

Shenzhen General Testing & Inspection Technology Co., Ltd.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011

FCC TEST REPORT

Product name.....: LED TV

Trademark.....: AMTC, Hitachi

Model Name.....: MUAV5060Y-34580

Adding Model: MUAV50**Y-34580(* can from 0 to 9, A to Z); 50C61,50C621, 50Z6

Test Standards FCC CFR Title 47 Part 15 Subpart B

FCC ID...... 2AHVH50345806

Report no. GTI20180541F

Applicant: Shen Zhen MTC Co.,LTD

street, Longgang district, Shenzhen, China

Date of Receipt.....: Mar 29, 2018

Date of Test Date..... Mar 29, 2018 to Apr 11, 2018

Date of issue. Apr 11, 2018

Test result:	Pass *
--------------	--------

* In the configuration tested, the EUT complied with the standards specified above

The FCC mark as shown above can be used, under the responsibility of the manufacturer, all necessary steps have been enforced to assure that all production units of the same equipment will continue to comply with the Federal Communications Commission's requirements.

GENERAL DESCRIPTION OF EUT

Equipment	LED TV
Model Name	MUAV5060Y-34580
Adding Model	MUAV50**Y-34580(* can from 0 to 9, A to Z); 50C61,50C621, 50Z6
Model Difference	Just different colors and trademarks, the other is the same
Manufacturer	Shen Zhen MTC Co.,LTD
Manufacturer Address	MTC Industry Park, 1st Lilang Road, Xialilang community, Nanwan street,Longgang district, Shenzhen, China
Factory	Shen Zhen MTC Co.,LTD
Factory Address	MTC Industry Park, 1st Lilang Road, Xialilang community, Nanwan street,Longgang district, Shenzhen, China
Product Description	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as as both an ITE /Computing Device & a Sound and Television Broadcast Receiver. More details of EUT technical specification, please refer to the User's Manual.
Power Rating	Input: 100-240Vac 120W, 50/60Hz
Operational frequency	The EUT max operation frequency is 1.2GHz

Compiled By:

lorny fanc

(Tony Fang

Reviewed By:

Cavin shi

Gavin Shi

Approved By:

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Shenzhen General Testing & Inspection Technology Co., Ltd.

Table of Contents

Page

Report No.: GTI20180541F

1 T	TEST SUMMARY	4
	T PROCEDURES ACCORDING TO THE TECHNICAL STANDARDS:	
	C Emission	
1.1	TEST FACILITY	4
2 G	GENERAL INFORMATION	5
2.1	DESCRIPTION OF TEST MODES	5
2.2	DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	6
2.3	MEASUREMENT INSTRUMENTS EQUIPMENTS LIST	7
3 C	CONDUCTED EMISSION MEASUREMENT	8
3.1	LIMITS OF CONDUCTED EMISSION	
3.2	TEST PROCEDURE	
3.3	TEST SETUP	9
3.4	EUT OPERATING CONDITIONS	
3.5	TEST RESULTS	
4 R	RADIATED EMISSION MEASUREMENT	12
4.1	LIMITS OF RADIATED EMISSION MEASUREMENT	12
4.2	TEST PROCEDURE	12
4.3	TEST SETUP	
4.4	EUT OPERATING CONDITIONS	
4.5	TEST RESULTS	14
5 E	EUT TEST PHOTO	16
6 A	ATTACHMENT PHOTOGRAPHS OF EUT	18
~ .		

Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

Page 4 of 25 Report No.: GTI20180541F

1 TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission

Standard	Test Item	Limit	Result	Remark
	FCC Part 15 Section 15.107	Class B	PASS	
Subpart B ANSI C63.4: 2014	FCC Part 15 Section 15.109	Class B	PASS	

1.1 TEST FACILITY

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add.: 1-2F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC-Registration No.: 951311

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017

MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

A. Conducted Measurement:

	Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
ĺ	GTIC01	ANSI	150 KHz ~ 30MHz	3.2	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
GTIA01	ANSI	30MHz ~ 1000MHz	4.7	
		1GHz ~6GHz	5.0	

Page 5 of 25

Report No.: GTI20180541F

2 GENERAL INFORMATION

2.1 **DESCRIPTION OF TEST MODES**

As the function of the EUT, test mode selected to test as below to conform this standard.

