EMC Test	EMC Test Report					
For:	For: MysteryVibe Limited					
Product:	Mys	steryVibe				
Model:	Ten	uto 2				
		Alway				
Project Engine	er:	Chris Novak				
		Q Valor				
Approval Signa	tory:	Dan Tiroke				

Document Reference:	3913 FR
----------------------------	---------

Issue Number: Date:		Test Report Revisions History:		
1	4 th May 2022	Original Report Issued		

UKAS Accredited:	1871
FCC Registered:	UK2006
KC Lab ID:	UK 1871
Canada CAB ID:	UK0005

Contents

<u>1.0</u>	OVERVIEW	3
1.1	Introduction	3
1.2	Objective	3
1.3	Product Modifications	3
1.4	Conclusion	3
1.5	EMC Test Lab Reference	3
1.6	Test Deviations	3
<u>2.0</u>	TEST SUMMARY	4
2.1	Summary	4
<u>3.0</u>	EQUIPMENT AND TEST DETAILS	<u>5</u>
3.1	General	5
3.2	EUT Description	6
3.3	Support Equipment	6
3.4	EUT Test Exerciser	6
3.5	EUT Test Configuration #1	6
<u>4.0</u>	TEST RESULTS	7
4.1	Radiated Emissions (Worst Case)	7
4.2	Conducted Emissions (Worst Case)	20
<u>5.0</u>	MEASUREMENT UNCERTAINTIES	28
6.0	ANNEX – OCCUPIED BANDWIDTH	29

1.0 OVERVIEW

1.1 Introduction

The equipment under test (EUT) as described within this document was submitted for testing as agreed with the customer.

1.2 Objective

The purpose of the test was to measure and report the EUT against limits and methods of the requested standards as listed in section 2.0 Test Summary.

1.3 Product Modifications

None to sample submitted.

1.4 Conclusion

The EUT met the emission requirements of the tests defined in section 2.0 Test Summary.

This report relates to the sample tested and may not represent the entire population. It is valid only for the product identified, either in part or in full, to the standards and/or tests covered in this document.

1.5 EMC Test Lab Reference

Eurofins E&E Hursley File: 3913

1.6 Test Deviations

None.

2.0 TEST SUMMARY

2.1 Summary

The EUT, as described and reported within this document, complies with the applied requested sections of the standards listed below.

The EUT met the emissions test requirements of the following standards:						
Description General Standard Referenced Standard Status						
Radiated Emissions	FCC/CFR 47:Part 15B 15.109 and 15.107	ANSI C63.4:2014, Class B	Pass			
Conducted Emissions	FCC/CFR 47:Part 15C 15.247 and 15.209	ANSI C63.10:2013, Class B	Pass			

Note(s):

• The highest internal operating frequency declared by the manufacturer is 2480MHz.

3.0 EQUIPMENT AND TEST DETAILS

3.1 General

Product (EUT):	MysteryVibe				
Model:	Tenuto 2	Serial Number:	001*		
Sample Build:	Production Sample				
EUT Power:	Battery powered				
Customer Test Plan:	Not Applicable				
Alternate Models:	Not Applicable				
EUT Manufacturer:	MysteryVibe Limited				
Customer Name:	MysteryVibe Limited				
Customer Address:	The Dairy South				
	Shoelands Farm Offices				
	Puttenham				
	Surrey				
	GU10 1HL				
	United Kingdom				
Test Commissioned By:	Mr Charlie Blackham (Sulis	Consultants)			
Date EUT Received:	28 th March 2021 and again	8 th March 2021 and again on 22 nd April 2022			
Test Date(s):	22 nd to 25 th April 2022				
EMC Measurement Site:	Eurofins E&E Hursley Limited				
	Trafalgar Close, Chandlers Ford, Hampshire, United Kingdom				
Product Category:	Personal Vibrator Toy				

^{*}Note: Serial number designated by Eurofins E&E Hursley.

3.2 EUT Description

The EUT is a personal vibrator toy.

3.3 Support Equipment

Description	escription Manufacturer		Serial Number	
Not Applicable	Not Applicable	Not Applicable	Not Applicable	

3.4 EUT Test Exerciser

The EUT was powered on and put into testing mode. It was tested in three separate modes:

- 1. Bottom Channel; 2402MHz
- 2. Middle Channel; 2440MHz
- 3. Top Channel; 2480MHz

The EUT was tested in three axis and the worst-case results are shown below.

