

EMC TEST REPORT

TA

Applicant	Positioning Universal Inc
FCC ID	2AHRH-FJ2500MG
Product	FJ2500MG 4G LTE Vehicle Telematics Unit
Model	FJ2500MG
Report No.	R2304A0477-E1
Issue Date	May 23, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC Code CFR47 Part15B (2022)**/ **ANSI C63.4-2014**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Liu Wei

Prepared by: Liu Wei

Fan Guangchang

Approved by: Fan Guangchang

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	t Laboratory	4
	1.1	Notes of the Test Report	
	1.2	Test Facility	4
	1.3	Testing Location	4
2	Ger	neral Description of Equipment Under Test	
	2.1	Applicant and Manufacturer Information	5
	2.2	General Information	5
	2.3	Applied Standards	7
	2.4	Test Mode	8
3	Tes	t Case Results	9
	3.1	Radiated Emission	9
	3.2	Conducted Emission 1	4
4		certainty Measurement	
5	Mai	n Test Instruments 1	8
A١	INEX	A: The EUT Appearance 1	9
A١	INEX	B: Test Setup Photos	20

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion				
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS				
2 Conducted Emission FCC Part15.107, ANSI C63.4-2014 PASS							
Date of Testing: April 29, 2023 ~ May 8, 2023							
Date of Sample Received: April 21, 2023							
Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology							
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement							
Uncertainties were not taken into account and are published for informational purposes only.							

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Fan Guangchang
Contact: Telephone:	Fan Guangchang +86-021-50791141/2/3
••••••	
Telephone:	+86-021-50791141/2/3

2 General Description of Equipment Under Test

Applicant Positioning Universal Inc	
Applicant address	4660 La Jolla Village Drive, Suite 1100, San Diego, CA92122, United
Applicant address	States
Manufacturer	Positioning Universal Inc
Manufacturar address	4660 La Jolla Village Drive, Suite 1100, San Diego, CA92122, United
Manufacturer address	States

2.1 Applicant and Manufacturer Information

2.2 General Information

EUT Description								
Device Type	Fixed Device							
Model	FJ2500MG							
IMEI	356129320527705	356129320527705						
HW Version	P6.2	P6.2						
SW Version	V0.6	V0.6						
Power Rating	DC 3.7V from battery	/ DC 12V from Adapter						
Connecting I/O Port(s)	Please refer to the Us	er's Manual.						
Antenna Type	Internal Antenna							
	Band	Tx (MHz)	Rx (MHz)					
	GSM 850	824 ~ 849	869 ~ 894					
	GSM 1900	1850 ~ 1910	1930 ~ 1990					
	LTE-M Band 2	1850 ~ 1910	1930 ~ 1990					
	LTE-M Band 4	1710 ~ 1755	2110 ~ 2155					
	LTE-M Band 5	824 ~ 849	869 ~ 894					
Frequency	LTE-M Band 12 699 ~ 716 7		729 ~ 746					
	LTE-M Band 13	777 ~ 787	746 ~ 756					
	LTE-M Band 25	1850 ~ 1915	1930 ~ 1995					
	LTE-M Band 26	814 ~ 849	859 ~ 894					
	LTE-M Band 66	1710 ~ 1780	2110 ~ 2180					
	LTE-M Band 85	698 ~ 715.9	728 ~ 745.9					
	Bluetooth LE	2400 ~ 2483.5	2400 ~ 2483.5					
	EUT Ac	cessory						
Battery	Manufacturer: BetterF	Power Battery Co., Ltd.						
Dattery	Model: BPI 18650 3.7	V 1S2P						
	Auxiliary tes	st equipment						
	Manufacturer: Shenzhen Aquilstar Technology Co., Ltd.							
Adapter	Model: ASSA107A-12							
/ ddptor	Input: 100-240V ~ 50/							
	Output: 12.0V1.0A	l l						

Report No.: R2304A0477-E1

Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2022) ANSI C63.4-2014

2.4 Test Mode

Test Mode					
Mode 1	Adapter + EUT + GSM/ LTE-M/ BLE Receiver				
Mode 2	Adapter + EUT + GSM/ LTE-M/ BLE Standby				

During the test, the preliminary test was performed in all modes, mode 1 is selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient Condition

Temperature	Relative humidity		
15°C ~ 35°C	30% ~ 60%		

Methods of Measurement

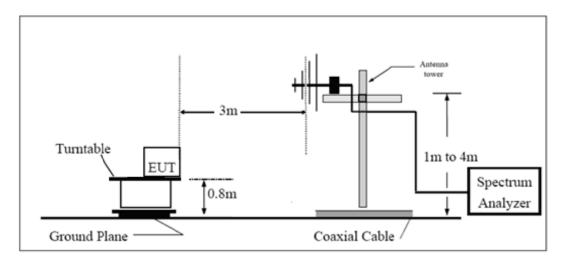
The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