	,
test Mode	Description
Mode 1	ATV
Mode 2	ATV, With Antenna Ground
Mode 3	DTV
Mode 4	DTV, With Antenna Ground
Mode 5	HDMI IN
Mode 6	USB IN
Mode 7	AV IN
Mode 8	Component

Note:

Pre-scan above all test mode and voltage(120Vac/60Hz and 230Vac/50Hz), found below test mode and voltage which it was worse case mode.

Test item	Worse case operation Test mode	Worse case operation Test Voltage	
Conducted emission	Mode 5	120V/60Hz	
Radiated emission	Mode 5	120V/60Hz	

Accreditation Administration of the People's Republic of China: yz.cncaic.cn

Page 6 of 25

Report No.: GTI20180541F

2.2 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	LED TV	AMTC, Hitachi	MUAV5060Y-345 80	N/A	EUT
E-2	PC	HP	P7-1035cn	4CV125C15J	AE
E-3	DVD	GIEC	GK-901	N/A	AE
E-4	TV Generator	DTV tool	DTV	N/A	AE
E-5	Printer	HP	P1007	VNFN584036	AE
E-6	USB Disk	Kingston	DT101G2/8GB	253394	AE

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	120cm	AC Line
C-2	NO O	NO	150cm	AV Line
C-3	YES	YES	150cm	HDMI Line
C-4	YES	YES	150cm	TV Line

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Accreditation Administration of the People's Republic of China: yz.cncaic.cn

2.3 MEASUREMENT INSTRUMENTS EQUIPMENTS LIST

	2.5 MEASONEMENT INSTROMENTS EQUI MENTS EIST						
	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
1	LISN	R&S	ENV216	101112	Jan. 04, 2019		
2	LISN	R&S	ENV216	101113	Jan. 04, 2019		
3	EMI Test Receiver	R&S	ESCI	100920	Jan. 04, 2019		
4	ISN CAT6	Schwarzbeck	NTFM 8158	8158-0046	Jan. 04, 2019		

	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Bilog Antenna	Schwarzbeck	CBL6141A	4180	Jan. 04, 2019	
2	Spectrum Analyzer	R&S	FSU26	100105	Jan. 04, 2019	
3	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Jan. 04, 2019	
4	Low Noise Pre-Amplifier	HP	8447D	1937A03050	Jan. 04, 2019	
5	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Jan. 04, 2019	
6	Test Receiver	R&S	ESCI7	100967	Jan. 04, 2019	
7	Antenna Mast	UC	UC3000	N/A	N/A	
8	Turn Table	UC	UC3000	N/A	N/A	

Page 8 of 25

Report No.: GTI20180541F

3 CONDUCTED EMISSION MEASUREMENT

3.1 Limits of Conducted Emission

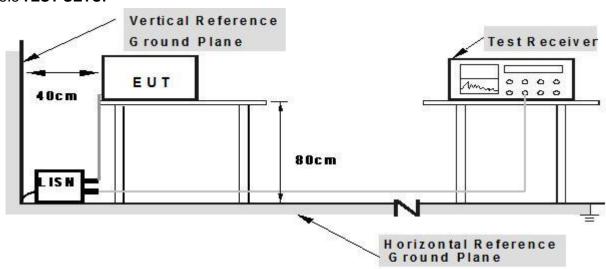
FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)				
FREQUENCT (MITZ)	Quasi-peak	Average	Average				
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *			
0.50 -5.0	73.00	60.00	56.00	46.00			
5.0 -30.0	73.00	60.00	60.00	50.00			

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

the remaining tensions are unit between great into recent en	
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Page 9 of 25 Report No.: GTI20180541F

3.2 TEST PROCEDURE

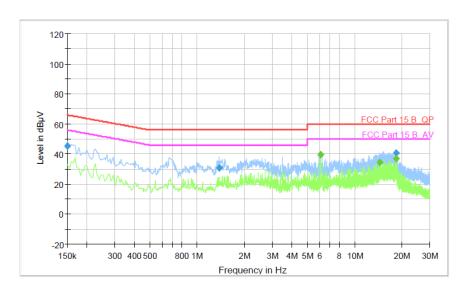
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISM.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of **2.1** Unless otherwise a special operating condition is specified in the follows during the testing.