3.5 EUT Test Configuration #1

4.0 TEST RESULTS

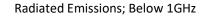
4.1 Radiated Emissions (Worst Case)

4.1.1 Test Parameters

A profile scan was taken using an EMI receiver at a distance of three metres on eight azimuths of the EUT in both the vertical and horizontal polarisation of the field in a semi-anechoic chamber.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out at a distance of three metres using the specified detector in a CISPR 16-1-4 compliant semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The worst-case results are reported below.

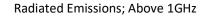
Test	Test Equipment							
#1D	#ID CP	Manufacturer	Туре	Serial Number	Description	Calibration		
miD		ivialidiacturei	Туре	Jeriai Nullibei	Description	Due Date		
750	1	Global	CISPR16	1	11 x 7 x 6.2m, chamber	14/12/2022		
893	1	Rohde & Schwarz	ESW44	103044	EMI test receiver	24/09/2022		
073	3	Schwarzbeck	BBHA9120B	237	Horn antenna (1-10GHz)	20/05/2024		
053	1	HP	8449B	3008A01394	Pre-amplifier (1.0-26.5GHz) (with #516)	19/10/2022		
Test	Equip	ment Software						
#ID	##D 60 M 6 1				Description	Calibration		
#10	СР	Manufacturer	Туре		Description	Due Date		
856	0	Rohde & Schwarz	Software	0	EMC32 v10.50.10	Not required		


Environmental Test Conditions			
Temperature 18.9 to 20.3° Celsius			
Relative Humidity 36 to 43%			
Atmospheric Pressure	1018.2 to 1031.6 millibars		
Test Dates: 28 th March and 25 th April 2022			
Test Engineers:	Joshua Mullane, Richard Pennell and Chris Novak		

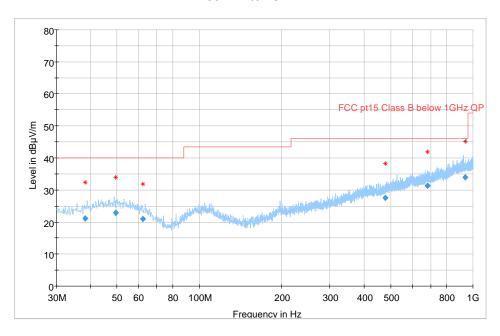
Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

4.1.2 Test Configuration

Please refer to EUT Test Configuration #1.


4.1.3 Set-up Photos

4.1.4 Set-up Photos (Continued)



4.1.5 Profile; 30MHz to 1GHz, Top Channel; 2480MHz, Y-Axis

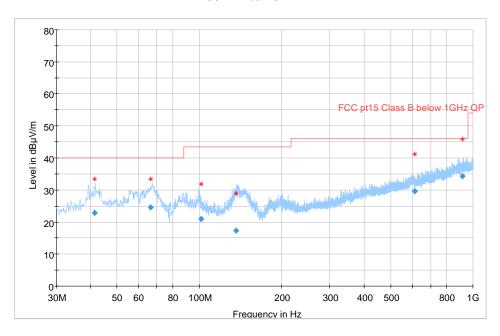
Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

30MHz to 1GHz

4.1.6 Data; 30MHz to 1GHz, Top Channel; 2480MHz, Y-Axis

Emission Frequency	Measured Quasi-Peak Value	Class B Specified Quasi-Peak Limit	Pass Margin	Antenna Polarisation	Antenna Height	Turntable Azimuth	
MHz	dBμV/m	dBμV/m	dB	H/V	cm	deg	Status
38.159542	21.10	40.00	18.90	V	359.0	110.0	Pass
49.543745	22.94	40.00	17.06	Н	115.0	123.0	Pass
62.103078	20.96	40.00	19.04	V	132.0	178.0	Pass
478.508439	27.60	46.00	18.40	Н	122.0	127.0	Pass
682.962794	31.29	46.00	14.71	Н	278.0	137.0	Pass
935.260103	33.91	46.00	12.09	Н	105.0	265.0	Pass

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.1.7 Profile; 30MHz to 1GHz, Top Channel; 2480MHz, Y-Axis, Charging

Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

30MHz to 1GHz

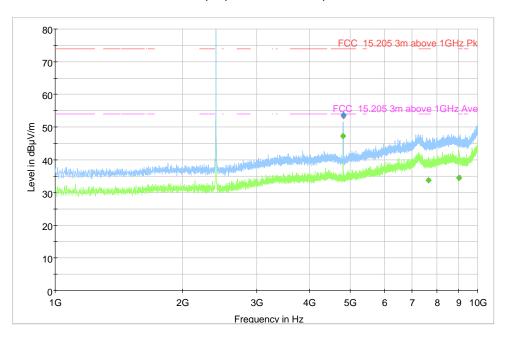
4.1.8 Data; 30MHz to 1GHz, Top Channel; 2480MHz, Y-Axis, Charging

