

Shenzhen General Testing & Inspection Technology Co., Ltd.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011

FCC TEST REPORT

Product name.....: LED TV

Trademark.....: AMTC, Hitachi

Model Name.....: MHAV4060Y-35535

Test Standards FCC CFR Title 47 Part 15 Subpart B

FCC ID...... 2AHVH40355356

Report no. GTI20180708F

Applicant: Shen Zhen MTC Co.,LTD

street, Longgang district, Shenzhen, China

Date of Receipt...... Apr 11, 2018

Date of Test Date...... Apr 11, 2018 to Apr 18, 2018

Date of issue. Apr 19, 2018

Test result::	Pass *

* In the configuration tested, the EUT complied with the standards specified above

The FCC mark as shown above can be used, under the responsibility of the manufacturer, all necessary steps have been enforced to assure that all production units of the same equipment will continue to comply with the Federal Communications Commission's requirements.

GENERAL DESCRIPTION OF EUT

Equipment	LED TV
Model Name	MHAV4060Y-35535
Adding Model	MHAV40**Y-35535 (* can from 0 to 9,A to Z); 40C311,40C321, 40C301, LE40A6R9
Model Difference	Just different colors and trademarks, the other is the same
Manufacturer	Shen Zhen MTC Co.,LTD
Manufacturer Address	MTC Industry Park, 1st Lilang Road, Xialilang community, Nanwan street,Longgang district, Shenzhen, China
Factory	Shen Zhen MTC Co.,LTD
Factory Address	MTC Industry Park, 1st Lilang Road, Xialilang community, Nanwan street,Longgang district, Shenzhen, China
Product Description	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as as both an ITE /Computing Device & a Sound and Television Broadcast Receiver. More details of EUT technical specification, please refer to the User's Manual.
Power Rating	Input: 100-240Vac 68W, 50/60Hz
Operational frequency	The EUT max operation frequency is 1.2GHz

Compiled By:

in); ang

(Jim Jiang)

Reviewed By:

ravin Shi

Gavin Shi

Approved By:

(Walter Chen)

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Table of Contents

Page

Report No.: GTI20180708F

1	TES	ST SUMMARY	4
Γ	ΓEST F	PROCEDURES ACCORDING TO THE TECHNICAL STANDARDS:	4
E	EMC I	Emission	
1	.1	TEST FACILITY	4
2	GE	NERAL INFORMATION	5
2	2.1	DESCRIPTION OF TEST MODES	5
2	2.2	DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	6
2	2.3	MEASUREMENT INSTRUMENTS EQUIPMENTS LIST	7
3	CO	NDUCTED EMISSION MEASUREMENT	8
3	3.1	LIMITS OF CONDUCTED EMISSION	
3	3.2	TEST PROCEDURE	
3	3.3	TEST SETUP	9
3	3.4	EUT OPERATING CONDITIONS	
3	3.5	TEST RESULTS	
4	RA	DIATED EMISSION MEASUREMENT	14
4	l.1	LIMITS OF RADIATED EMISSION MEASUREMENT	14
4	1.2	TEST PROCEDURE	14
4	1.3	TEST SETUP	15
4	1.4	EUT OPERATING CONDITIONS	
4	1.5	TEST RESULTS	
5	EU'	Т ТЕЅТ РНОТО	20
6	AT	TACHMENT PHOTOGRAPHS OF EUT	22

Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

Page 4 of 26 Report No.: GTI20180708F

1 TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission

Standard	Test Item		Result	Remark
	FCC Part 15 Section 15.107	Class B	PASS	
Subpart B ANSI C63.4: 2014	FCC Part 15 Section 15.109	Class B	PASS	

1.1 TEST FACILITY

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add.: 1-2F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC-Registration No.: 951311

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017

MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
GTIC01	ANSI	150 KHz ~ 30MHz	3.2	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
GTIA01	ANSI	30MHz ~ 1000MHz	4.7	
		1GHz ~6GHz	5.0	

Page 5 of 26

Report No.: GTI20180708F

GENERAL INFORMATION

2.1 DESCRIPTION OF TEST MODES

As the function of the EUT, test mode selected to test as below to conform this standard.

