

849 NW STATE ROAD 45 NEW BERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>INFO@TIMCOENGR.COM</u> HTTP://WWW.TIMCOENGR.COM

RF Exposure Evaluation Report

APPLI CANT	RADIO SOLUTIONS, INC.
	70 ACCORD PARK DRIVE NORWELL MA 02061 USA
FCC I D	2AHVPSB400M1A
MODEL NUMBER	UHF (450-490MHz)
PRODUCT DESCRI PTI ON	UHF INDUSTRIAL BOOSTER
STANDARD APPLIED	CFR 47 Part 2.1091
PREPARED BY	Cory Leverett

We, TIMCO ENGINEERING, INC. would like to declare that the device has been evaluated in accordance with 47 CFR Part 2.1091 and meets the requirements.

The attached report shall not be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

GENERAL REMARKS

Attestations

This equipment has been evaluated in accordance with the standards identified in this report. To the best of my knowledge and belief, these evaluations were performed using the procedures described in this report.

I attest that the necessary evaluations were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, FL 32669

Authorized Signatory Name:

Cory Leverett

Engineering Project Manager

Date: 05/20/2016

Report reviewed and approved by:

Sid Sanders

Engineer

Date: 05/20/2016

RF Exposure Requirements

General information

Device type: UHF INDUSTRIAL BOOSTER

Devices that operate under Part 90 of this chapter are subject to RF exposure evaluation prior to equipment authorization or use.

<u>Antenna</u>

The manufacturer does not specify an antenna, based on the 5 Watt ERP requirement and the 32 dBm conducted output power of this device antennas with a gain of up to \leq 7.13 dBi may be used.

Configuration	Antenna p/n	Туре	Max. Gain (dBi)
Fixed mounted	Any	Yagi	7.13

Operating configuration and exposure conditions:

The conducted output power is shown in the table below. Typical use qualifies for a maximum duty cycle factor of 100%.

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

The limit for general uncontrolled exposure environment is shown in FCC rule Part 1.11310, Table 1.

	Minimum	Separatio	on Distance	e for Mobile or	Fixed Devi	ices	
	Ge	eneral Pop	ulation/U	ncontrolled Exp	osure	1	
Insert values	in yellow l	nighlighteo	d boxes to	determine Mir	nimum Se	paration Distan	ce
Max Power	1.58	W	equals	Max Power	1580	mW	
Duty Cycle	100	%	equals	Duty Factor	1	numeric	
Antenna Gain	7.13	dBi	equals	Gain numeric	5.164164	numeric	
Coax Loss	0	dB		Gain - Coax Lo	5.164164	numeric	
Power Density	0.3	mW/cm²	←──				
Enter power Density from the chart to the right		Rule Part 1.1310, Table 1 (B)					
Frequency	490	MHz		Frequency ran Power de Enter this valu			е
				MHz	mW/cm ²	mW/cm ²	
				0.3-1.34	100	100	
				1.34-30	180/f ²	0.0	
				30-300	0.2	0.2	
				300-1,500	f/1500	0.3	
				1,500-100,000	1	1	
				f = frequency i	n MHz		
Minimum Separation Distance			47	cm	0.47	m	
Minimum Seperation	in Inches	18 30195	Inches				
		10.30133	menes				