Emission Frequency	Measured Quasi-Peak Value	Class B Specified Quasi-Peak Limit	Pass Margin	Antenna Polarisation	Antenna Height	Turntable Azimuth	
MHz	dBμV/m	dBμV/m	dB	H/V	cm	deg	Status
41.366738	22.77	40.00	17.23	V	109.0	228.0	Pass
66.266705	24.62	40.00	15.38	V	100.0	311.0	Pass
101.670092	20.95	43.50	22.55	V	186.0	248.0	Pass
136.190849	17.33	43.50	26.17	V	297.0	59.0	Pass
613.441928	29.66	46.00	16.34	Н	287.0	350.0	Pass
915.396010	34.36	46.00	11.64	V	198.0	290.0	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.9 Profile; 1 to 10GHz, Tx, Bottom Channel, Z-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx, Bottom Channel, Z-Axis

4.1.10 Data; 1 to 10GHz, Tx, Bottom Channel, Z-Axis

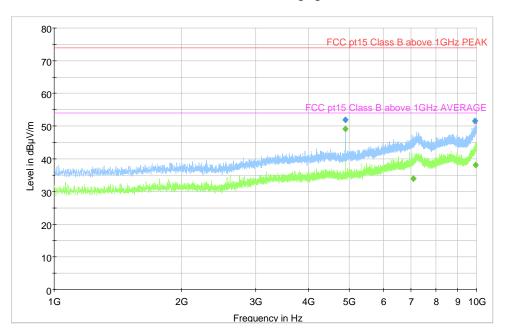
Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
4803.625000		47.21	54.00	6.79	184.0	Н	353.0	-1.2	Pass
4804.750000	53.64		74.00	20.36	182.0	Н	355.0	-1.2	Pass
7643.125000		33.75	54.00	20.25	386.0	V	10.0	3.2	Pass
9024.625000		34.51	54.00	19.49	201.0	Н	3.0	3.1	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.11 Profile; 1 to 10GHz, Rx, Charging

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Rx, Charging

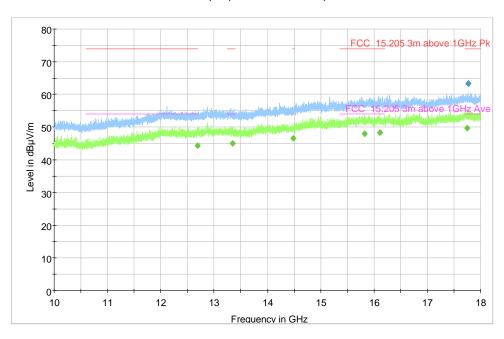
4.1.12 Data; 1 to 10GHz, RX, Charging

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
4881.795217	51.98		74.00	22.02	160.0	V	120.0	-0.9	Pass
4882.069851		49.11	54.00	4.89	162.0	V	120.0	-0.9	Pass
7080.379021		33.90	54.00	20.10	252.0	V	28.0	3.6	Pass
9920.471083	51.69		74.00	22.31	275.0	Н	104.0	6.4	Pass
9943.184208		38.15	54.00	15.85	396.0	V	77.0	6.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.13 Profile; 10 to 18GHz, Tx, Middle Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

10 to 18GHz, Tx, Middle Channel, X-Axis

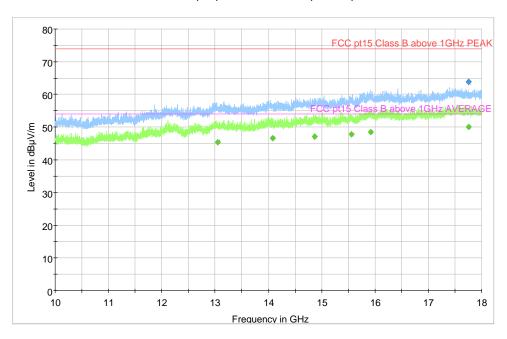
4.1.14 Data; 10 to 18GHz, Tx, Middle Channel, X-Axis

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
12685.00000		44.38	54.00	9.62	215.0	V	185.0	13.8	Pass
13350.00000		45.06	54.00	8.94	171.0	Н	11.0	15.1	Pass
14488.00000		46.55	54.00	7.45	348.0	Н	289.0	16.4	Pass
15817.00000		47.95	54.00	6.05	299.0	V	333.0	16.8	Pass
16106.00000		48.39	54.00	5.61	115.0	Н	0.0	17.1	Pass
17748.00000		49.67	54.00	4.33	206.0	V	271.0	19.2	Pass
17761.00000	63.30		74.00	10.70	276.0	Н	65.0	19.2	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.15 Profile; 10 to 18GHz, Tx, Middle Channel, X-Axis, FCC