	,		
test Mode	Description		
Mode 1	ATV		
Mode 2	ATV, With Antenna Ground		
Mode 3	DTV		
Mode 4	DTV, With Antenna Ground		
Mode 5	HDMI IN		
Mode 6	USB IN		
Mode 7	AV IN		
Mode 8	Component		

Note:

Pre-scan above all test mode and voltage(120Vac/60Hz and 230Vac/50Hz), found below test mode and voltage which it was worse case mode.

Test item	Worse case operation Test mode	Worse case operation Test Voltage	
Conducted emission	Mode 5/ Mode 6	120V/60Hz	
Radiated emission	Mode 5/ Mode 6	120V/60Hz	

Page 6 of 26

Report No.: GTI20180708F

2.2 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	LED TV	AMTC, Hitachi	MHAV4060Y-355 35	N/A	EUT
E-2	PC	HP	P7-1035cn	4CV125C15J	AE
E-3	DVD	GIEC	GK-901	N/A	AE
E-4	TV Generator	DTV tool	DTV	N/A	AE
E-5	Printer	HP	P1007	VNFN584036	AE
E-6	USB Disk	Kingston	DT101G2/8GB	253394	AE

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	120cm	AC Line
C-2	NO O	NO	150cm	AV Line
C-3	YES	YES	150cm	HDMI Line
C-4	YES	YES	150cm	TV Line

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

中国国家认证认可监督管理委员会

2.3 MEASUREMENT INSTRUMENTS FOUIPMENTS LIST

	2.3 MEASUREMENT INSTRUMENTS EQUIPMENTS LIST					
	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	LISN	R&S	ENV216	101112	Jan. 04, 2019	
2	LISN	R&S	ENV216	101113	Jan. 04, 2019	
3	EMI Test Receiver	R&S	ESCI	100920	Jan. 04, 2019	
4	ISN CAT6	Schwarzbeck	NTFM 8158	8158-0046	Jan. 04, 2019	

	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Bilog Antenna	Schwarzbeck	CBL6141A	4180	Jan. 04, 2019	
2	Spectrum Analyzer	R&S	FSU26	100105	Jan. 04, 2019	
3	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Jan. 04, 2019	
4	Low Noise Pre-Amplifier	HP	8447D	1937A03050	Jan. 04, 2019	
5	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Jan. 04, 2019	
6	Test Receiver	R&S	ESCI7	100967	Jan. 04, 2019	
7	Antenna Mast	UC	UC3000	N/A	N/A	
8	Turn Table	UC	UC3000	N/A	N/A	

Page 8 of 26

Report No.: GTI20180708F

3 CONDUCTED EMISSION MEASUREMENT

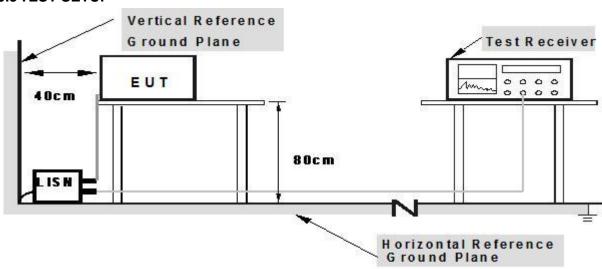
3.1 Limits of Conducted Emission

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)			
FREQUENCT (IVID2)	Quasi-peak	Average	Quasi-peak	Average		
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *		
0.50 -5.0	73.00	60.00	56.00	46.00		
5.0 -30.0	73.00	60.00	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80

from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.1** Unless otherwise a special operating condition is specified in the follows during the testing.

