

FCC PART 15.407

TEST REPORT

For

Shenzhen EDUP Electronics Technology Co.,Ltd.

6 Floor, #6 Building, No.48, Kangzheng Road Liantang Industrial Area, Buji Town, Shenzhen, China

FCC ID: 2AHRDEP-AC1661

Report Type: **Product Name:** Original Report Wireless Adapter **Report Number:** RDG210329004-00B **Report Date:** 2021-04-27 from Cas Ivan Cao Reviewed By: Assistant Manager Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan, **Test Laboratory:** Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
DECLARATIONS	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
FCC §15.407 (f) & §1.1310 & §2.1093- RF Exposure	11
APPLICABLE STANDARD	
FCC §15.203- ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207(a)- CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	13
EUT SETUP	13
EMI TEST RECEIVER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §15.209, §15.205 , §15.407(b) –UNWANTED EMISSION	
APPLICABLE STANDARD	
EUT SETUP	18
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.407(a)(e)-EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	31
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER	43
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	44

TEST PROCEDURE	44
TEST DATA	
FCC §15.407(a) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	46
TEST PROCEDURE	47
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	47

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	Wireless Adapter	
EUT Model:	EP-AC1661	
Multiple Model:	EP-AC1661S, EP-AC1661GS, EP-AC1661RS	
Model Differences:	Refer to Dos	
Operation Frequency:	5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)	
Maximum Output Power (Conducted):	5725-5850 MHz: 14.98 dBm	
Antenna Gain▲:	2.0 dBi	
Modulation Type:	OFDM	
Rated Input Voltage:	DC 5V from USB	
Serial Number:	RDG210329004-RF-S3	
EUT Received Date:	2021.03.30	
EUT Received Status:	Good	

Objective

This type approval report is prepared on behalf of *Shenzhen EDUP Electronics Technology Co.,Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A, and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Rules Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 ℃
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Report No.: RDG210329004-00B

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage Factor K with the 95% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "\(\dag{\pi}\)".

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system support 802.11a/n ht20/n ht40/ac vht20/ac vht40/ac vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

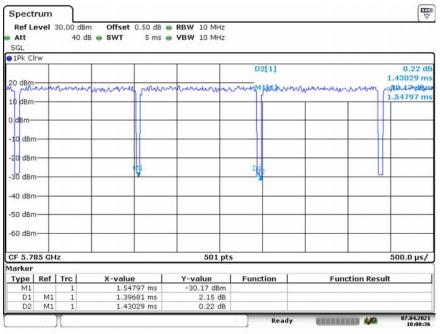
For 5725~5850MHz band, 8 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
155	5775	165	5825

For 802.11a, 802.11n ht20 channel 149, 157 and 165 were tested, for 802.11n ht40 channel 151, 159 were tested, for 802.11ac vht80, channel 155 was tested.

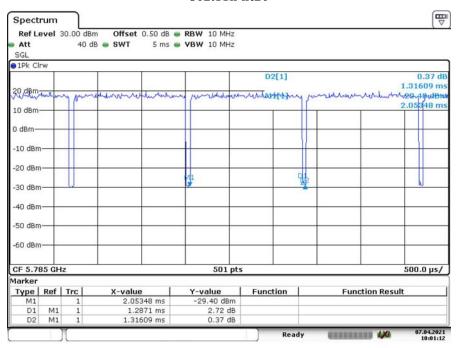
EUT Exercise Software

The software "REALTEK" was used for testing, which was provided by Manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all date rates, bandwidths, and modulations. The maximum power was configured as below table, that provided by the Manufacturer:


Mode	Channel	Frequency (MHz)	Data rate	Power level Setting [▲]
	Low	5745	1Mbps	39
802.11a	Middle	5785	1Mbps	38
	High	5825	1Mbps	39
	Low	5745	MCS0	39
802.11n ht20	Middle	5785	MCS0	39
	High	5825	MCS0	39
902 11 1.440	Low	5755	MCS0	38
802.11n ht40	High	5795	MCS0	38
802.11ac vht80	Middle	5775	MCS0	36

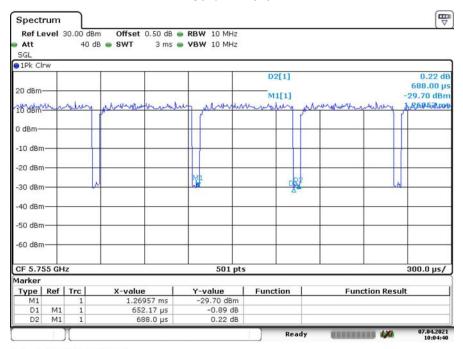
The duty cycle as below:

Mode	T _{on} (ms)	$T_{\text{on+off}}$ (ms)	Duty Cycle (%)
802.11 a	1.3968	1.4303	97.66
802.11n ht20	1.2871	1.3161	97.80
802.11n ht40	0.652	0.688	94.77
802.11ac vht80	0.3217	0.3696	87.04