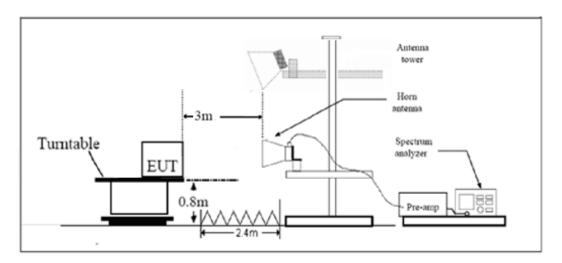
The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.


Report No.: R2304A0477-E1

Test Setup

Below 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

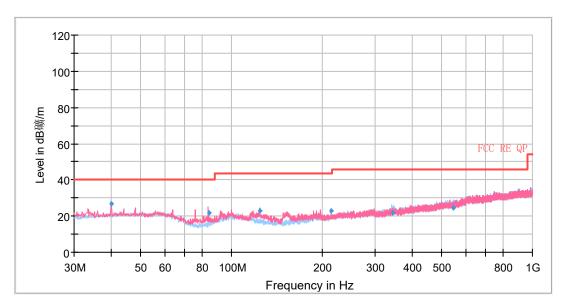
Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Frequency range of radiated measurements

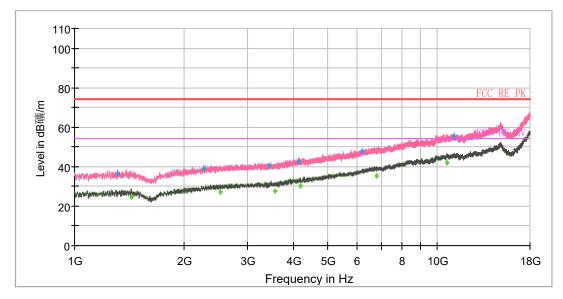
Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.


Report No.: R2304A0477-E1

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.


A symbol (^{dB礦/m}) in the test plot below means (dBµV/m)

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		Correct Factor (dB)	
39.94	26.60	40.00	13.40	100.0	V	258.00	14
83.88	21.68	40.00	18.32	123.0	V	118.00	9
123.81	22.64	43.50	20.86	100.0	V	157.00	11
214.50	22.94	43.50	20.56	222.0	V	294.00	13
342.50	21.66	46.00	24.34	100.0	Н	288.00	17
545.27	24.38	46.00	21.62	116.0	Н	18.00	20

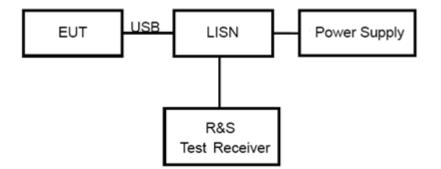
Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1316.20	36.53		74.00	37.47	1000.00	203.0	V	290.00	-19
1433.50		24.33	54.00	29.67	1000.00	194.0	V	214.00	-18
2264.80	38.77		74.00	35.23	1000.00	204.0	Н	37.00	-16
2514.70		26.94	54.00	27.06	1000.00	190.0	Н	52.00	-15
3446.30	40.59		74.00	33.41	1000.00	101.0	Н	286.00	-13
3561.90		27.61	54.00	26.39	1000.00	190.0	Н	37.00	-13
4143.30	42.33		74.00	31.67	1000.00	200.0	V	326.00	-11
4179.00		30.07	54.00	23.93	1000.00	210.0	V	229.00	-10
6212.20	47.81		74.00	26.19	1000.00	105.0	Н	0.00	-3
6802.10		35.35	54.00	18.65	1000.00	101.0	V	81.00	-2
10623.70		41.76	54.00	12.24	1000.00	110.0	V	346.00	3
11086.10	55.07		74.00	18.93	1000.00	210.0	Н	64.00	4

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Peak Margin = Limit –MAX Peak/ Average

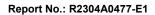
3.2 Conducted Emission


Ambient Condition

Temperature	Relative humidity		
15°C~35°C	30%~60%		

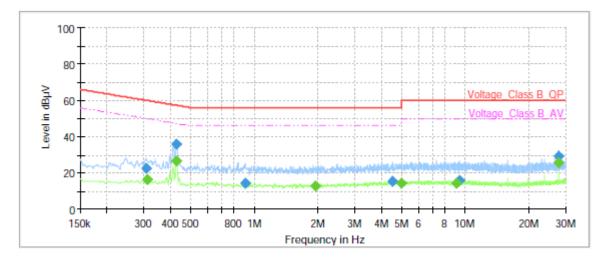
Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.