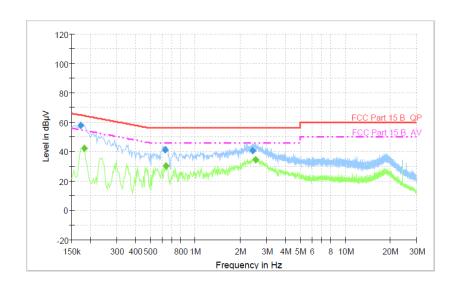
Accreditation Administration of the People's Republic of China: yz.cncaic.cn

3.5 TEST RESULTS

Temperature:	23.5℃	Relative Humidity:	56%
Pressure :	101 Kpa	Test Mode:	Mode 5
Test Voltage:	AC 120V/60Hz	Phase :	L

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.172500	58.3	1000.000	9.000	Off	L1	10.0	6.5	64.8	
0.217500	44.3	1000.000	9.000	Off	L1	10.0	18.6	62.9	
2.476500	40.6	1000.000	9.000	Off	L1	10.0	15.4	56.0	


Final Measurement Detector 2

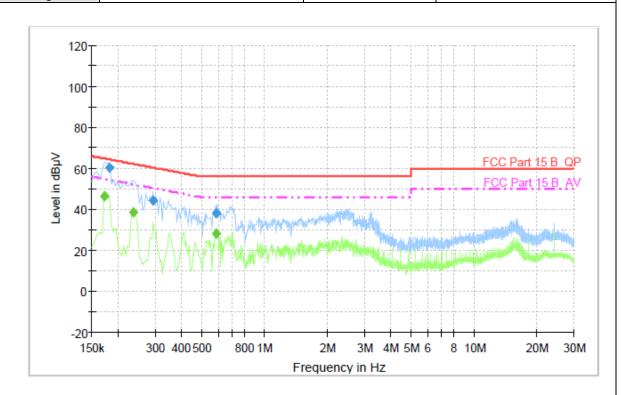
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.172500	45.2	1000.000	9.000	Off	L1	10.0	9.6	54.8	
0.231000	37.1	1000.000	9.000	Off	L1	10.0	15.3	52.4	
2.517000	34.0	1000.000	9.000	Off	L1	10.0	12.0	46.0	

Temperature :23.5 °CRelative Humidity :56%Pressure :101 KpaTest Mode :Mode 5Test Voltage:AC 120V/60HzPhase :N

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.172500	57.8	1000.000	9.000	Off	N	9.6	7.0	64.8	
0.627000	41.3	1000.000	9.000	Off	N	10.0	14.7	56.0	
2.431500	40.8	1000.000	9.000	Off	N	10.1	15.2	56.0	

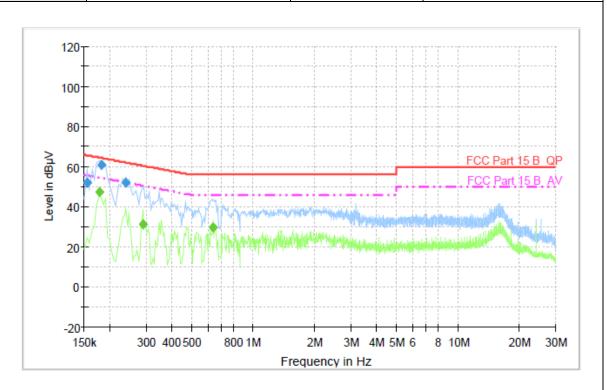
Final Measurement Detector 2


Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.181500	42.1	1000.000	9.000	Off	N	9.5	12.3	54.4	
0.640500	30.1	1000.000	9.000	Off	N	10.0	15.9	46.0	
2.526000	34.4	1000.000	9.000	Off	N	10.1	11.6	46.0	

Temperature :	23.5℃	Relative Humidity:	56%
Pressure:	101 Kpa	Test Mode:	Mode 6
Test Voltage:	AC 120V/60Hz	Phase :	L

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.181500	60.3	1000.000	9.000	Off	L1	10.0	4.1	64.4	
0.294000	44.2	1000.000	9.000	Off	L1	9.9	16.2	60.4	·
0.586500	38.3	1000.000	9.000	Off	L1	9.8	17.7	56.0	


Final Measurement Detector 2

	Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Γ	0.172500	46.5	1000.000	9.000	Off	L1	10.0	8.3	54.8	
	0.235500	38.7	1000.000	9.000	Off	L1	10.0	13.6	52.3	
	0.586500	28.4	1000.000	9.000	Off	L1	9.8	17.6	46.0	

Temperature:	23.5℃	Relative Humidity: 5	66%
Pressure:	101 Kpa	Test Mode:	Mode 6
Test Voltage:	AC 120V/60Hz	Phase:	1

