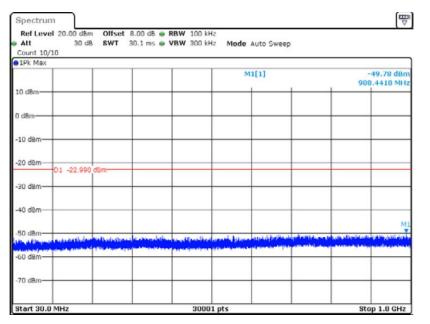
Att Count 10/10	30 d8	SWT	250 ms 🖷	VBW 300 kH	2 Mode	Auto Sweep			
1Pk Max					м	1[1]			27.98 dB 04167 G
10 dBm									
0 dBm									
-10 d2m									
20 dem	1 -22.400	d8m							
30 dem	1								
40 d2m	_			ale à statute de	al stall de la stalle	ald have been	و والاستانية.	h to the last of	Linus ala
50 dB of T	موسع اب دو.	paral (Later) - P		Les & Laskaban	and a start of the start of the	dinina artesa	and we have	And in strength of the	and an art
an estation of	والمركزة والمركزين			1.					
-60 d8m									
-70 dBm									

Middle Channel

Spectrum					
Ref Level 20.00 dBr Att 30 d Count 10/10			fode Auto Sweep		
●1Pk Max			M1[1]		-50.28 dBm 969.1390 MHz
10 dBm					
0 dBm					
-10 dBm					
-20 dBm 01 -21.840) dBm				
-30 dBm					
-40 dBm					
-50 d8m	Network at a second state of	and the second and finds	an in a state and in the state	e and as the sector is noticed by the	M1 Phyte-phyte-party
-60 dBm		terestrenden sind bester	and the second sec	Independent of the property in the literal	bee in the part of the
-70 dBm					
Start 30.0 MHz		30001 pts			Stop 1.0 GHz

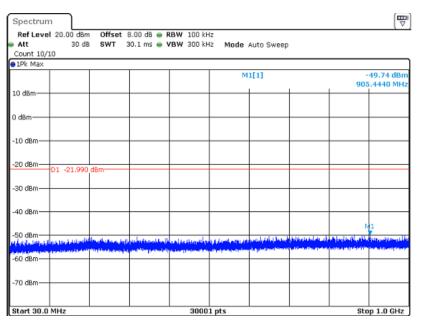
Att Count 10/10	30 d8	SWT	250 ms 🖷	VBW 300 kH	z Mode	Auto Sweep			
1Pk Max									
					M	1[1]			30.19 dB 82500 GI
10 dBm								+	02000 0
) d8m									
10 d8m-									
20 dBm									
	01 -21.840 M1	dBm							
30 dB n	Ť								
40 dBn					المحقق ومرا	(unker hand	and in the second	فالمقربون وقاله	ويتر ويتر المراجع
50 d8ni-	المرابع أحدين	A CARLES	of the second	and the second	ALL DATES	(Charling)	مردقة فالمعم	Address House	and the second s
and shares in the second s		1000							
60 dBm									
			1						

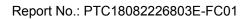
High Channel


Spectrum				[Ţ
Ref Level 20.00 dBm Att 30 dB Count 10/10			Auto Sweep	
• 1Pk Max		M	1[1]	-50.01 dBm
10 dBm				913.4950 MHz
0 d8m				
-10 dBm				
-20.dBm 01 -21.000	dBm			
-30 dBm				
-40 dBm				
-50 dBm	ومعصار المتشارية ومردور والمتعاد	n a an transferi ya ta ta tika aka	an al mainte and the second of	M1 Alematics and details, itself
-60 dBm	detinises dans and interacting and	ikadan Bajir Basani dan d		unnejslentiete fregeseerties
-70 dBm				
Start 30.0 MHz		30001 pts		Stop 1.0 GHz