Maximum hold trace with peak values ()

Peak measurements (★)

Average measurements ()

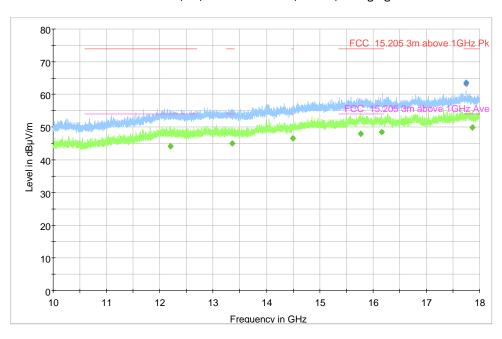
10 to 18GHz, Tx, Middle Channel, X-Axis, FCC

4.1.16 Data; 10 to 18GHz, Tx, Middle Channel, X-Axis, FCC

Frequency	Peak	CISPR Average	FCC Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
13051.46667		45.43	54.00	8.57	138.0	V	79.0	14.8	Pass
14076.08199		46.66	54.00	7.34	232.0	Н	57.0	16.2	Pass
14860.90856		47.10	54.00	6.90	298.0	Н	157.0	16.4	Pass
15556.65962		47.76	54.00	6.24	136.0	V	324.0	16.6	Pass
15913.33197		48.41	54.00	5.60	276.0	Н	101.0	16.9	Pass
17756.31969	63.85		74.00	10.15	342.0	V	166.0	19.2	Pass
17758.02528		50.00	54.00	4.00	105.0	V	280.0	19.2	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.


*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

10 to 18GHz, Tx, Middle Channel, X-Axis, Charging

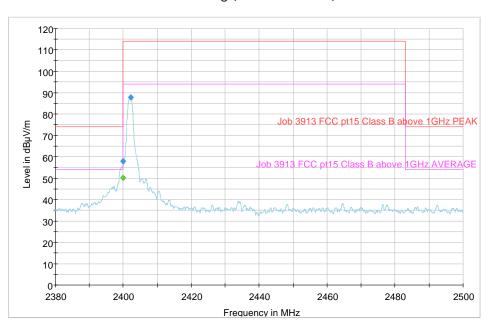
4.1.18 Data; 10 to 18GHz, Tx, Middle Channel, X-Axis, Charging

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
12199.00000		44.08	54.00	9.92	330.0	Н	206.0	12.8	Pass
13357.00000		44.94	54.00	9.06	231.0	V	3.0	15.1	Pass
14492.00000		46.55	54.00	7.45	100.0	Н	130.0	16.4	Pass
15774.00000		47.93	54.00	6.07	290.0	V	197.0	16.8	Pass
16158.00000		48.52	54.00	5.48	154.0	Н	30.0	17.2	Pass
17743.00000	63.49		74.00	10.51	296.0	V	311.0	19.2	Pass
17864.00000		49.92	54.00	4.08	251.0	Н	297.0	19.3	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.19 Profile; Transmit Power and Band Edge, Bottom Channel, X-Axis 2402MHz

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

Transmit Power and Band Edge, Bottom Channel, X-Axis 2402MHz

4.1.20 Data; Transmit Power and Band Edge, Bottom Channel, X-Axis 2402MHz

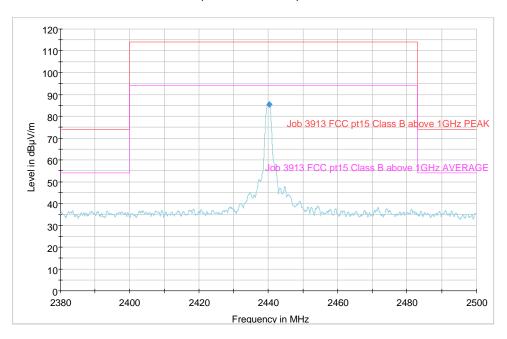
Frequency	Peak	CISPR Average	FCC Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2399.998000		50.22	54.00	3.78	126.0	V	47.0	-6.7	Pass
2399.998000	57.85		74.00	16.15	124.0	V	44.0	-6.7	Pass
2402.254000	87.82		94.00	26.18	112.0	V	45.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.209 and 15.249 limits and take into account the correction factor*. The transmit power met the 15.249 limit when measured with a peak detector, so an average measurement was not required. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.21 Profile; Transmit Power, Middle Channel, X-Axis 2440MHz