Final Measurement Detector 1

Frequency	QuasiPeak	Meas. Time		Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµ	
								V)	
0.154500	51.8	1000.000	9.000	Off	N	9.6	14.0	65.8	
0.181500	61.1	1000.000	9.000	Off	N	9.5	3.3	64.4	
0.240000	52.1	1000.000	9.000	Off	N	9.6	10.1	62.1	

Final Measurement Detector 2

				•					
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.177000	47.6	1000.000	9.000	Off	N	9.5	7.0	54.6	
0.289500	31.5	1000.000	9.000	Off	N	9.7	19.0	50.5	
0.640500	30.0	1000.000	9.000	Off	N	10.0	16.0	46.0	

RADIATED EMISSION MEASUREMENT

4.1 LIMITS OF RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT

(Below 1000MHz)

Report No.: GTI20180708F

FREQUENCY (MHz)	Class A (at 10m)	Class B (at 3m)
FREQUENCY (MHZ)	dBuV/m	dBuV/m
30 ~ 88	39.0	40.0
88 ~ 216	43.5	43.5
216 ~ 960	46.5	46.0
Above 960	49.5	54.0

LIMITS OF RADIATED EMISSION MEASUREMENT

(Above 1000MHz)

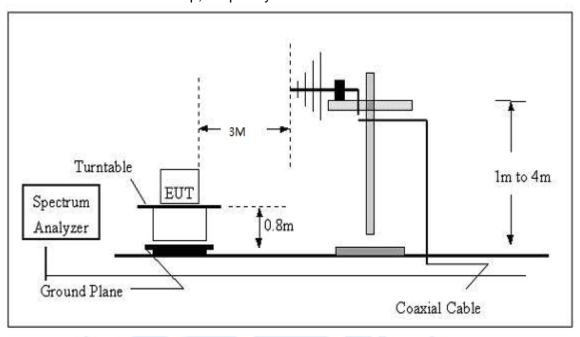
FREQUENCY (MHz)	Class A (at	3m) dBuV/m	Class B (at 3m) dBuV/m			
PREQUENCT (IVID2)	Peak	Avg	Peak	Avg		
Above 1000	80	60	74	54		

Notes:

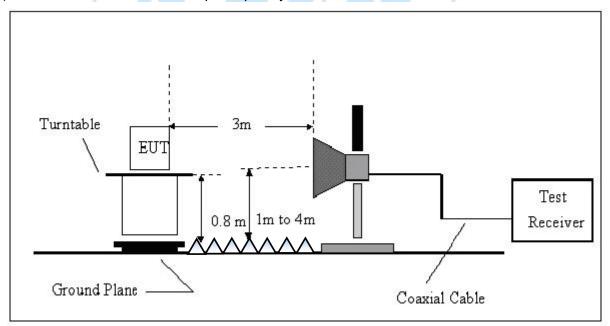
- (1) The limit for radiated test was performed according to as following: FCC PART 15B /ICES-003.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP(AV) Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax.: (86)755-27521011