Att	20.00 dBn 30 dB		RBW 100 kH VBW 300 kH		Auto Sweep			
Count 10/1 1Pk Max	0		 					
				М	1[1]			31.48 dB 60000 GF
10 dBm-								
0 d8m								
-10 dB m								
20 d8m	01 -21.000	dam						
30 d8m-	M1							
40 d8m								
40 00 11			 A. 1. 1. 1. 1. 1.	في المعاملية الم	n Dishar i Javisr	aba th reads _a g	فللتصعفان	فتأر ليؤر وحشاة
50 dB 0	a fidana	line and a second s	 and the second second	And the second	and the second	a produced and the	Chillippine and Arti	
60 d8m-	-							

8DPSK


Low Channel



Att Count 10/1	20.00 dBm 30 dB		250 ms 🖷 🕻	BW 100 kH BW 300 kH		Auto Sweep			
1Pk Max	0		1						
					M	1[1]			29.63 dB 04167 GF
10 dBm-									
0 d8m									
u uem									
-10 d8m-									
-20 dBm	01 -22.990	d8m							
-30 dgm-	M1								
-50 GL II									
-40 d <mark>8</mark> m						i ti al _{ego} feter	aladia an a		
			and a state of the	ne he stike ni he stike		Series and		and second second	
-50 d8	and shall be in sold	photo h	1						
-60 d8m-									
-70 d8m-									

Middle Channel

Ref Leve	I 20.00 dBn	n Offset	8.00 dB 👄 I	RBW 100 kH	z			
Att	30 de	SWT	250 ms 👄 🕯	VBW 300 kH	z Mode /	Auto Sweep		
Count 10/	10							
9 1Pk Max							 	
					M	1[1]		29.90 dB
10 dBm							4.8	81667 GF
10 abin								
0 dBm								
-10 dBm —								
-20 dBm	01 -21.990	d8m						
	M1							
-30 dBm	l T							
1								
-40 dB <mark>m</mark> —				Mary & A. Joseph and		Bases of Lon		
		المعطال إين	والمعادية ويرار	allen af eit dealard. Leven die steren dealarde	Alege and a set	dente and	 anitis en bénéhezek	ىرل بۇللىلى شىرىيە
-50 d8 h-+	lighter the second		a second second second	مىلىدىغ <u>ئىلىدىكە بىلەر يەرىپ،</u>	and participation of the		 and the second	and proven
and the little of	all provide the second							
-60 dBm								
-70 dBm								

High Channel

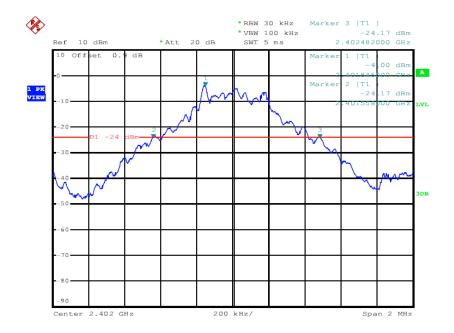
Spectrum)							Ē
Ref Level 20.0 Att Count 10/10	0 dBm Offset 30 dB SWT	8.00 dB 👄 R 30.1 ms 👄 V			Auto Sweep			
• 1Pk Max				М	1[1]			50.03 dBm 5.2100 MHz
10 dBm								
0 dBm-								
-10 dBm								
-20 dBmD1 -2	21.280 dBm							
-30 dBm								
-40 dBm								
-50 dBm	المريانات أنشاعه م	وعريقة الألطور والم	وتعاديك ويتقاتب	a litera estatuar	and the different	alara da Babbaraya	N	1 Federation (a)
-60 dBm	and the strength of the streng		an diaday dati	1400 Harris	ALAIDON CONTRACTOR	atan baharan	Least of a selection	
-70 dBm								
Start 30.0 MHz			3000	1 pts			Sto	p 1.0 GHz

Spectrum							[□ ▽
Ref Level 20.00 dBn Att 30 d Count 10/10		RBW 100 kH VBW 300 kH		Auto Sweep			
1Pk Max							
			м	1[1]			32.04 dBn 60000 GH
10 dBm							
0 dBm							
-10 dBm							
-20 dBm 01 -21.280) dBm						
-30 dBm							
-40 dBm							
	يطاوم البلا المستقراب	. n khabb			and the second second	الايتربية برابط	هاتر پرس بازقی
-50 dB	a product of the second se		Peter State	a second free	Transfer and	California and California	Paradra 1.44
-60 dBm							
oo abiii							
-70 dBm							
Start 1.0 GHz		3000	1 pts			Stop	26.0 GHz