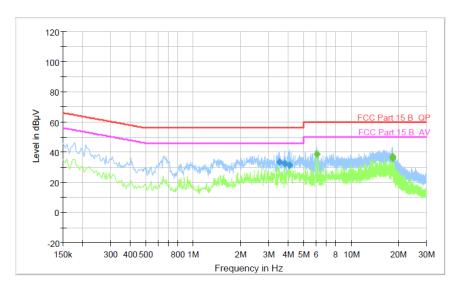
Accreditation Administration of the People's Republic of China: yz.cncaic.cn

3.5 **TEST RESULTS**

Temperature:	23.5 ℃	Relative Humidity:	56%
Pressure:	101 Kpa	Test Mode:	Mode 5
Test Voltage:	AC 120V/60Hz	Phase :	L

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150000	45.5	1000.000	9.000	Off	L1	10.0	20.5	66.0	
1.383000	30.6	1000.000	9.000	Off	L1	10.0	25.4	56.0	
18.312000	40.9	1000.000	9.000	Off	L1	9.9	19.1	60.0	


Final Measurement Detector 2

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
6.099000	39.9	1000.000	9.000	Off	L1	9.7	10.1	50.0	
14.487000	34.7	1000.000	9.000	Off	L1	9.8	15.3	50.0	
18.312000	36.8	1000.000	9.000	Off	L1	9.9	13.2	50.0	

Temperature:	23.5℃	Relative Humidity:	56%
Pressure :	101 Kpa	Test Mode:	Mode 5
Test Voltage:	AC 120V/60Hz	Phase :	N

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
	3.529500	33.6	1000.000	9.000	Off	N	9.9	22.4	56.0	
	3.822000	32.3	1000.000	9.000	Off	N	9.9	23.7	56.0	
ı	4.069500	31.1	1000.000	9.000	Off	N	9.9	24.9	56.0	

Final Measurement Detector 2

	quency /IHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
6.0	099000	38.4	1000.000	9.000	Off	N	9.8	11.6	50.0	
18.2	280500	36.0	1000.000	9.000	Off	N	9.8	14.0	50.0	
18.3	312000	36.8	1000.000	9.000	Off	N	9.8	13.2	50.0	

4 RADIATED EMISSION MEASUREMENT

4.1 LIMITS OF RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT

(Below 1000MHz)

Report No.: GTI20180541F

FREQUENCY (MHz)	Class A (at 10m)	Class B (at 3m)
FREQUENCY (MHZ)	dBuV/m	dBuV/m
30 ~ 88	39.0	40.0
88 ~ 216	43.5	43.5
216 ~ 960	46.5	46.0
Above 960	49.5	54.0

LIMITS OF RADIATED EMISSION MEASUREMENT

(Above 1000MHz)

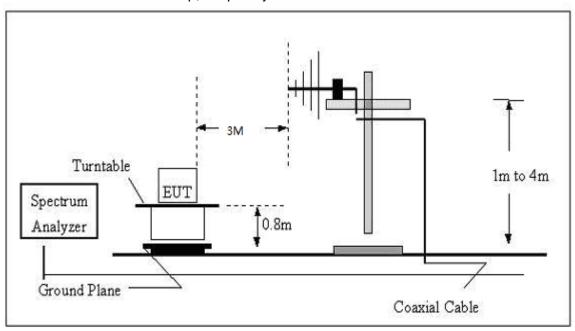
FREQUENCY (MHz)	Class A (at	3m) dBuV/m	Class B (at	3m) dBuV/m
PREQUENCT (IVIDZ)	Peak	Avg	Peak	Avg
Above 1000	80	60	74	54

Notes:

