

849 NW STATE ROAD 45 NEWBERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: INFO@TIMCOENGR.COM HTTP://WWW.TIMCOENGR.COM

RF Exposure Evaluation Report

APPLI CANT	RADIO SOLUTIONS, INC.
	70 ACCORD PARK DRIVE NORWELL, MA. 02061 USA
FCCID	2AHVPSB800M2A
MODEL NUMBER	SB800M2A
PRODUCT DESCRIPTION	800 MHz CLASS B SIGNAL BOOSTER/BDA
STANDARD APPLIED	CFR 47 Part 2.1091
PREPARED BY	Cory Leverett

We, TIMCO ENGINEERING, INC. would like to declare that the device has been evaluated in accordance with 47 CFR Part 2.1091 and meets the requirements.

The attached report shall not be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

GENERAL REMARKS

Attestations

This equipment has been evaluated in accordance with the standards identified in this report. To the best of my knowledge and belief, these evaluations were performed using the procedures described in this report.

I attest that the necessary evaluations were made, under my supervision, at:

Tim co Engineering Inc. 849 NW State Road 45 Newberry, FL 32669

Authorized Signatory Name:

Cory Leverett

Engineering Project Manager

Date: 12/15/2016

Applicant: RADIO SOLUTIONS, INC. FCC ID: 2AHVPSB800M2A Report: 2299AUT16RF Exp MPE Rpt_Rev2

RF Exposure Requirements

<u>General information</u>

Device type: 800 MHz CLASS B SIGNAL BOOSTER/ BDA

<u>Antenna</u>

The manufacturer does not specify an antenna, but a typical antenna has a gain of 6 dBi.

Configuration	Antenna p/n	Туре	Max. Gain (dBi)
Fixed mounted	Any	omni	6

Operating configuration and exposure conditions:

The limit for conducted output power is shown in the table below. Typical use qualifies for a maximum duty cycle factor of 100%.

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

The limit for general uncontrolled exposure environment is shown in FCC rule Part 1.11310, Table 1.

Insert value	s in yellow	highlighted	boxes to a	letermine Mini	mum Sepa	aration Distanc	е
Max Power	5	W	equals	Max Power	5000	mW	
Duty Cycle	100	%	equals	Duty Factor	1	numeric	
Antenna Gain	6	dBi	equals	Gain numeric	3.981072	numeric	
Coax Loss	0	dB		Gain - Coax Lo	3.981072	numeric	
Power Density	0.6	mW/cm² 🗲					
Enter power Density	from the cl	hart to the rig	ht	Rule Par	t 1.1310, Ta	able 1 (B)	
Frequency	860	MHz		Frequency ran Power de Enter this valu			e
				MHz	mW/cm ²	mW/cm ²	
				0.3-1.34	100	100	
				1.34-30	180/f ²	0.0	
				30-300	0.2	0.2	
				300-1,500	f/1500	0.6	/
				1,500-100,000	1	1	
				f = frequency	in MHz		
Minimum Se	parati	on Dista	nce	51	cm	0.51	m
Minimum Se	parati	on Dista	nce	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	cm	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce	51	CM	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce	51	C m	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches	51	C m	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce	51	C m	0.51	m
Minimum Seperation	in Inches	on Dista 20	nce Inches		CM	0.51	m