9 20 dB Bandwidth Measurement

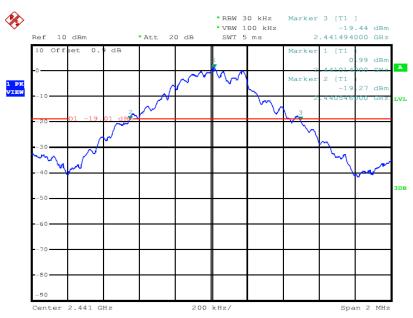
Test Requirement	:	FCC CFR47 Part 15 Section 15.247
------------------	---	----------------------------------

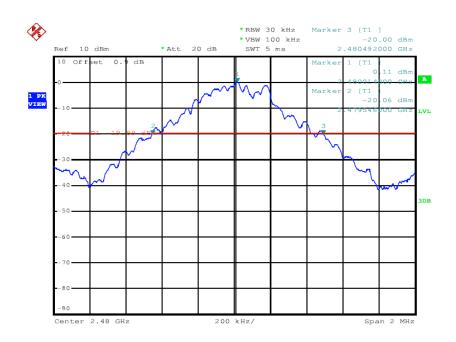
Test Method : ANSI C63.10:2013

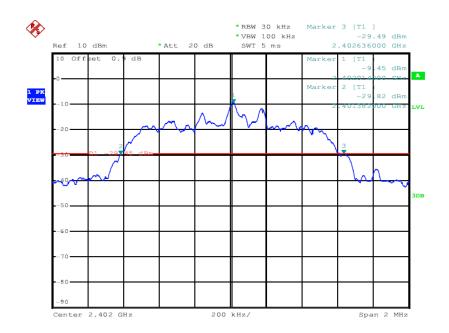

9.1 Test Procedure

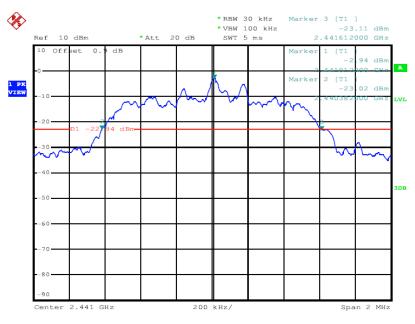
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

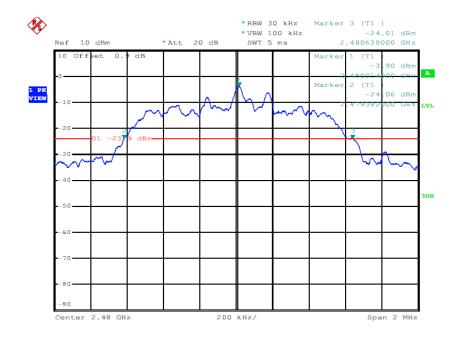
2. Set the spectrum analyzer: RBW =30kHz, VBW = 100kHz


Test ResultTest Mode: CH00 / CH39 / CH78 (GFSK/(1Mbps)Mode)

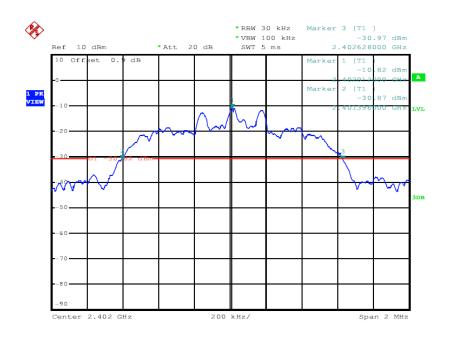

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	924
39	2441	948
78	2480	946

