FCC Part 15, Subpart B, Class B(sDoC)

TEST REPORT

Shenzhen Sunricher Technology Limited

LED Controllers

Test Model: SR-1009PD

Additional Model No.: Please refer to page 7

Prepared for : Shenzhen Sunricher Technology Limited

Address : 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third

road, No. 72 area, Xin'an Street, Baoan District, Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : April 01, 2019

Number of tested samples :

Serial number : Prototype

Date of Test : April 01, 2019 ~ April 09, 2019

Date of Report : April 15, 2019

FCC TEST REPORT FCC Part 15, Subpart B, Class B(sDoC)

Report Reference No.: LCS190322040AEA

Date Of Issue: April 15, 2019

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards

Partial application of Harmonised standards \square

Other standard testing method \square

Applicant's Name.....: Shenzhen Sunricher Technology Limited

Address: 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third

road, No. 72 area, Xin'an Street, Baoan District, Shenzhen, China

Test Specification

Standard: FCC Part 15, Subpart B, Class B(sDoC), ANSI C63.4 -2014

Test Report Form No.: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: LED Controllers

Test Model.....: SR-1009PD

Trade Mark:

SUNRICHER

Input: DC 12-36V

Ratings : Output: DC 12-36V

Result: Positive

Compiled by:

Supervised by:

Calvin Weng

Approved by:

0

Ryan Hu / File administrators

Calvin Weng / Technique Principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS190322040AEA

April 15, 2019
Date of issue

Test Model : SR-1009PD EUT.....: LED Controllers Applicant.....:: Shenzhen Sunricher Technology Limited Address.....: 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third road, No. 72 area, Xin'an Street, Baoan District, Shenzhen, China Telephone....:: / Fax....:: / Manufacturer....: Shenzhen Sunricher Technology Limited Address..... : 3rd Floor,B building,Jia'an Industrial Building, Liu Xian Third road, No. 72 area, Xin'an Street, Baoan District, Shenzhen, China Telephone.....: : / Fax.....:: : / Factory.....: Shenzhen Sunricher Technology Limited Address.....: 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third road, No. 72 area, Xin'an Street, Baoan District, Shenzhen, Telephone.....: : / Fax.....:: : /

Test Result according to the standards on page 6: **Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AHST-SR1009PD Report No.: LCS190322040AEA

Revision History

Revision	Issue Date	Revisions	Revised By
000	April 15, 2019	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
2. GENERAL INFORMATION	
2.1. Description of Device (EUT)	
2.2. Support Equipment List	
2.3. Description of Test Facility	
2.4. Statement of the Measurement Uncertainty	
2.5. Measurement Uncertainty	8
3. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.1. Test Equipment	9
3.2.Block Diagram of Test Setup	
3.3.Test Standard	9
3.4.EUT Configuration on Test	
3.5.Operating Condition of EUT	
3.6.Test Procedure	
3.7.Test Results	
4. RADIATED EMISSION MEASUREMENT	12
4.1. Test Equipment	12
4.3. Radiated Emission Limit (Class B)	13
4.4. EUT Configuration on Measurement	13
4.5. Operating Condition of EUT	13
4.6. Test Procedure	
4.7. Radiated Emission Noise Measurement Result	14
5. TEST SETUP PHOTOGRAPHS OF EUT	16
6. EXTERIOR PHOTOGRAPHS OF THE EUT	17
7. INTERIOR PHOTOGRAPHS OF THE EUT	18

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION					
Description of Test Item	Standard	Limits	Results		
Conducted disturbance at mains terminals	FCC Part 15, Subpart B, Class B(sDoC), ANSI C63.4 -2014	Class B	PASS		
Radiated disturbance	FCC Part 15, Subpart B, Class B(sDoC), ANSI C63.4 -2014	Class B	PASS		
N/A is an abbreviation for Not Applicable.					

Test mode:				
Mode 1	Control LED light	Record		

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : LED Controllers

Trade Mark :

SUNRICHER

Test Model : SR-1009PD

SR-1009CS, SR-1009FA, SR-1009LC-RGB, SR-1009EA,

SR-1009EAWI, SR-1009MS-RGBW-Receiver,

Additional Model No SR-1009EA-PD, SR-1029-Master, SR-1009NPD,

SR-2501NS, SR-2501N, SR-2501SAC-HP, SR-1009NP7,

SR-1Channel TPF, SR-1009NP, SR-1009NP3, SR-1009SAC-HP, SR-1009SAC-SWITCH

Model declaration PCB board, structure and internal of these model(s) are the sa

me, So no additional models were tested.