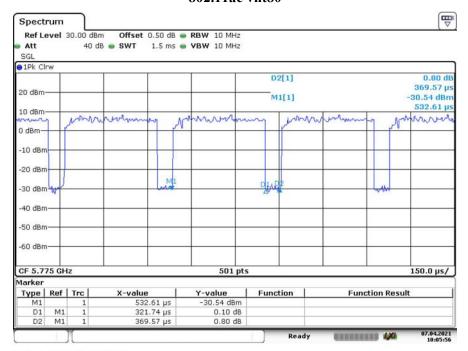

802.11a

Report No.: RDG210329004-00B

Date: 7.APR.2021 10:00:37


802.11n ht20

Date: 7.APR.2021 10:01:13


802.11n ht40

Report No.: RDG210329004-00B

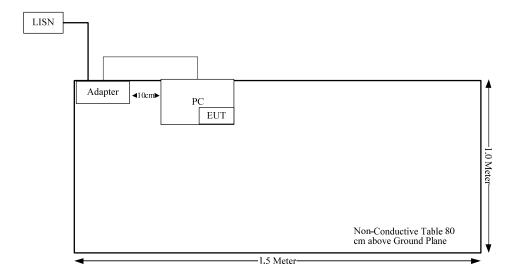
Date: 7.APR.2021 10:04:40

802.11ac vht80

Date: 7.APR.2021 10:05:56

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	E6410	586N3Q1
DELL	adapter	PA-1900-02D	9T215

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC §15.407 (f) & §1.1310 & §2.1093	RF Exposure	Compliance
FCC§15.203	Antenna Requirement	Compliance
FCC§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
FCC§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliance
FCC§15.407(b)	Out Of Band Emissions	Compliance
FCC§15.407(a) (e)	Emission Bandwidth	Compliance
FCC§15.407(a)	Conducted Transmitter Output Power	Compliance
FCC§15.407 (a)	Power Spectral Density	Compliance

FCC §15.407 (f) & §1.1310 & §2.1093- RF Exposure

Applicable Standard

According to §15.407(f) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Measurement Result

Result: Compliance.Please refers to the SAR report RDG210329004-20.

Page 11 of 53

FCC §15.203- ANTENNA REQUIREMENT

Applicable Standard

According to FCC§ 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

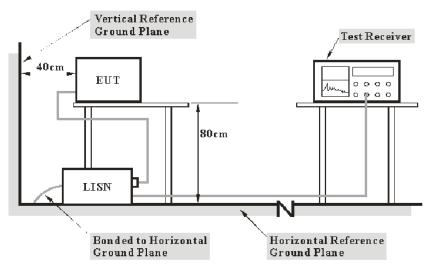
- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one detachable antenna arrangement and the antenna connector is RP-SMA, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna	input impedance	Antenna Gain
Type	(Ohm)	/Frequency Range
Dipole	50	2.0 dBi/2.4~2.5GHz 2.0 dBi/5.15~5.85GHz


Result: Compliance.

FCC §15.207(a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), §15.407(b) (6).

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division Factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2020-07-07	2021-07-07
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A

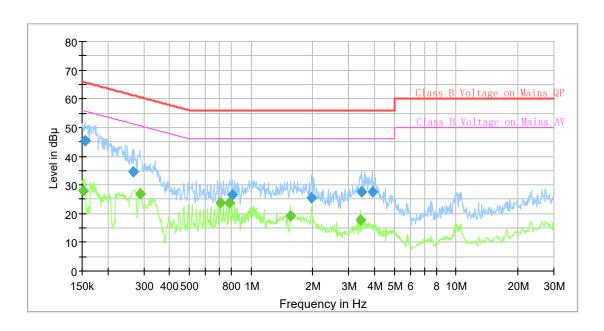
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

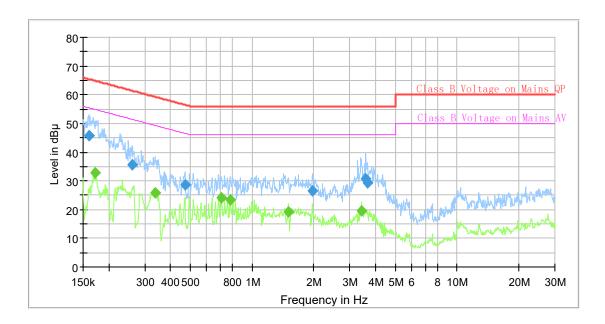
Test Data


Environmental Conditions

Temperature:	24.5°C
Relative Humidity:	67%
ATM Pressure:	101.2kPa
Tester:	Walker Chen
Test Date:	2021-04-12

Test Result: Compliance.