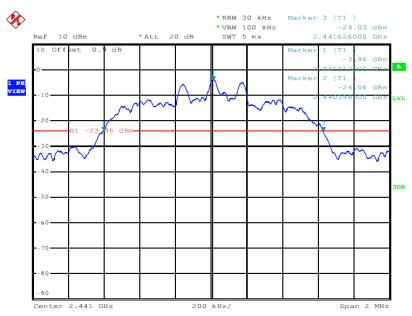


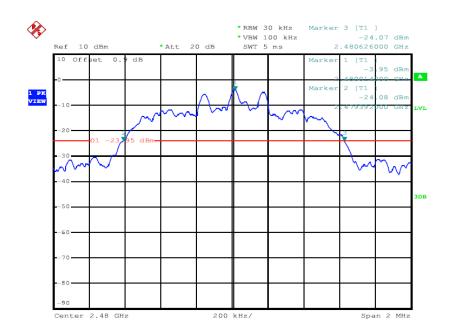



Test Mode: CH00 / CH39 / CH78 (Π/4-DQPSK /(2Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1254
39	2441	1230
78	2480	1256






Test Mode: CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

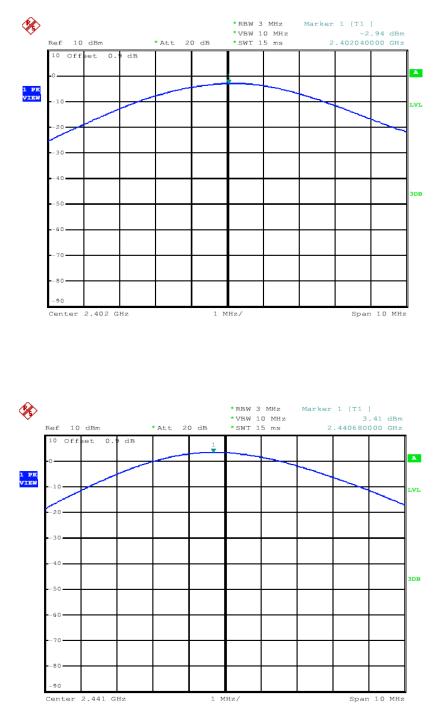
Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1232
39	2441	1228
78	2490	1024
10	2480	1234

10 Maximum Peak Output Power

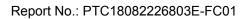
Test Method:ANSI C63.10:2013Test Limit:Regulation 15.247 (b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Refer to the result "Number of Hopping Frequency" of this document. The	Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Regulation 15.247 (b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	Test Method	:	ANSI C63.10:2013
0.125watts (20.97 dBm) limit applies.	Test Limit	:	2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Refer to the result "Number of Hopping Frequency" of this document. The

10.1Test Procedure

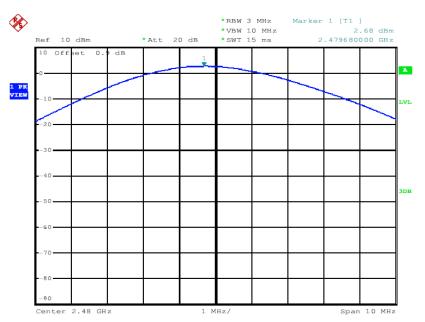
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyser: RBW =3 MHz. VBW =10 MHz. Sweep = auto; Detector Function = Peak.

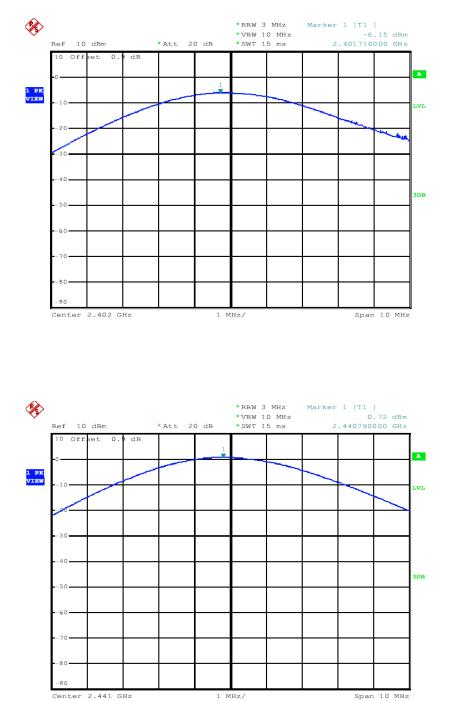
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