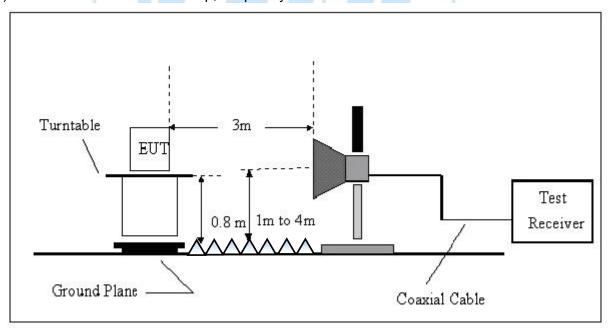
- (1) The limit for radiated test was performed according to as following: FCC PART 15B /ICES-003.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP(AV) Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Shenzhen General Testing & Inspection Technology Co., Ltd. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Tel.: (86)755-27521059
中国国家认证认可监督管理委员会
Certification and Accreditation Administration of the People's Republic of China



4.3 TEST SETUP

(A) Radiated Emission Test Set-up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-up, Frequency Over 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.1** Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

Temperature:	24	l.2 ℃					Rela	ative	Hur	nidity	:	57%		
Pressure:	101 Kpa					Test	Мо	de:			Mode 5			
Polarization:							Test	Pov	wer:			AC 120	//60Hz	
						Į								
	100.0	dBuV/m											1	
													-	
										FCC Part15				
												Margin -6 dB	1	
	40		Ş		3 M *		AMANE.				Ĵ	n Mul.		
	N. A.	anny when he	M	har statement	Lower	Mariana	Mar. and	Mary Mary Mary	what when the	لداهمها كرر	$\mathbb{V}_{\mathbf{k}}$	Moderation		
											1			
	-20										\dashv		-	
	30.000			80		(MHz)			300	400 50	0 6	00 700 1000	.000	
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m	Margir (dB)	Detecto	Height (cm)	Azimuth ()	P/F	Remark		
	1	30.4237	-3.80 -12.45	38.61	34.81	40.00	-5.19	_			P P			
	3	55.0274 103.4421	-12.45	46.36 52.03	33.91 38.13	40.00	-6.09 -5.37				P		_	
	4	122.8339	-13.45	48.25	34.80	43.50	-8.70				Р			
	5	216.7828 595.1327	-12.55 -5.20	48.32 44.40	35.77 39.20	46.00 46.00	-10.23 -6.80				P P		_	
		TW I				-100	_	_	7 10			1		
	100.0	dBuV/m	- 11	200	00	100	OIVII	-				1		
								1	F	CC Part15B	above	e 1GHz-PK	1	
								Å						
		3	5 X	7 *					F	CC Part158		e 1GHz-AV		
	40 M	wayay	Miller	m	Mary William College Steel	and production	برياج للقصورة برواق	white how	a planting of the state of the	والمادأ الرجامة المرسي	halvey plane	Nan-		
		*	*	*				1						
								_						
								_						
	-20					nr. ·						F000		
	1000.	No Freque				(MHz) Limit	Margin	3000 Detector		zimuth P/F	Rem	5000 6000	.000	
		1 3020.7) (dB/n	n) (dBuV)		(dBuV/m) 74.00	(dB) -7.20	peak		() P/F	item	SHIT.		
		2 3020.7	82 -2.6	7 42.21	39.54	54.00	-14.46	AVG		Р				
		3 1187.6 4 1187.6			47.43 30.24	74.00 54.00	-26.57 -23.76	peak AVG		P				
		5 1483.1 6 1483.1			50.05 34.18	74.00 54.00	-23.95 -19.82	peak AVG		P				
		7 1702.5	93 -6.0		51.31	74.00	-22.69	peak		Р				
		8 1702.5	93 -6.0	4 41.65	35.61	54.00	-18.39	AVG		Р				