Test Mode: Transmitting (802.11a 5745MHz was the worst)


AC120 V, 60 Hz, Line:

Final Result

·α	Juit						
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.152261		27.90	55.88	27.98	9.000	L1	9.6
0.154557	45.52		65.75	20.23	9.000	L1	9.6
0.264864	34.42		61.28	26.86	9.000	L1	9.6
0.286866		26.98	50.61	23.63	9.000	L1	9.6
0.711054		23.93	46.00	22.07	9.000	L1	9.7
0.781732		23.76	46.00	22.24	9.000	L1	9.7
0.809506	26.65		56.00	29.35	9.000	L1	9.7
1.563653		19.17	46.00	26.83	9.000	L1	9.7
1.976720	25.43		56.00	30.57	9.000	L1	9.7
3.421464		17.83	46.00	28.17	9.000	L1	9.7
3.473043	27.69		56.00	28.31	9.000	L1	9.7
3.895198	27.67		56.00	28.33	9.000	L1	9.7

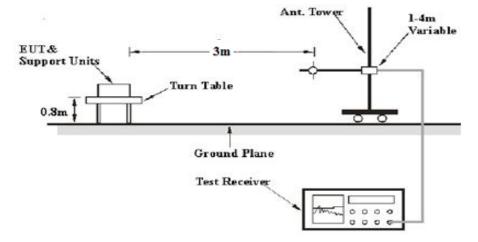
AC120 V, 60 Hz, Neutral:

Final_Result

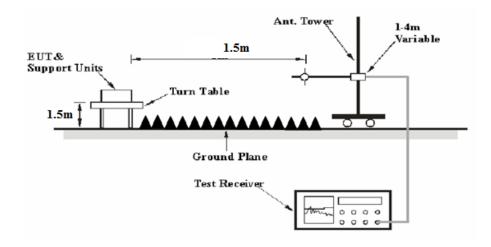
Frequency (MHz)	QuasiPeak (dB µ V)	Average (dB µ V)	Limit (dB µ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.160048	45.73		65.46	19.73	9.000	N	9.6
0.171623		32.98	54.88	21.90	9.000	N	9.6
0.260930	35.55		61.40	25.85	9.000	N	9.6
0.338189		25.78	49.25	23.47	9.000	N	9.6
0.470023	28.72		56.51	27.79	9.000	N	9.6
0.711054		24.12	46.00	21.88	9.000	N	9.6
0.781732		23.53	46.00	22.47	9.000	N	9.6
1.502491		19.27	46.00	26.73	9.000	N	9.6
1.966886	26.67		56.00	29.33	9.000	N	9.6
3.421464		19.40	46.00	26.60	9.000	N	9.6
3.596438	30.86		56.00	25.14	9.000	N	9.6
3.668908	29.21		56.00	26.79	9.000	N	9.6

FCC §15.209, §15.205, §15.407(b) –UNWANTED EMISSION

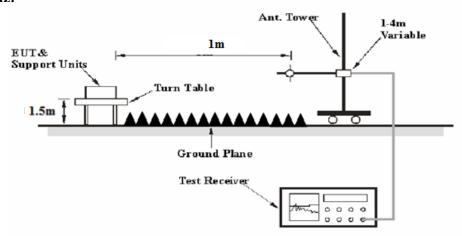
Applicable Standard


FCC §15.407; §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufac vhturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufac vhturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.


Page 17 of 53

EUT Setup


Below 1 GHz:

1-26.5 GHz:

26.5-40 GHz:

The radiated emission Below 1GHz tests were performed in the 3 meters chamber test site A, above 1GHz tests were performed in the 3 meters chamber test site A, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits.

Report No.: RDG210329004-00B

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A ***a	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m or 1m

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB or

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1m]) dB= 9.54 dB

All emissions under the average limit and under the noise floor have not recorded in the report.

Corrected Amplitude & Margin Calculation

For the range 30MHz-1GHz, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtrac vhting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

For the range 1GHz-40GHz, Test performed at 1.5m or 1m, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtrac vhting the Amplifier Gain from the Meter Reading and the Distance extrapolation Factor. The basic equation is as follows:

Corrected Amplitude

= Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain-Distance extrapolation factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit- Corrected Amplitude