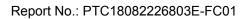

10.2Test Result

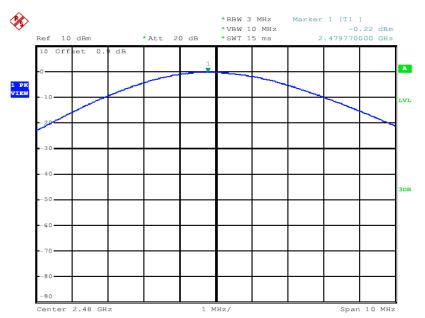
	GFSK(1Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(W)	(W)		
CH00	2402	-2.94	0.00051	1	Pass	
CH39	2441	3.41	0.00219	1	Pass	
CH78	2480	2.68	0.00185	1	Pass	

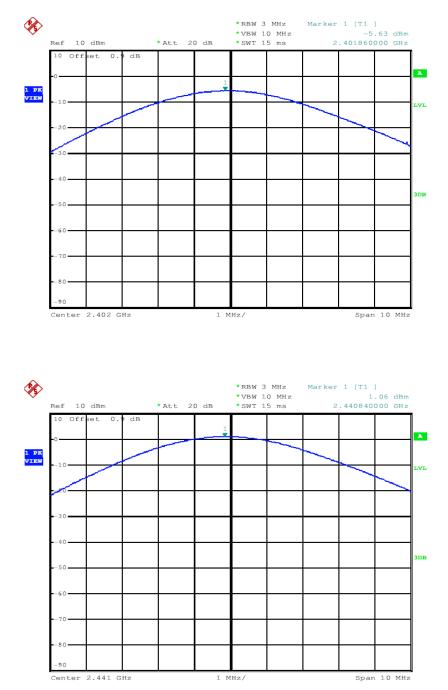


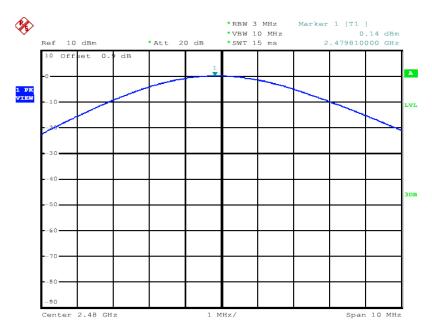
Page 51 of 79






	π/4QPSK(2Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(W)	(W)		
CH00	2402	-6.15	0.00024	0.125	Pass	
CH39	2441	0.72	0.00118	0.125	Pass	
CH78	2480	-0.22	0.00095	0.125	Pass	



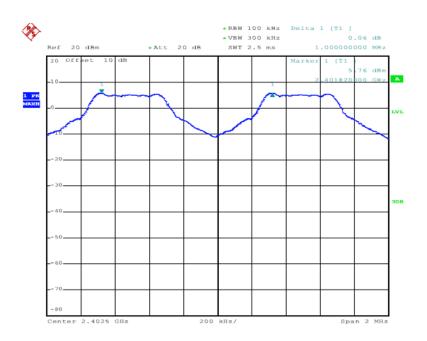


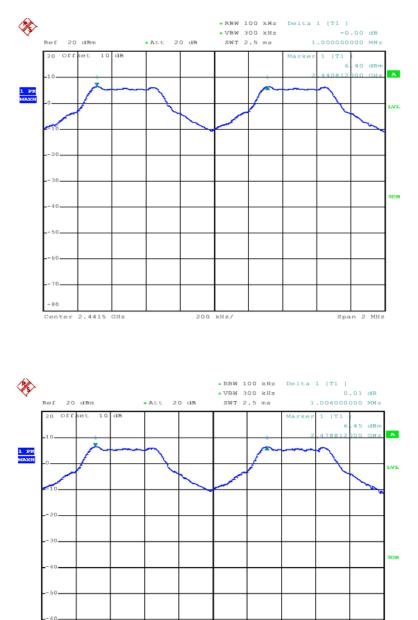
	8DPSK(3Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(W)	(W)		
CH00	2402	-5.63	0.00027	0.125	Pass	
CH39	2441	1.06	0.00128	0.125	Pass	
CH78	2480	0.14	0.00103	0.125	Pass	

11 Hopping Channel Separation

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W. Hopping

11.1 Test Procedure


- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100KHz. VBW =300KHz, Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.