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

Transmit Power, Middle Channel, X-Axis 2440MHz

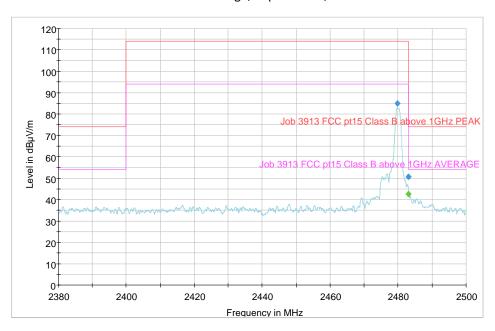
4.1.22 Data; Transmit Power, Middle Channel, X-Axis 2440MHz

Frequency	Peak	CISPR Average	FCC Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2440.234000	85.41		94.00	8.59	163.0	V	226.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.249 limits and take into account the correction factor*. The transmit power met the 15.249 limit when measured with a peak detector, so an average measurement was not required. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.23 Profile; Transmit Power and Band Edge, Top Channel, X-Axis 2480MHz

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

Transmit Power and Band Edge, Top Channel, X-Axis 2480MHz

4.1.24 Data; Transmit Power and Band Edge, Top Channel, X-Axis 2480MHz

Frequency	Peak	CISPR Average	FCC Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2479.744000	84.96		94.00	9.04	118.0	V	300.0	-6.7	Pass
2483.002000		42.48	54.00	11.52	119.0	V	302.0	-6.7	Pass
2483.002000	50.63		74.00	23.37	115.0	V	304.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.209 and 15.249 limits and take into account the correction factor*. The transmit power met the 15.249 limit when measured with a peak detector, so an average measurement was not required. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2 Conducted Emissions (Worst Case)

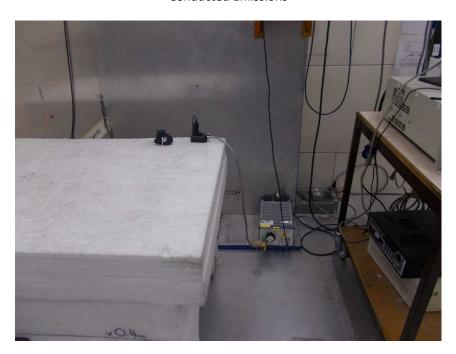
4.2.1 Test Parameters

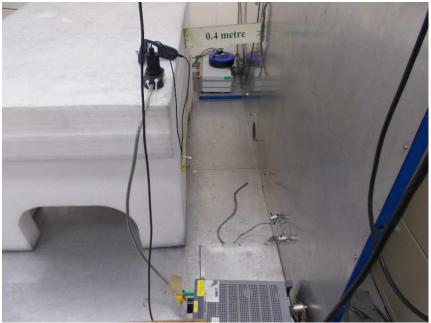
A filtered supply was fed to the EUT via a $50\Omega/50\mu H$ Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

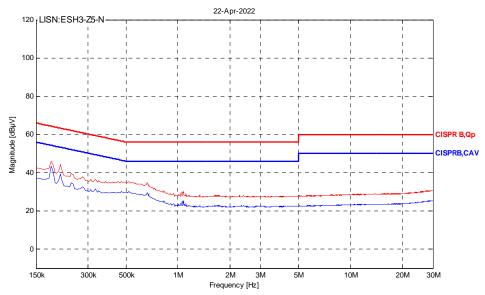
Test	Equip	ment				
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration Due Date
785	785 0 EH		Ground plane	0	Ground plane work area	Not required
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023
674	1	Rohde & Schwarz	ESH3-Z5	838576-018	1 phase LISN ANSI&CISPR	16/09/2022
252	1	Rohde & Schwarz	ESH 3 Z2	08970	10dB pulse limiter	28/05/2022
Test	Equip	ment Software				
#ID	#ID CP Manufacturer		Туре		Description	Calibration Due Date
857 0 Gauss Sof		Software	0	TDMI 30 v5.00	Not required	

Environmental Test Conditions					
Temperature 21.3° Celsius					
Relative Humidity	37%				
Atmospheric Pressure	1006.6 millibars				
Test Date:	22 nd April 2022				
Test Engineer:	Malcolm Musgrave				


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

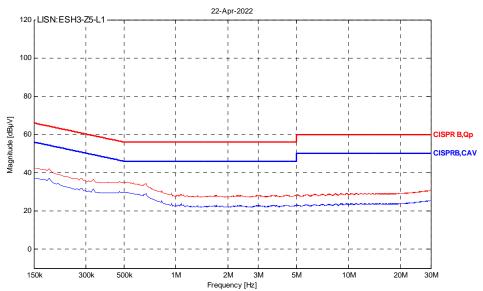

4.2.2 Test Configuration

Please refer to EUT Test Configuration #1.