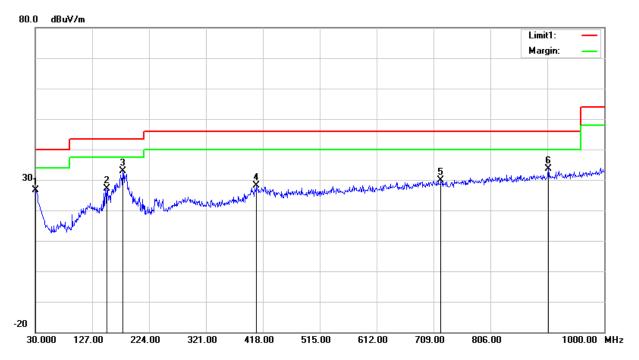
Page 20 of 53

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date					
	Radiation Below 1GHz Test									
Sunol Sciences	Antenna	JB3	A060611-1	2020-11-10	2023-11-10					
R&S	EMI Test Receiver	ESR3	102453	2020-09-12	2021-09-12					
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2020-09-05	2021-09-05					
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2020-09-05	2021-09-05					
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2020-05-06	2021-05-06					
HP	Amplifier	8447D	2727A05902	2020-09-05	2021-09-05					
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A					
		Radiation Above 1GHz	z Test							
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020-10-13	2023-10-12					
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2020-12-05	2023-12-04					
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1302	2020-12-05	2023-12-04					
R&S	Spectrum Analyzer	FSV40	101474	2020-07-07	2021-07-07					
HUBER+SUHNE R	Coaxial Cable	SUCOFLEX 126EA	MY369/26/26E A	2020-09-25	2021-09-25					
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2020-09-05	2021-09-05					
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2020-06-27	2021-06-27					
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A					

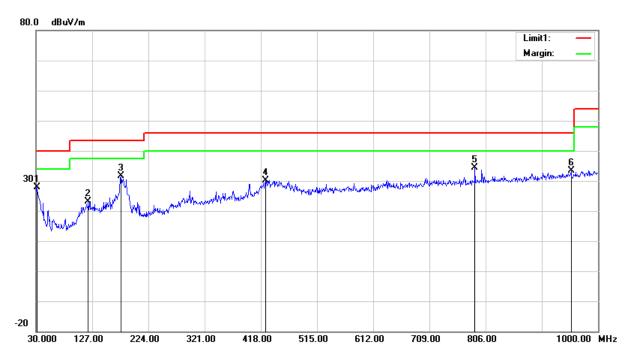
^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data


Environmental Conditions

Test Items	Radiation Below 1GHz	Radiation Above 1GHz
Temperature:	26.2 °C	26.9 °C
Relative Humidity:	50%	50 %
ATM Pressure:	101.2kPa	100.8kPa
Tester:	Joker Chen	Alex Hu
Test Date:	2021-04-21	2021-04-14

Test Mode: Transmitting


1) Below 1GHz (802.11a 5745 MHz was the worst):

Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
30.0000	25.28	peak	1.46	26.74	40.00	13.26
152.2200	33.36	peak	-6.18	27.18	43.50	16.32
179.3800	39.92	peak	-6.94	32.98	43.50	10.52
407.3300	30.00	peak	-1.97	28.03	46.00	17.97
721.6100	27.11	peak	2.68	29.79	46.00	16.21
904.9400	34.28	peak	-0.61	33.67	46.00	12.33

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
31.9400	27.88	peak	0.01	27.89	40.00	12.11
120.2100	28.14	peak	-5.05	23.09	43.50	20.41
176.4700	38.56	peak	-6.99	31.57	43.50	11.93
425.7600	31.54	peak	-1.49	30.05	46.00	15.95
787.5700	30.65	peak	3.79	34.44	46.00	11.56
953.4400	33.46	peak	-0.20	33.26	46.00	12.74

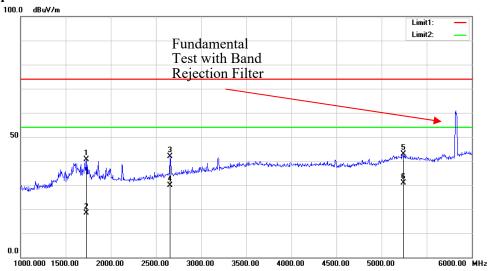
2) 1GHz-40GHz:

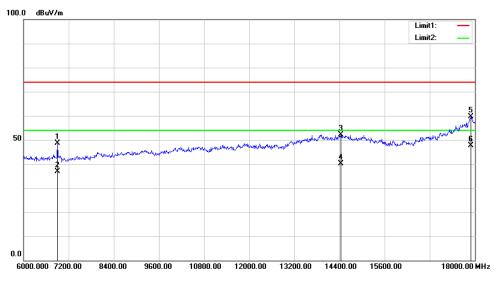
802.11a

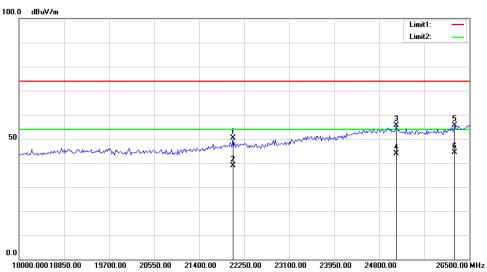
	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBµV/m)	Limit (dBμV/m)	Margin (dB)
Low Channel: 5745 MHz										
5745.00	62.77	PK	Н	34.20	4.01	0.00	100.98	94.96	N/A	N/A
5745.00	50.32	AV	Н	34.20	4.01	0.00	88.53	82.51	N/A	N/A
5745.00	68.67	PK	V	34.20	4.01	0.00	106.88	100.86	N/A	N/A
5745.00	56.69	AV	V	34.20	4.01	0.00	94.90	88.88	N/A	N/A
5725.00	32.30	PK	V	34.19	3.91	0.00	70.40	64.38	122.20	57.82
5720.00	31.03	PK	V	34.19	3.88	0.00	69.10	63.08	110.80	47.72
5700.00	31.43	PK	V	34.18	3.77	0.00	69.38	63.36	105.20	41.84
5650.00	30.91	PK	V	34.16	3.75	0.00	68.82	62.8	68.20	5.40
11490.00	35.68	PK	V	38.89	5.76	26.57	53.76	47.74	74.00	26.26
11490.00	21.33	AV	V	38.89	5.76	26.57	39.41	33.39	54.00	20.61
17235.00	33.15	PK	V	41.56	7.00	25.11	56.60	50.58	68.20	17.62
				Mie	ddle Chai	nnel: 5785 M	Hz			
5785.00	65.74	PK	Н	34.21	4.23	0.00	104.18	98.16	N/A	N/A
5785.00	53.69	AV	Н	34.21	4.23	0.00	92.13	86.11	N/A	N/A
5785.00	71.31	PK	V	34.21	4.23	0.00	109.75	103.73	N/A	N/A
5785.00	59.46	AV	V	34.21	4.23	0.00	97.90	91.88	N/A	N/A
11570.00	35.96	PK	V	38.94	5.77	26.97	53.70	47.68	74.00	26.32
11570.00	21.47	AV	V	38.94	5.77	26.97	39.21	33.19	54.00	20.81
17355.00	34.29	PK	V	42.30	6.99	25.16	58.42	52.4	68.20	15.80
				Hi	igh Chan	nel: 5825 MF	łz			
5825.00	65.46	PK	Н	34.23	4.28	0.00	103.97	97.95	N/A	N/A
5825.00	53.39	AV	Н	34.23	4.28	0.00	91.90	85.88	N/A	N/A
5825.00	72.18	PK	V	34.23	4.28	0.00	110.69	104.67	N/A	N/A
5825.00	60.27	AV	V	34.23	4.28	0.00	98.78	92.76	N/A	N/A
5850.00	32.02	PK	V	34.24	4.24	0.00	70.50	64.48	122.20	57.72
5855.00	32.06	PK	V	34.24	4.23	0.00	70.53	64.51	110.80	46.29
5875.00	32.48	PK	V	34.25	4.21	0.00	70.94	64.92	105.20	40.28
5925.00	31.75	PK	V	34.27	4.19	0.00	70.21	64.19	68.20	4.01
11650.00	36.33	PK	V	38.99	5.77	26.84	54.25	48.23	74.00	25.77
11650.00	21.58	AV	V	38.99	5.77	26.84	39.50	33.48	54.00	20.52
17475.00	34.57	PK	V	43.05	6.97	24.55	60.04	54.02	68.20	14.18

802.11n ht20:

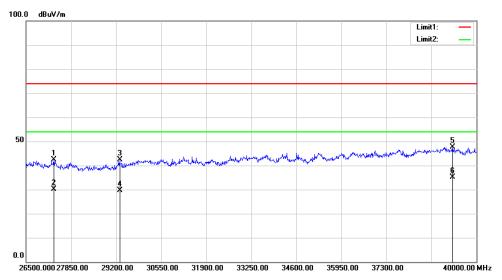
Т	Reco	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	T,	3.5
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBμV/m)	Margin (dB)
				Lo	ow Chanı	nel: 5745 MH	[z			
5745.00	65.94	PK	Н	34.20	4.01	0.00	104.15	98.13	N/A	N/A
5745.00	53.68	AV	Н	34.20	4.01	0.00	91.89	85.87	N/A	N/A
5745.00	72.85	PK	V	34.20	4.01	0.00	111.06	105.04	N/A	N/A
5745.00	60.63	AV	V	34.20	4.01	0.00	98.84	92.82	N/A	N/A
5725.00	38.94	PK	V	34.19	3.91	0.00	77.04	71.02	122.20	51.18
5720.00	31.90	PK	V	34.19	3.88	0.00	69.97	63.95	110.80	46.85
5700.00	31.32	PK	V	34.18	3.77	0.00	69.27	63.25	105.20	41.95
5650.00	31.49	PK	V	34.16	3.75	0.00	69.40	63.38	68.20	4.82
11490.00	35.66	PK	V	38.89	5.76	26.57	53.74	47.72	74.00	26.28
11490.00	21.17	AV	V	38.89	5.76	26.57	39.25	33.23	54.00	20.77
17235.00	35.12	PK	V	41.56	7.00	25.11	58.57	52.55	68.20	15.65
		_		Mic	ddle Chai	nnel: 5785 M	Hz		_	
5785.00	66.13	PK	Н	34.21	4.23	0.00	104.57	98.55	N/A	N/A
5785.00	54.29	AV	Н	34.21	4.23	0.00	92.73	86.71	N/A	N/A
5785.00	72.56	PK	V	34.21	4.23	0.00	111.00	104.98	N/A	N/A
5785.00	60.39	AV	V	34.21	4.23	0.00	98.83	92.81	N/A	N/A
11570.00	36.58	PK	V	38.94	5.77	26.97	54.32	48.3	74.00	25.70
11570.00	22.18	AV	V	38.94	5.77	26.97	39.92	33.9	54.00	20.10
17355.00	34.97	PK	V	42.30	6.99	25.16	59.10	53.08	68.20	15.12
				Hi	gh Chan	nel: 5825 MF	Iz			
5825.00	66.69	PK	Н	34.23	4.28	0.00	105.20	99.18	N/A	N/A
5825.00	54.58	AV	Н	34.23	4.28	0.00	93.09	87.07	N/A	N/A
5825.00	73.13	PK	V	34.23	4.28	0.00	111.64	105.62	N/A	N/A
5825.00	61.28	AV	V	34.23	4.28	0.00	99.79	93.77	N/A	N/A
5850.00	32.54	PK	V	34.24	4.24	0.00	71.02	65	122.20	57.20
5855.00	32.12	PK	V	34.24	4.23	0.00	70.59	64.57	110.80	46.23
5875.00	32.49	PK	V	34.25	4.21	0.00	70.95	64.93	105.20	40.27
5925.00	32.46	PK	V	34.27	4.19	0.00	70.92	64.9	68.20	3.30
11650.00	36.71	PK	V	38.99	5.77	26.84	54.63	48.61	74.00	25.39
11650.00	22.35	AV	V	38.99	5.77	26.84	40.27	34.25	54.00	19.75
17475.00	35.42	PK	V	43.05	6.97	24.55	60.89	54.87	68.20	13.33

