

MPE TEST REPORT

Applicant Positioning Universal Inc

FCC ID 2AHRH-FJ2100

Product FJ2100MW

Brand Positioning Universal.

Model FJ2100MW

Report No. R2404A0391-M1V1

Issue Date June 17, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Fangying Approved by: Fan Guangchang

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	t Laboratory	4
		Notes of the Test Report	
		Test Facility	
		Testing Location	
	1.4	Laboratory Environment	4
2	Des	scription of Equipment Under Test	5
		ximum Tune Up and Antenna Gain	
4	MP	E Limit	8
5	RF	Exposure Evaluation Result	10
		A: The EUT Appearance	

MPE Test Report No.: R2404A0391-M1V1

Version	Revision Description	Issue Date	
Rev.0	Initial issue of report.	June 3, 2024	
Rev.1	Updated information.	June 17, 2024	

Note: This revised report (Report No.: R2404A0391-M1V1) supersedes and replaces the previously issued report (Report No.: R2404A0391-M1). Please discard or destroy the previously issued report and dispose of it accordingly.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

1.3 Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Jack.Fan@cpt.eurofinscn.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25°C	
Relative humidity	Min. = 20%, Max. = 80%	
Ground system resistance	< 0.5 Ω	
Auchieut acies is absoluted and found constant and in a constant activity and in a constant activity and and activity and activity and activity and activity and activity and activity activity and activity activity activity.		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment Under Test

Client Information

Applicant	Positioning Universal Inc		
Applicant address	4660 La Jolla Village Drive, Suite 1100, San Diego, CA92122,		
Applicant address	America		
Manufacturer	Positioning Universal Inc		
Manufacturer address	4660 La Jolla Village Drive, Suite 1100, San Diego, CA92122,		
Manufacturer address	America		

General Technologies

EUT Description						
Model	FJ2100MW					
Lab internal SN	R2404A0391/S01					
Hardware Version	P2					
Software Version	P1	P1				
	GSM 850	824 ~ 849	869 ~ 894			
	GSM 1900	1850 ~ 1910	1930 ~ 1990			
	LTE Band 2	1850 ~ 1910	1930 ~ 1990			
	LTE Band 4	1710 ~ 1755	2110 ~ 2155			
Frequency	LTE Band 5	824 ~ 849	869 ~ 894			
	LTE Band 12	699 ~ 716	729 ~ 746			
	LTE Band 13	777 ~ 787	746 ~ 756			
	LTE Band 25	1850 ~ 1915	1930 ~ 1995			
	LTE Band 26	814 ~ 849	859 ~ 894			
	LTE Band 66	1710 ~ 1780	2110 ~ 2200			
	LTE Band 85	698 ~ 716	728 ~ 746			
	Bluetooth LE	2400 ~ 2483.5	2400 ~ 2483.5			
Date of Sample Received	April 15, 2024					

Note

- 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.
- 2. All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

3 Maximum Tune Up and Antenna Gain

Numeric gain (G)=10^(antenna gain/10)

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power (dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

Each Tx slots maximum tune up use the most strictest factor for evaluation by making calculation.

Band		Burst-Averaged output power (adjusted for tune up) (dBm)	Division Factors	Frame-Averaged output power (adjusted for tune up) (dBm)	
	1 Txslot	36.0	-9.03	26.97	
GSM850	2 Txslots	36.0	-6.02	29.98	
GSIVIOSU	3 Txslots	34.2	-4.26	29.94	
	4 Txslots	33.0	-3.01	29.99	
	1 Txslot	33.0	-9.03	23.97	
GSM1900	2 Txslots	33.0	-6.02	26.98	
G3W1900	3 Txslots	31.2	-4.26	26.94	
	4 Txslots	30.0	-3.01	26.99	

Note:

Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-01-014S

Maximum Tune up Power Antenna Gain Band Numeric Gain (dBi) (dBm) (mW) 0.66 **GSM 850** 29.99 997.700 1.164 4.25 **GSM 1900** 26.99 500.035 2.661 4.25 LTE Band 2 2.661 25.70 371.535 LTE Band 4 0.85 1.216 25.70 371.535 LTE Band 5 25.70 371.535 0.66 1.164 LTE Band 12 25.70 371.535 0.63 1.156 25.70 LTE Band 13 371.535 0.63 1.156 4.25 LTE Band 25 25.70 371.535 2.661 0.66 LTE Band 26 25.70 1.164 371.535 0.85 LTE Band 66 25.70 371.535 1.216 LTE Band 85 25.70 371.535 0.63 1.156 Bluetooth LE 8.00 6.310 -1.80 0.661

(MPE) are as following.

MPE Limit

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure

TABLE 1 - LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time					
(MHz)	Strength	Strength		250					
A-1-0-17	(V/m)	(AVm)	(mW/cm2)	(minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3-3.0	614	1.63	*(100)	6					
3-30	1842/f	4.89/f	*(900/f2)	6					
30-300	61.4	0.163	1.0	6					
300-1500			f/300	6					
1500-100,000			5	6					
(B) Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f2)	30					
30-300	27.5	0.073	0.2	30					
300-1500			f/1500	30					
1500-100,000			1.0	30					

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report

Report No.: R2404A0391-M1V1 The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0. So

Band	The Maximum Permissible Exposure (mW/cm²)
GSM 850	0.549
GSM 1900	1.000
LTE Band 2	1.000
LTE Band 4	1.000
LTE Band 5	0.549
LTE Band 12	0.466
LTE Band 13	0.518
LTE Band 25	1.000
LTE Band 26	0.543
LTE Band 66	1.000
LTE Band 85	0.465
Bluetooth LE	1.000

5 RF Exposure Evaluation Result

RF exposure evaluation method is based on KDB 447498 D01, this calculation is based on the conducted power, maximum power and antenna gain with provides the minimum separation distance. The formula shown below is from OET Bulletin 65 Edition 97-01 Per KDB 447498 D01:

$S = PG / 4\pi R^2$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	Maximum Tune up (dBm)	Antenna Gain (dBi)	Maximum EIRP (dBm)	PG (mW)	Result (mW/cm²)	Limit Value (mW/cm²)	The MPE Ratio
GSM 850	29.99	0.66	30.650	1161.449	0.231	0.549	0.421
GSM 1900	26.99	4.25	31.240	1330.454	0.265	1.000	0.265
LTE Band 2	25.70	4.25	29.950	988.553	0.197	1.000	0.197
LTE Band 4	25.70	0.85	26.550	451.856	0.090	1.000	0.090
LTE Band 5	25.70	0.66	26.360	432.514	0.086	0.549	0.157
LTE Band 12	25.70	0.63	26.330	429.536	0.085	0.466	0.183
LTE Band 13	25.70	0.63	26.330	429.536	0.085	0.518	0.165
LTE Band 25	25.70	4.25	29.950	988.553	0.197	1.000	0.197
LTE Band 26	25.70	0.66	26.360	432.514	0.086	0.543	0.158
LTE Band 66	25.70	0.85	26.550	451.856	0.090	1.000	0.090
LTE Band 85	25.70	0.63	26.330	429.536	0.085	0.465	0.184
Bluetooth LE	8.00	-1.80	6.200	4.169	0.001	1.000	0.001

Note: $\mathbf{R} = 20$ cm

 $\pi = 3.1416$

The MPE Ratio = Mac Result ÷ Limit Value

So the simultaneous transmitting antenna pairs as below:

∑of MPE ratios=Main Antenna + Bluetooth LE Antenna =0.421 + 0.001 = 0.422 <1

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

MPE Test Report No.: R2404A0391-M1V1

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

******END OF REPORT *****