Ratings : Input: DC 12-36V

Output: DC 12-36V

EUT Clock Frequency : ≤108MHz

869.5MHz RX

Frequency Range : 869.5MHz Channel Number : 1 Channels Modulation Type : FSK

Antenna Description : Internal Antenna

2.2. Support Equipment List

Name	Manufacturers	M/N	S/N	Certificate

2.3. Description of Test Facility

Site Description

EMC Lab. : FCC Registration Number is 254912.

Industry Canada Registration Number is 9642A-1.

EMSD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081.

TUV RH Registration Number is UA 50296516-001.

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024.

2.4. Statement of the Measurement Uncertainty

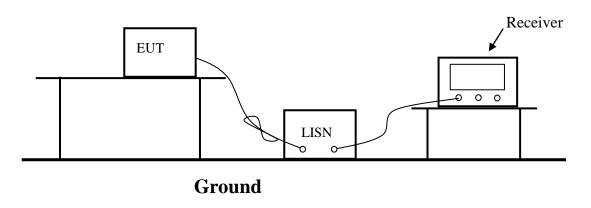
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Power Disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	± 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.60 dB	± 3.3 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB
Mains Harmonic	Voltage	± 0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.510%	N/A
EMF		± 21.59%	N/A

⁽¹⁾Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

⁽²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


3. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Software	AUDIX	E3	/	2018-06-16
2	EMI Test Receiver	R&S	ESPI	101840	2018-06-16
3	Artificial Mains	R&S	ENV216	101288	2018-06-16
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-00 32	2018-06-16

3.2.Block Diagram of Test Setup

3.3.Test Standard

Power Line Conducted Emission Limits (Class B)

Frequency		Limit (dBµV)		
(MHz)		Quasi-peak Level Average Level		
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50	2	5.00	56.0	46.0
5.00	~	30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.4.EUT Configuration on Test

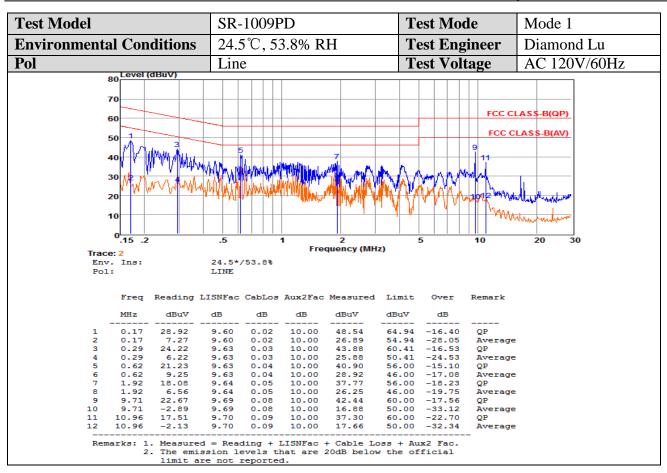
The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

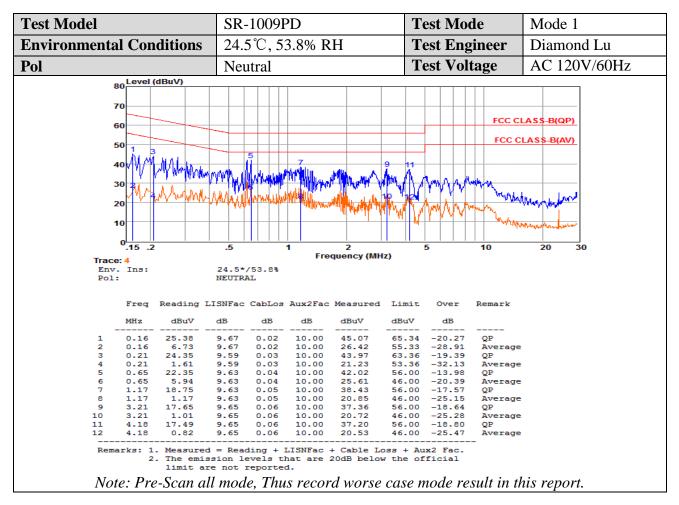
3.5. Operating Condition of EUT

- 3.5.1. Setup the EUT as shown on Section 3.2
- 3.5.2. Turn on the power of all equipments.
- 3.5.3.Let the EUT work in measuring mode (Mode 1) and measure it.

3.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

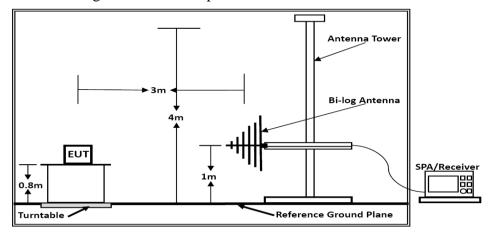

The bandwidth of the test receiver is set at 9kHz.