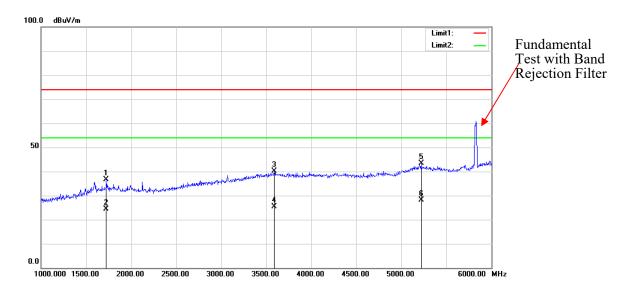

802.11n ht40:

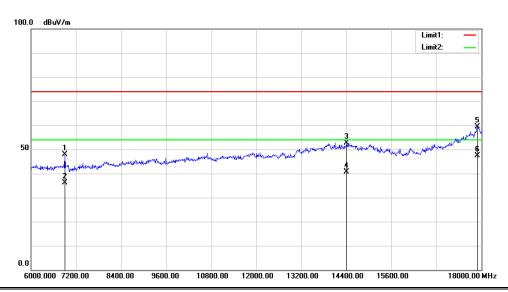

	Receiver		Rx Antenna		Cable	Amplifier	Corrected	Extrapolation	- 4	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel: 5755 MHz									
5755.00	63.79	PK	Н	34.20	4.07	0.00	102.06	96.04	N/A	N/A
5755.00	51.84	AV	Н	34.20	4.07	0.00	90.11	84.09	N/A	N/A
5755.00	69.62	PK	V	34.20	4.07	0.00	107.89	101.87	N/A	N/A
5755.00	57.47	AV	V	34.20	4.07	0.00	95.74	89.72	N/A	N/A
5725.00	41.88	PK	V	34.19	3.91	0.00	79.98	73.96	122.20	48.24
5720.00	41.05	PK	V	34.19	3.88	0.00	79.12	73.1	110.80	37.70
5700.00	32.09	PK	V	34.18	3.77	0.00	70.04	64.02	105.20	41.18
5650.00	31.33	PK	V	34.16	3.75	0.00	69.24	63.22	68.20	4.98
11510.00	35.69	PK	V	38.91	5.77	26.58	53.79	47.77	74.00	26.23
11510.00	21.37	AV	V	38.91	5.77	26.58	39.47	33.45	54.00	20.55
17265.00	35.38	PK	V	41.74	7.00	24.84	59.28	53.26	68.20	14.94
		_		Hi	gh Chan	nel: 5795 MF	Iz		_	_
5795.00	61.94	PK	Н	34.22	4.28	0.00	100.44	94.42	N/A	N/A
5795.00	50.12	AV	Н	34.22	4.28	0.00	88.62	82.6	N/A	N/A
5795.00	68.07	PK	V	34.22	4.28	0.00	106.57	100.55	N/A	N/A
5795.00	57.21	AV	V	34.22	4.28	0.00	95.71	89.69	N/A	N/A
5850.00	32.36	PK	V	34.24	4.24	0.00	70.84	64.82	122.20	57.38
5855.00	32.69	PK	V	34.24	4.23	0.00	71.16	65.14	110.80	45.66
5875.00	32.41	PK	V	34.25	4.21	0.00	70.87	64.85	105.20	40.35
5925.00	32.02	PK	V	34.27	4.19	0.00	70.48	64.46	68.20	3.74
11590.00	35.47	PK	V	38.95	5.77	27.10	53.09	47.07	74.00	26.93
11590.00	21.53	AV	V	38.95	5.77	27.10	39.15	33.13	54.00	20.87
17385.00	35.68	PK	V	42.49	6.98	25.51	59.64	53.62	68.20	14.58