11.2 Test Result

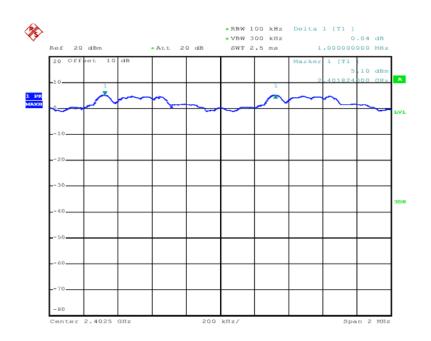
Test Mode:	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)
------------	---------------------------------------

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 20dB Down BW(kHz)
00	2402	1000	>924
39	2441	1000	>948
78	2480	1004	>946

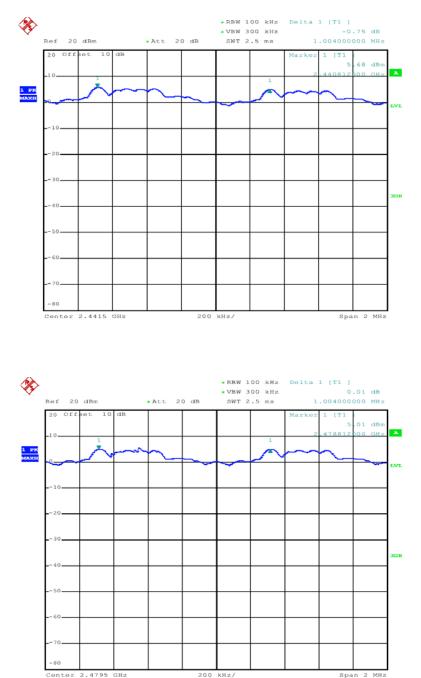
Page 59 of 79

200 kHz/

Span 2 MHz

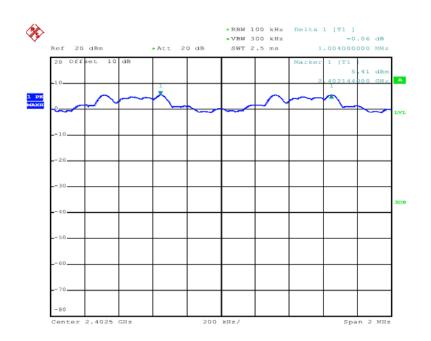

- 80

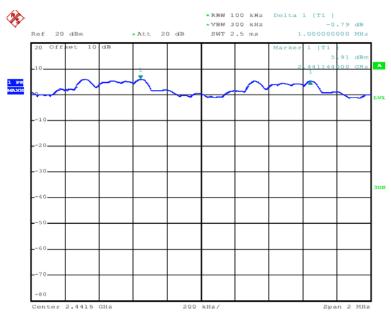
Center 2.4795 GHz

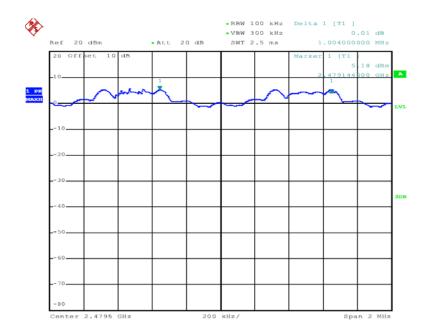


Test Mode:	CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit
			2/3 20dB Down BW(kHz)
00	2402	1000	>836
39	2441	1004	>820
78	2480	1004	>837