The frequency range from 150kHz to 30MHz is investigated

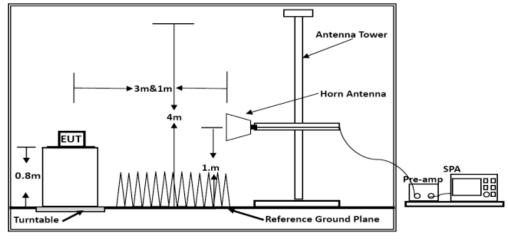
3.7.Test Results

PASS.

The test result please refer to the next page.


4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment


The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Software	AUDIX	E3		2018-06-16
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16
3	Positioning Controller	MF	MF-7082	/	2018-06-16
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02
6	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2018-11-15
8	AMPLIFIER	QuieTek	QTK	CHM/08090 65	2018-11-15
9	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03СН03-НҮ	2018-06-16

4.2. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

4.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below 1GHz

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	μV/m	$dB(\mu V)/m$
30 ~ 88	3	100	40
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46
960 ~ 1000	3	500	54

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Limits for Radiated Disturbance Above 1GHz

Frequency	Distance	Average Limit	Peak Limit
(MHz)	(Meters)	$(dB\mu V/m)$	$(dB\mu V/m)$
Above 1000	3	54	74

4.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT as shown in Section 4.2.
- 4.5.2.Let the EUT work in test mode (Mode 1) and measure it.

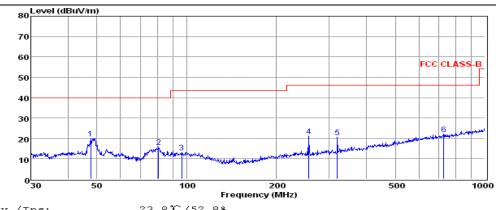
4.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

The bandwidth of the EMI test receiver is set at 120kHz, 1000kHz.

The frequency range from 30MHz to 1000MHz is checked.

The bandwidth of the Spectrum analyzer is set at RBW/VBW=1MHz/3MHz.


The frequency range from 1GHz to the frequency which about 5th carrier harmonic or 6GHz is checked.

4.7. Radiated Emission Noise Measurement Result **PASS.**

The scanning waveforms please refer to the next page.

Test Model	SR-1009PD	Test Mode	Mode 1
Environmental Conditions	23.8℃, 52.8% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Diamond Lu	Test Voltage	AC 120V/60Hz
80 Level (dBuV/m)			
70			
60		FC	C CLASS-B
50			
40		J	
30			
1	1 2 3	6	and the same
20 mm man de l'ann	many and the many	and who so the work of the second of the second	
10	A STATE OF THE STA	Market 1. 2.2	
030 50	100 200	500	1000
30 30	Frequency (M		1000
Env./Ins: pol:	23.8°C/52.8% VERTICAL		
Freq Res	ading CabLos Antfac M	leasured Limit Over	Remark
MHz c	lBuV dB dB/m d	BuV/m dBuV/m dB	
		19.55 40.00 -20.4	
	9.07 0.61 13.13	22.81 43.50 -20.6	
	3.50 0.68 12.48 5.31 0.83 8.59	21.66 43.50 -21.8 15.73 43.50 -27.7	
		17.74 46.00 -28.2	
		23.32 46.00 -22.6	
2. Measured= Readi	ings are Quasi-peak valu ing + Antenna Factor + C hat are 20db below the C	able Loss	t reported

Test Model	SR-1009PD	Test Mode	Mode 1
Environmental Conditions	23.8℃, 52.8% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Diamond Lu	Test Voltage	AC 120V/60Hz

Env./Ins: pol:

5 6

23.8°C/52.8% HORIZONTAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
47.66	6.29	0.35	13.39	20.03	40.00	-19.97	QP
80.36	6.34	0.65	8.67	15.66	40.00	-24.34	QP
96.10	-0.27	0.58	12.91	13.22	43.50	-30.28	QP
256.52	8.11	1.02	12.06	21.19	46.00	-24.81	QP
319.94	6.18	1.16	13.33	20.67	46.00	-25.33	QP
726.81	1.15	1.70	19.15	22.00	46.00	-24.00	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that are 20db below the official limit are not reported

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

Please refer to sepa	arated files for	Test Setup Ph	otos of the EU	JT.	

XTERIOR PHOTOGRAPHS OF THE EUT
Please refer to separated files for External Photos of the EUT.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AHST-SR1009PD	Report No.: LCS190322040AEA
7 INTEDIOD DUOTOCDADUS		
7. INTERIOR PHOTOGRAPHS	S OF THE EUT	
Please refer to separated files for Int	ternal Photos of the EUT.	
rease refer to separated files for in-	commit motor of the Be 1.	
THE END OF	TEST REPORT	