1000~6000MHz

24.2℃ Relative Humidity: 57% Temperature: Mode 5 101 Kpa Test Mode: Pressure: Polarization: Horizontal Test Power: AC 120V/60Hz 100.0 dBuV/m FCC Part15B 3M Radiation Margin -6 dB 30 000 60 70 (MHz) 300 400 500 600 700 Frequency Factor Reading Margin Level Limit P/F Detector (MHz) (dB/m) (dBu∀) (dBuV/m) (dBuV/m) (dB) QP Р 56.1974 -12.91 41.03 28.12 40.00 -11.88 73.6170 -17.46 41.40 23.94 40.00 -16.06 QΡ Р 103.8055 -13.89 44.71 30.82 43.50 -12.68 QP Р 122.8340 31.75 -11.75 QP Р -13.45 45.20 43.50 209.3129 50.04 37.22 43.50 QP Р -12.82 -6.28 5 6 595.1329 QP Р -5.20 42.87 37.67 46.00 -8.33 30~1000MHz 100.0 dBuV/m FCC Part15B above 1GHz-PK 6000.000 1000.000 4000 2000 (MHz) Level Limit (dBuV/m) Reading (dBuV) P/F Detector Remark 3020.782 -2.67 70.57 67.90 74.00 -6.10 peak -2.67 42.29 Р AVG 1786 985 -5.97 51.62 45.65 74 00 -28.35

54.00 -25.58

1000~6000MHz

74.00 -25.50

54.00 -22.13 AVG

54.00 -21.47 AVG

AVG

peak

28.42

48.50

31.87

32.53

1786.985

1483,178

1483.178

4464.330

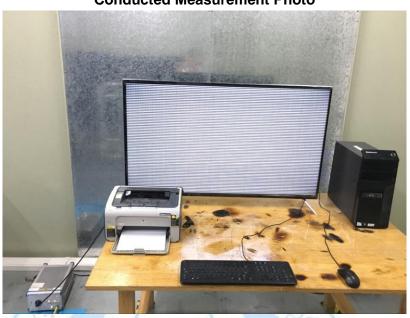
-5.97 34.39

-6.48 54.98

-6.48 38.35

1.45 49.80

1.45 31.08


Р

Р

EUT TEST PHOTO 5

Conducted Measurement Photo

Radiated Measurement Photo 30~1000MHz

Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

6 ATTACHMENT PHOTOGRAPHS OF EUT

1. Photo

2. Photo

3. Photo

4. Photo

5. Photo

6. Photo

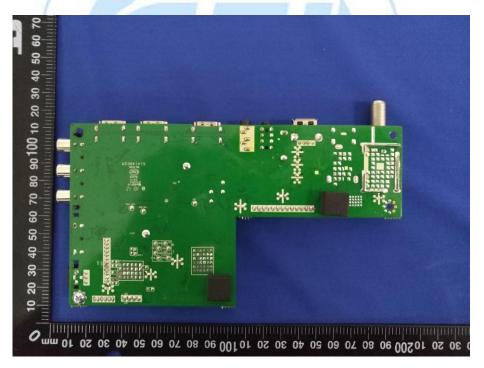
7. Photo

8. Photo

Fax.: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

9. Photo

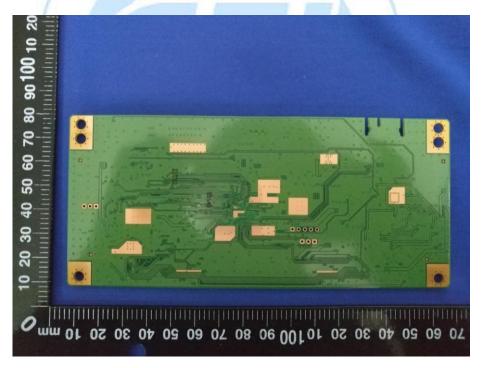
10. Photo



11. Photo

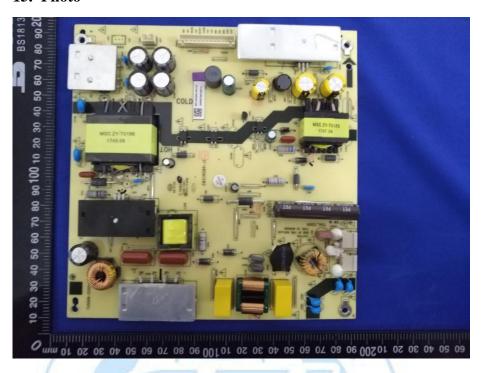
12. Photo

Shenzhen General Testing & Inspection Technology Co., Ltd.



13. Photo

14. Photo



Shenzhen General Testing & Inspection Technology Co., Ltd.

15. Photo

16. Photo

==== End of Test Report =====