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cncaic.cn

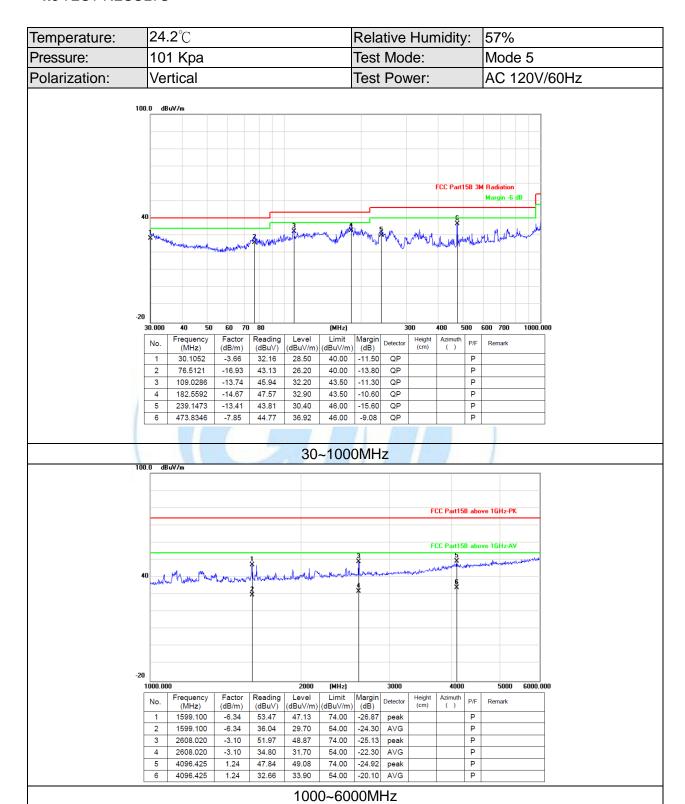


4.3 TEST SETUP

(A) Radiated Emission Test Set-up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-up, Frequency Over 1GHz

4.4 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of **2.1** Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

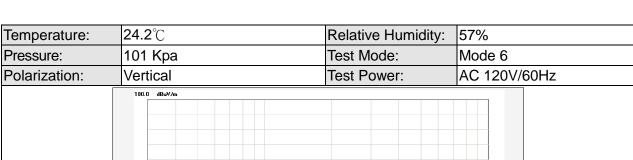
24.2℃ Temperature: Relative Humidity: 57% 101 Kpa Test Mode: Mode 5 Pressure: Polarization: Horizontal Test Power: AC 120V/60Hz 100.0 dBuV/m
 sn
 70
 80
 (MHz)

 Factor
 Reading (dB/m)
 Level (dB/m)
 Limit (dB/m)
 Margin (dB/m)

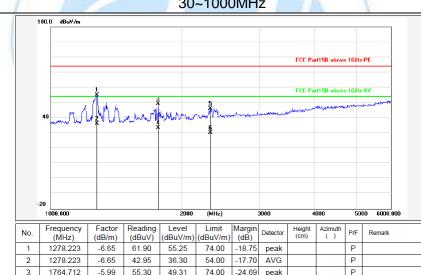
 -16.83
 47.23
 30.40
 40.00
 -9.60
 30 000 500 600 700 Frequency (MHz) Margin Detector P/F Remark 77.0503 Р 144.3348 35.10 Р -14.23 49.33 43.50 QP -8.40 QP Р 178.1327 -14.97 53.67 38.70 43.50 -4.80 4 198.5880 -13.30 52.40 39.10 43.50 -4.40 QP Р 296.1836 -11.54 49.94 38.40 46.00 -7.60 QP Р 472.1759 -7.86 49.92 42.06 46.00 -3.94 QP Р 30~1000MHz 100.0 dBuV/m

																ĺ
														e 1GHz-A\		ĺ
40	mythaylly		moun	Manuale	3	4		سرديده سايماني	mande	Maryland San Mary and Arman	بعيدا فيالون	have	-145	and the control of th	والمقابض المستريد والمستريد	
20														5000		
	00.00	Frequency	Factor	Reading	Leve	_	(MHz) Limit	Margin	3000	Height	Azim	000	- 1	5000	6000.	UL
N	lo.	(MHz)	(dB/m)	(dBuV)	(dBuV		(dBuV/m		Detector	(cm)	(P/F	Remark		
	1	1324.859	-6.58	54.70	48.1	2	74.00	-25.88	peak				Р			
	2	1324.859	-6.58	36.48	29.9	0	54.00	-24.10	AVG				Р			
	3	1926.652	-5.08	50.42	45.3	4	74.00	-28.66	peak				Р			
	4	1926.652	-5.08	35.18	30.10	0	54.00	-23.90	AVG				Р			
	5	2462.692	-3.34	49.96	46.6	2	74.00	-27.38	peak				Р			
	6	2462.692	-3.34	32.94	29.6	0	54.00	-24.40	AVG				Р			
					40	~		0014	1_							