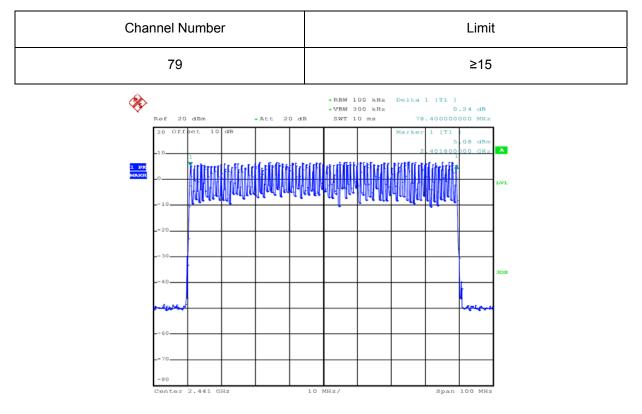

Test Mode:	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

Channel number	Channel	Separation Read Value (kHz)	Separation Limit	
	frequency (MHz)		2/3 20dB Down BW(kHz)	
00	2402	1004	>821	
39	2441	1000	>818	
78	2480	1004	>822	

Page 63 of 79

12 Number of Hopping Frequency

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels.
Test Mode	:	Hopping(GFSK)


12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
 Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

13 Dwell Time

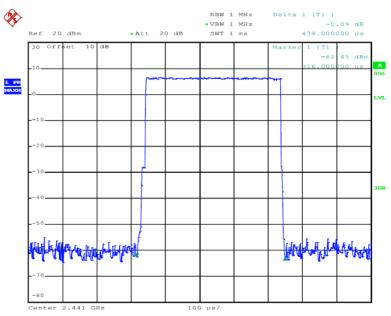
Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode	:	The worst case(GFSK) was recorded

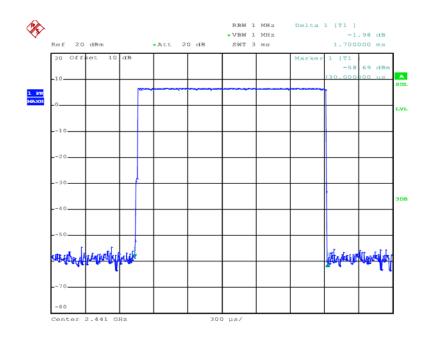
13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

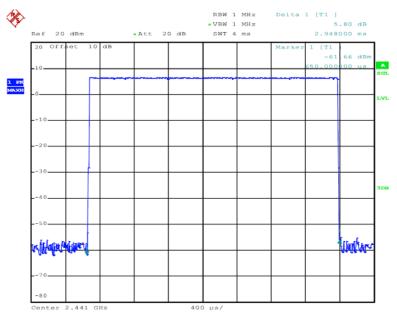
3. Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.


4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


13.2 Test Result

Test Mode:	GFSK(1Mbps)
rest moue.	

Mode	Channel	Length of transmissions time(msec)	Result (msec)	Limit (msec)				
DH1	2441	0.434	138.88	400				
DH1	2441	1.700	272	400				
DH1	2441	2.948	314.463	400				
Note: Dwell Time= Pulse Time (ms)*1600/6/79*31.6								



Page 66 of 79

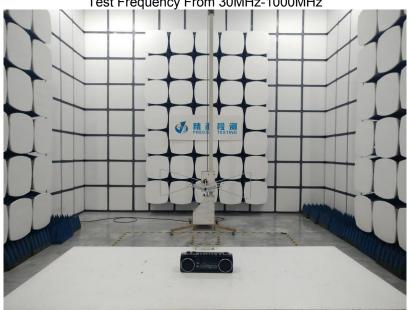
14 Antenna Requirement

14.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

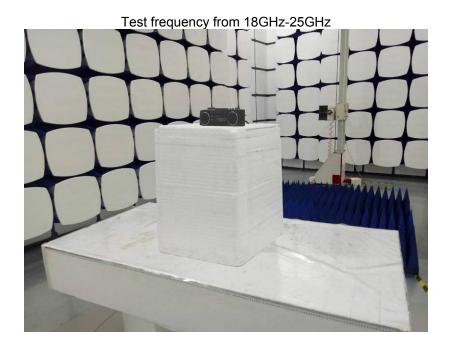
14.2 Result

The EUT'S antenna, permanent attached antenna, is internal PCB Antenna. The antenna's gain is -0.58dBi and meets the requirement.