802.11ac vht80:

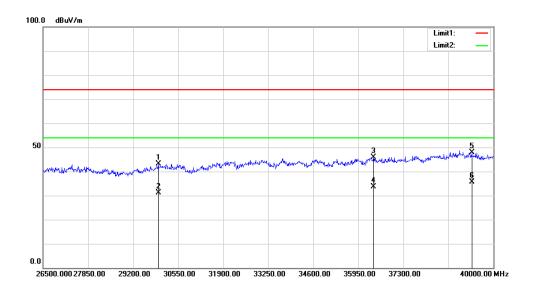
-	Receiver		Rx Antenna		Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBµV/m)	Margin (dB)
	Middle Channel: 5775 MHz									
5775.00	62.92	PK	Н	34.21	4.18	0.00	101.31	95.29	N/A	N/A
5775.00	50.23	AV	Н	34.21	4.18	0.00	88.62	82.6	N/A	N/A
5775.00	69.69	PK	V	34.21	4.18	0.00	108.08	102.06	N/A	N/A
5775.00	57.71	AV	V	34.21	4.18	0.00	96.10	90.08	N/A	N/A
5725.00	37.91	PK	V	34.19	3.91	0.00	76.01	69.99	122.20	52.21
5720.00	37.54	PK	V	34.19	3.88	0.00	75.61	69.59	110.80	41.21
5700.00	32.70	PK	V	34.18	3.77	0.00	70.65	64.63	105.20	40.57
5650.00	30.77	PK	V	34.16	3.75	0.00	68.68	62.66	68.20	5.54
5850.00	33.65	PK	V	34.24	4.24	0.00	72.13	66.11	122.20	56.09
5855.00	33.62	PK	V	34.24	4.23	0.00	72.09	66.07	110.80	44.73
5875.00	33.23	PK	V	34.25	4.21	0.00	71.69	65.67	105.20	39.53
5925.00	31.61	PK	V	34.27	4.19	0.00	70.07	64.05	68.20	4.15
11550.00	36.05	PK	V	38.93	5.77	26.84	53.91	47.89	74.00	26.11
11550.00	22.29	AV	V	38.93	5.77	26.84	40.15	34.13	54.00	19.87
17325.00	35.72	PK	V	42.12	6.99	24.81	60.02	54	68.20	14.20


Test Plots(802.11n ht20 mode 5825MHz was the worst) **Horizontal**









Vertical

FCC §15.407(a)(e)–EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH

Applicable Standard

15.407(a) (e).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSV40	101591	2020-06-29	2021-06-28	
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

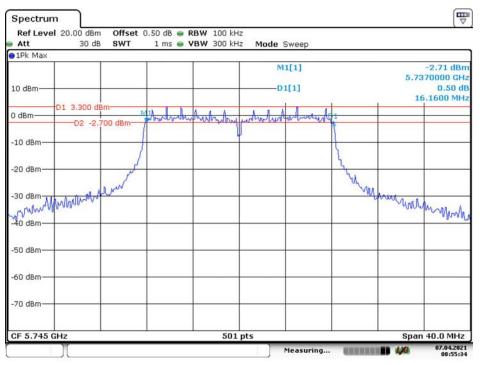
Test Data

Environmental Conditions

Temperature:	26.2 °C
Relative Humidity:	44 %
ATM Pressure:	101.7kPa
Test by:	Tiger Mo
Test Date:	2021-04-07

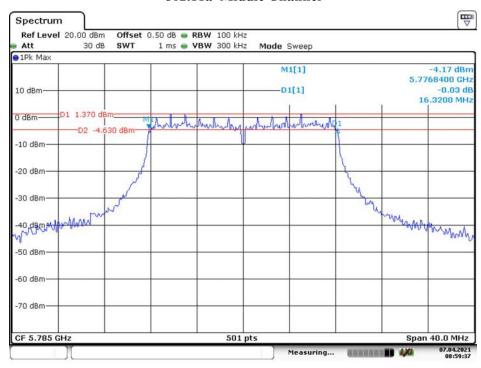
Test Result: Pass.

Please refer to the following tables and plots.