4.2.3 Set-up Photos

4.2.4 Profile; Mains Neutral, Bottom Channel; 2402MHz

4.2.5 Data; Mains Neutral, Bottom Channel; 2402MHz


	Quasi-peak value (dBμV)									
Frequency Measured Class B Limit Margin Status										
183.582 kHz	46.05	64.32	18.27	Pass						
9.925 MHz	28.62	60.00	31.38	Pass						
15.023 MHz	28.93	60.00	31.07	Pass						
20.030 MHz	29.17	60.00	30.83	Pass						
25.003 MHz	29.90	60.00	30.10	Pass						
29.991 MHz	30.62	60.00	29.38	Pass						

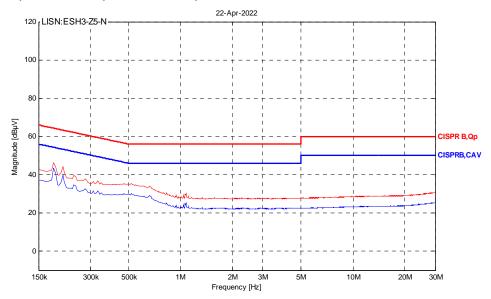
	CISPR Average value (dBμV)										
Frequency Measured Class B Limit Margin Status											
183.582 kHz	43.42	54.32	10.91	Pass							
9.863 MHz	23.27	50.00	26.73	Pass							
15.023 MHz	23.66	50.00	26.34	Pass							
19.882 MHz	23.79	50.00	26.21	Pass							
24.974 MHz	24.55	50.00	25.45	Pass							
29.976 MHz	25.28	50.00	24.72	Pass							

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

4.2.6 Profile; Mains Line, Bottom Channel; 2402MHz

4.2.7 Data; Mains Line, Bottom Channel; 2402MHz


Quasi-peak value (dBμV)				
Frequency	Measured	Class B Limit	Margin	Status
498.295 kHz	35.19	56.03	20.84	Pass
9.763 MHz	29.23	60.00	30.77	Pass
11.842 MHz	29.30	60.00	30.70	Pass
15.905 MHz	29.19	60.00	30.81	Pass
25.003 MHz	29.85	60.00	30.15	Pass
29.914 MHz	30.61	60.00	29.39	Pass

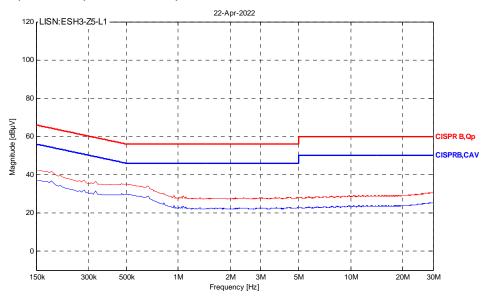
CISPR Average value (dBμV)				
Frequency	Margin	Status		
498.295 kHz	29.90	46.03	16.13	Pass
9.820 MHz	23.89	50.00	26.11	Pass
11.866 MHz	23.93	50.00	26.07	Pass
19.829 MHz	23.80	50.00	26.20	Pass
24.655 MHz	24.53	50.00	25.47	Pass
29.981 MHz	25.30	50.00	24.70	Pass

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

4.2.8 Profile; Mains Neutral, Middle Channel; 2440MHz

4.2.9 Data; Mains Neutral, Middle Channel; 2440MHz


Quasi-peak value (dBμV)				
Frequency	Measured	Class B Limit	Margin	Status
183.582 kHz	46.14	64.32	18.18	Pass
9.854 MHz	28.66	60.00	31.34	Pass
15.023 MHz	28.91	60.00	31.09	Pass
18.575 MHz	29.13	60.00	30.87	Pass
24.574 MHz	29.83	60.00	30.17	Pass
29.285 MHz	30.59	60.00	29.41	Pass

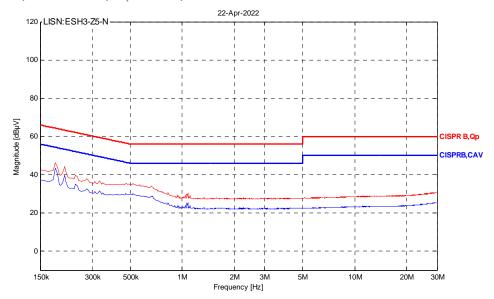
CISPR Average value (dBµV)				
Frequency	Margin	Status		
183.582 kHz	43.40	54.32	10.92	Pass
9.868 MHz			26.80	Pass
15.023 MHz			26.38 Pa	Pass
19.701 MHz	23.79	50.00	26.21	Pass
24.951 MHz	24.52	50.00	25.48	Pass
29.805 MHz	25.29	50.00	24.71	Pass