15 TEST PHOTOS

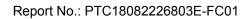
Conducted Emissions


Radiated Spurious Emissions Test Frequency From 30MHz-1000MHz

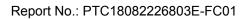
Test frequency from 1GHz-18GHz

Page 70 of 79

16 EUT PHOTOS

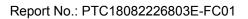


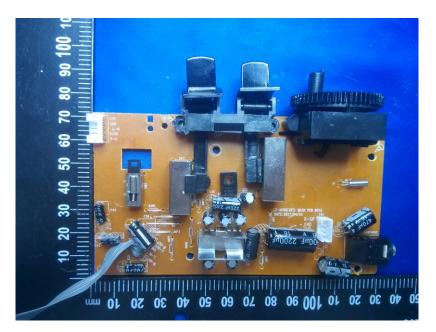


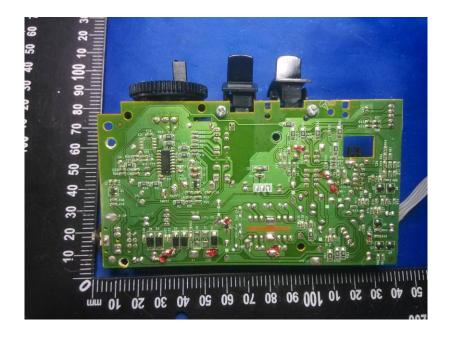

Page 73 of 79

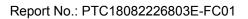


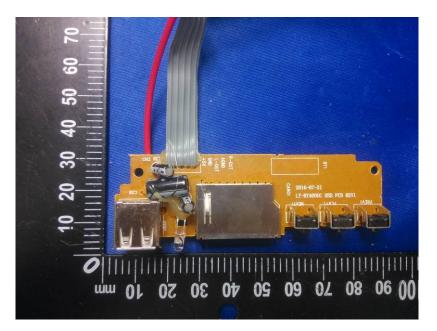
Page 74 of 79

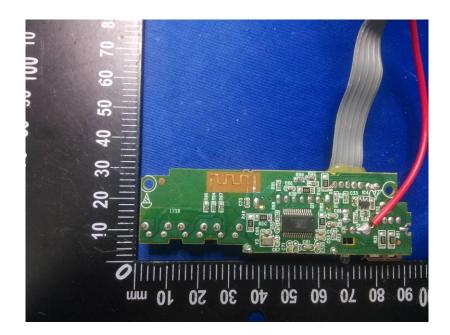


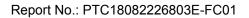


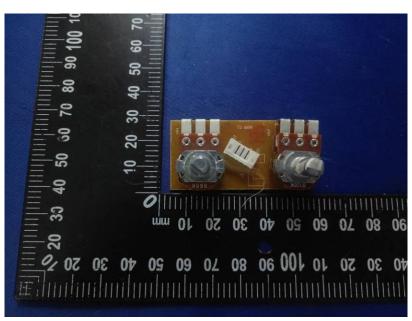


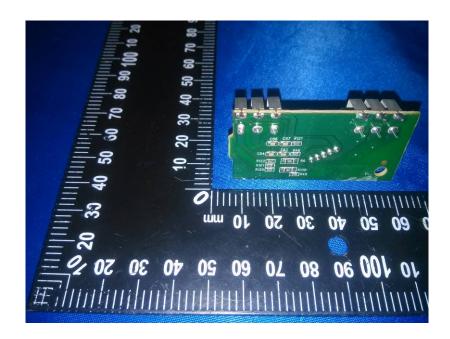

Page 75 of 79

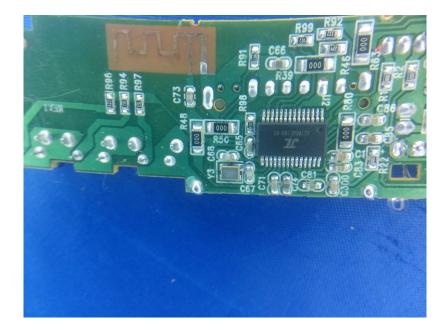












*****THE END REPORT*****

Page 79 of 79