1000~6000MHz


For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China: yz.cncaic.cn


Margin -6 dB

	-20 30.000 40	50 60	70 80		(MHz)		300	400	500 60	0 700	D 1000.000
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth ()	P/F	Remark
1	30.0000	-3.61	31.81	28.20	40.00	-11.80	QP			Р	
2	77.8653	-16.68	39.98	23.30	40.00	-16.70	QP			Р	
3	178.7583	-14.95	42.45	27.50	43.50	-16.00	QP			Р	
4	246.8148	-14.03	44.03	30.00	46.00	-16.00	QP			Р	
5	339.5887	-11.01	41.81	30.80	46.00	-15.20	QP			Р	
6	830.4000	-2.06	37.24	35.18	46.00	-10.82	QP			Р	

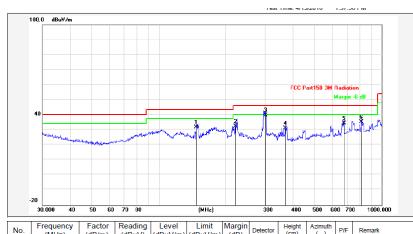
30~1000MHz

Р 1764.712 -5.99 55.30 49.31 74.00 -24.69 peak 1764.712 -5.99 39.49 33.50 54.00 -20.50 AVG Р 46.20 74.00 -27.80 peak 2321.299 -3.80 50.00 30.20 2321.299 -3.80 34.00 54.00 -23.80 AVG

1000~6000MHz

For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China: yz.cncaic.cn



Temperature: 24.2°C Relative Humidity: 57%

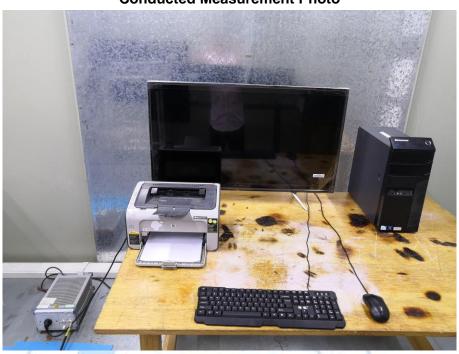
Pressure: 101 Kpa Test Mode: Mode 6

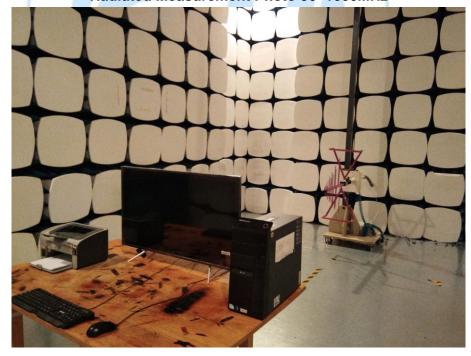
Polarization: Horizontal Test Power: AC 120V/60Hz

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)		Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth ()	P/F	Remark
1	147.4036	-14.54	46.34	31.80	43.50	-11.70	QP			Р	
2	221.3921	-12.37	44.87	32.50	46.00	-13.50	QP			Р	
3	301.4224	-11.54	51.54	40.00	46.00	-6.00	QP			Р	
4	369.4045	-10.10	41.30	31.20	46.00	-14.80	QP			Р	
5	679.9600	-4.26	38.66	34.40	46.00	-11.60	QP			Р	
6	813.1114	-2.10	37.30	35.20	46.00	-10.80	QP			Р	

30~1000MHz

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth	P/F	Remark		
1	1269.095	-6.69	65.21	58.52	74.00	-15.48	peak			Р			
2	1269.095	-6.69	45.59	38.90	54.00	-15.10	AVG			Р			
3	1714.840	-6.03	56.03	50.00	74.00	-24.00	peak			Р			
4	1714.840	-6.03	38.23	32.20	54.00	-21.80	AVG			Р			
5	2999.209	-2.70	51.03	48.33	74.00	-25.67	peak			Р			
6	2999 209	-2.70	33.80	31 10	54.00	-22 90	ΔVG			Р			


1000~6000MHz



EUT TEST PHOTO 5

Conducted Measurement Photo

Radiated Measurement Photo 30~1000MHz

Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

6 ATTACHMENT PHOTOGRAPHS OF EUT

1. Photo

2. Photo

3. Photo

4. Photo

5. Photo

Photo

Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

7. Photo

8. Photo

Fax.: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>yz.cncaic.cn</u>

9. Photo

10. Photo

==== End of Test Report =====