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

4.2.10 Profile; Mains Line, Middle Channel; 2440MHz

4.2.11 Data; Mains Line, Middle Channel; 2440MHz


Quasi-peak value (dBμV)				
Frequency	Measured	Class B Limit	Margin	Status
498.295 kHz	35.18	56.03	20.85	Pass
9.835 MHz	28.94	60.00	31.06	Pass
11.222 MHz	29.14	60.00	30.86	Pass
20.034 MHz	29.15	60.00	30.85	Pass
24.645 MHz	29.84	60.00	30.16	Pass
29.938 MHz	30.62	60.00	29.38	Pass

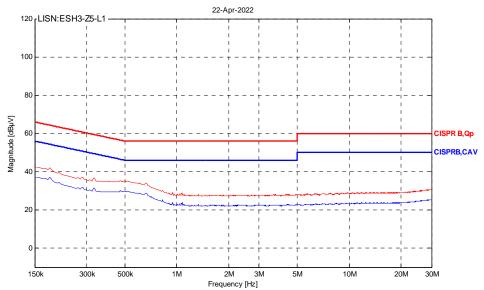
CISPR Average value (dBμV)				
Frequency	Measured	Class B Limit	Margin Status	
498.295 kHz	29.92	46.03	16.11	Pass
9.797 MHz	23.66	50.00	26.34	Pass
12.500 MHz	23.83	50.00	26.17	Pass
19.920 MHz	23.79	50.00	26.21	Pass
24.960 MHz	24.54	50.00	25.46	Pass
29.995 MHz	25.28	50.00	24.72	Pass

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB) The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.12 Profile; Mains Neutral, Top Channel; 2480MHz

4.2.13 Data; Mains Neutral, Top Channel; 2480MHz


Quasi-peak value (dBμV)				
Frequency	Measured	Class B Limit	Margin	Status
183.582 kHz	46.15	64.32	18.17	Pass
9.878 MHz	28.56	60.00	31.44	Pass
13.368 MHz	28.91	60.00	31.09	Pass
19.863 MHz	29.16	60.00	30.84	Pass
24.893 MHz 29.86		60.00 30.14	30.14	Pass
29.695 MHz	30.58	60.00	29.42	Pass

CISPR Average value (dBμV)						
Frequency	Measured	Class B Limit	Margin	Status		
183.582 kHz	43.49	54.32	10.83	Pass		
9.878 MHz	78 MHz 23.20		23.20 50.00	50.00	26.80	Pass
15.023 MHz	23.65	50.00	26.35	Pass		
19.948 MHz	23.78	50.00	26.22	Pass		
25.003 MHz 24.57		50.00	25.43	Pass		
29.991 MHz	25.25	50.00	24.75	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB) The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.14 Profile; Mains Line, Top Channel; 2480MHz

4.2.15 Data; Mains Line, Top Channel; 2480MHz

Quasi-peak value (dBμV)				
Frequency	Measured	Class B Limit	Margin	Status
498.295 kHz	35.21	56.03	20.82	Pass
9.825 MHz	28.94	60.00	31.06	Pass
13.926 MHz	29.05	60.00	30.95	Pass
20.030 MHz	29.15	60.00	30.85	Pass
24.621 MHz 29.83		MHz 29.83 60.00 30.	30.17	Pass
29.948 MHz	30.64	60.00	29.36	Pass

CISPR Average value (dBμV)				
Frequency	Measured Class B Limit		Margin	Status
498.295 kHz	29.87	46.03	16.16	Pass
9.778 MHz	Hz 23.57 50.0		26.43	Pass
12.500 MHz	23.76	50.00	26.24	Pass
19.777 MHz 23.78		50.00	26.22	Pass
24.917 MHz	24.52	50.00	25.48	Pass
29.752 MHz	25.28	50.00	24.72	Pass

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

5.0 **MEASUREMENT UNCERTAINTIES**

Emissions tests

For all emissions tests, measurement uncertainties have been calculated in line with the requirements of CISPR 16-4-2 to give a confidence level of greater than 95%. In all cases the laboratories calculated uncertainty values (known as Ulab) are equal to or are less than the expected uncertainty values contained in CISPR 16-4-2 (known as Ucispr). Below is a list of the laboratories calculated measurement uncertainties:

Conducted emissions:

Via AMN/LISN: ±3.27dB (9kHz - 150kHz), ±3.27dB (150kHz - 30MHz)