Test Setup

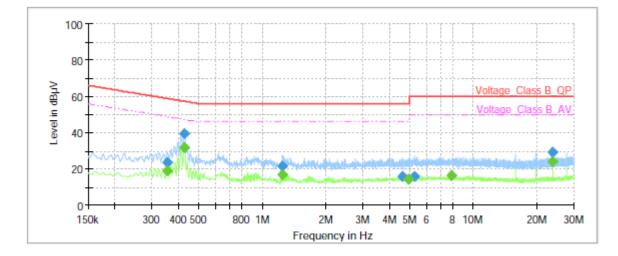
Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits


Frequency	Conducted Limits(dBµV)				
(MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]			
0.5 - 5	56	46			
5 - 30	60	50			
* Decreases with the logarithm of the frequency.					

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.


Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.31	22.31		59.98	37.67	1000.0	9.000	L1	ON	21.0
0.31		16.17	49.92	33.75	1000.0	9.000	L1	ON	21.0
0.43		26.75	47.27	20.52	1000.0	9.000	L1	ON	20.9
0.43	35.78		57.27	21.49	1000.0	9.000	L1	ON	20.9
0.91	14.47		56.00	41.53	1000.0	9.000	L1	ON	20.3
1.96		12.76	46.00	33.24	1000.0	9.000	L1	ON	19.7
4.51	15.32		56.00	40.68	1000.0	9.000	L1	ON	19.5
5.00		14.34	46.00	31.66	1000.0	9.000	L1	ON	19.5
9.09		14.53	50.00	35.47	1000.0	9.000	L1	ON	19.5
9.46	15.67		60.00	44.33	1000.0	9.000	L1	ON	19.5
27.83		25.78	50.00	24.22	1000.0	9.000	L1	ON	19.7
27.83	29.04		60.00	30.96	1000.0	9.000	L1	ON	19.7

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.35		19.22	48.85	29.63	1000.0	9.000	Ν	ON	21.0
0.36	23.71		58.80	35.09	1000.0	9.000	Ν	ON	21.0
0.43		31.73	47.27	15.54	1000.0	9.000	Ν	ON	20.9
0.43	39.67		57.27	17.60	1000.0	9.000	Ν	ON	20.9
1.25		17.03	46.00	28.97	1000.0	9.000	Ν	ON	20.1
1.25	21.32		56.00	34.68	1000.0	9.000	Ν	ON	20.1
4.62	15.75		56.00	40.25	1000.0	9.000	Ν	ON	19.5
4.97		14.49	46.00	31.51	1000.0	9.000	Ν	ON	19.5
5.31	15.81		60.00	44.19	1000.0	9.000	Ν	ON	19.5
7.95		16.53	50.00	33.47	1000.0	9.000	Ν	ON	19.5
23.85		24.00	50.00	26.00	1000.0	9.000	Ν	ON	19.8
23.85	29.35		60.00	30.65	1000.0	9.000	Ν	ON	19.8

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

4 Uncertainty Measurement

Case	Uncertainty	Factor k
Radiated Emission 30MHz – 200MHz	4.17 dB	1.96
Radiated Emission 200MHz – 1GHz	4.84 dB	1.96
Radiated Emission 1GHz – 18GHz	4.35 dB	1.96
Conducted Emission	2.57 dB	2

5 Main Test Instruments

Name of Equipment	Manufacturer	Tupo/Model	Serial	Calibration	Expiration				
Name of Equipment	Wallulacturer	Type/Model	Number	Date	Time				
Wideband radio	R&S	CMW500	113645	2022-05-14	2023-05-13				
communication tester	Nao	CINIVISOO	113043	2022-05-14	2023-05-13				
Radiated Emission									
EMI Test Receiver	R&S	ESR	102389	2022-05-25	2023-05-24				
Signal Analyzer	R&S	FSV40	101186	2022-05-14	2023-05-13				
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	01111	2022-10-25	2025-10-24				
Horn Antenna	R&S	HF907	102723	2021-07-24	2024-07-23				
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09				
Software	R&S	EMC32	9.26.01	/	/				
Conducted Emission									
Artificial main network	R&S	ENV216	102191	2022-12-13	2024-12-09				
EMI Test Receiver	R&S	ESR	101667	2022-05-25	2023-05-24				
Software	R&S	EMC32	10.35.10	/	/				

******END OF REPORT ******

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.