Via AAN/ISN: ±5.00dB (150kHz - 30MHz) Via CVP: ±3.47dB (150kHz - 30MHz) Via CP: ±2.69dB (150kHz - 30MHz) Via 100 Ω: ±2.68dB (150kHz - 30MHz) Clicks: ±2.83dB (150kHz - 30MHz) Harmonics: ±1.42% (100Hz - 2kHz)

Flicker: ±1.76% (worst case for all parameters)

Radiated emissions:

H-Field: ±2.84dB (9kHz - 3MHz), ±2.92dB (3MHz - 30MHz)

D = 3.0 m (Horizontal): ±3.91dB (30MHz - 1GHz SAC), ±3.82dB (30MHz - 1GHz FAC) D = 3.0 m (Vertical): ±5.22dB (30MHz - 1GHz SAC), ±3.82dB (30MHz - 1GHz FAC) D = 3.0 m±5.13dB (1GHz - 6GHz SAC), ±5.15dB (1GHz - 10GHz SAC), ±3.64dB (10GHz - 18GHz SAC), ±3.10dB (18GHz - 40GHz SAC).

±3.05dB (1GHz - 6GHz FAC)

Immunity tests

For IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11 tests, the following applies:

Measurement uncertainty has been calculated or calibrated for the various required parameters to provide a confidence level of 95% (k=2). These parameters have been compared to the basic standard tolerance requirements for each of the various parameters.

In all cases the calculated or calibrated uncertainty meets the basic standard requirements.

For IEC 61000-4-3, IEC 61000-4-6 tests, the following applies:

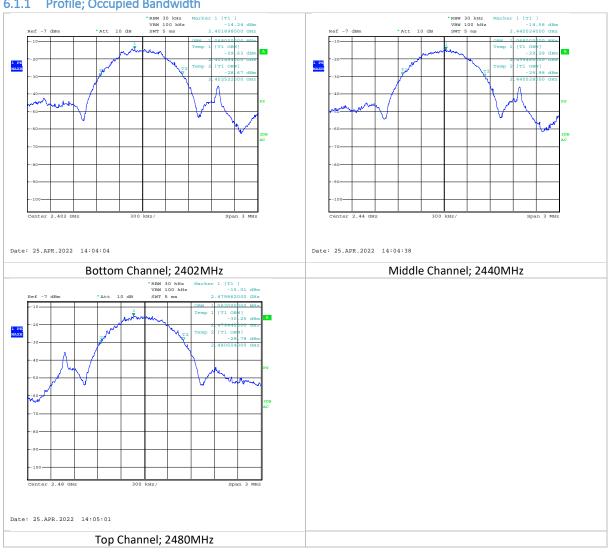
Measurement uncertainty has been calculated to provide a confidence level of 95%, or k=2, but this has not been applied to the applied test level, therefore the applied test level has an uncertainty of ±50%. This is in accordance with CENELEC and other international guidance.

In the case of Maritime equipment tested to EN/IEC 60945, there is a specific requirement that the applied test level be increased by the calculated measurement uncertainty. This is done by applying a coverage factor of k=1.64, which provides a 95% confidence that the applied test level has been achieved.

Test Results - Decision Rules

As the decision is generally inherent in the standard for Commercial EMC a simple acceptance rule can be applied. The following statement will be added to EMC quotes and reports. "The Decision Rule is applied on the basis of CISPR16-4-2 and/or EN61000-4-x (TR61000-1-6) These standards provide guidance on how to calculate and apply measurement uncertainty whilst providing maximum uncertainties allowance. Due consideration will also be given to JCGM 106:2012, ILAC-G8:09/2019 and LAB 48. This laboratory has demonstrated by calibrating its equipment and facilities, and calculating its own uncertainties, that it complies with the above requirements and therefore no allowance of uncertainties has been given to the tolerances." Where a result is considered marginal in respect of its proximity to the limit line, for example, the customer would be made aware of situation so that they can make an informed decision on how to proceed.

Published 17/01/2022



Annex - Occupied Bandwidth 6.0

99% occupied bandwidth measured using the inbuilt function in the spectrum analyser.

Channel	Occupied Bandwidth (kHz)	Requirement	Result
2402	1068	None	For
2440	1068	None	For
2480	1062	None	For

6.1.1 Profile; Occupied Bandwidth

Occupied Bandwidth

6.1.2 Test equipment

Description	Manufacturer	Name	Serial Number	Calibration certificate Or Calibration due
Spectrum Analyser	Rohde & Schwarz	ESCI 7	HEMC #289	14/09/2022

End of Document