Mode	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	6 dB Emission Bandwidth Limits (MHz)	99% Occupied Bandwidth (MHz)
	5745	16.160	≥0.5	16.766
802.11 a	5785	16.320	≥0.5	16.687
	5825	16.240	≥0.5	16.687
	5745	16.720	≥0.5	17.725
802.11n ht20	5785	17.120	≥0.5	17.725
	5825	17.040	≥0.5	17.725
802.11n ht40	5755	35.520	≥0.5	37.046
802.11ft ftt40	5795	35.680	≥0.5	37.046
802.11ac vht80	5775	75.520	≥0.5	75.369

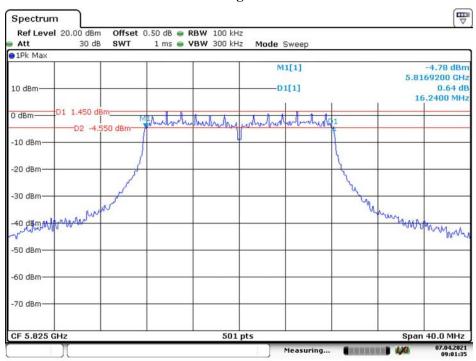
Note: the 99% Occupied Bandwidth have not fall into the band 5250-5350 MHz or 5470-5725 MHz, please refer to the test plots of 99% Occupied Bandwidth.

5725-5850MHz: 6dB Emission Bandwidth:

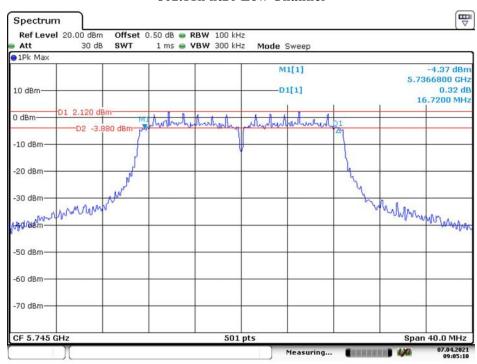

802.11a Low Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 08:55:34


802.11a Middle Channel

Date: 7.APR.2021 08:59:38


802.11a High Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 09:01:35

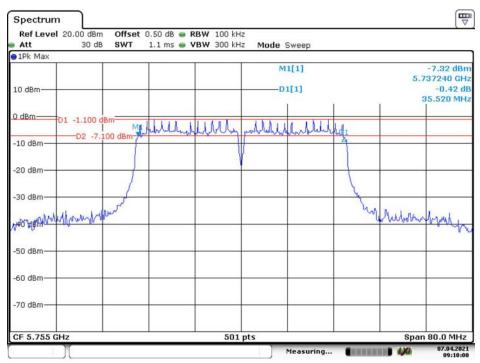

802.11n ht20 Low Channel

Date: 7.APR.2021 09:05:11

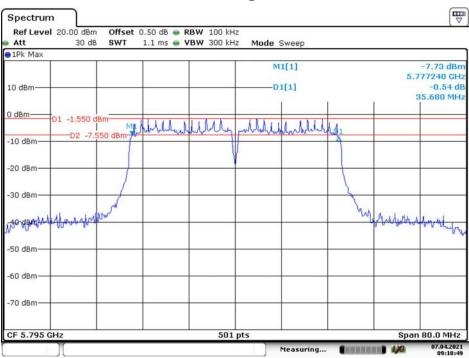
802.11n ht20 Middle Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 09:06:52

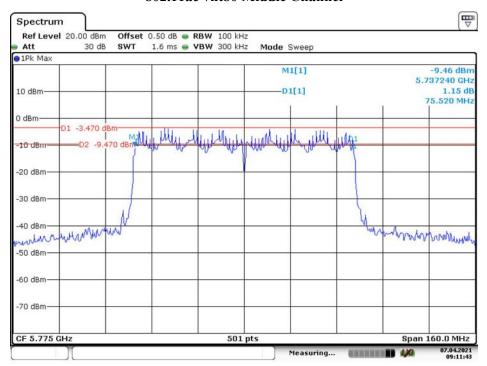

802.11n ht20 High Channel

Date: 7.APR.2021 09:08:50


802.11n ht40 Low Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 09:10:01


802.11n ht40 High Channel

Date: 7.APR.2021 09:10:49

802.11ac vht80 Middle Channel

Report No.: RDG210329004-00B

99% Occupied Bandwidth:

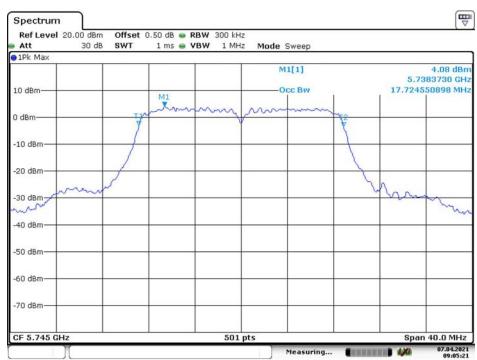
802.11a Low Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 08:55:45

802.11a Middle Channel

Date: 7.APR.2021 08:59:51


802.11a High Channel

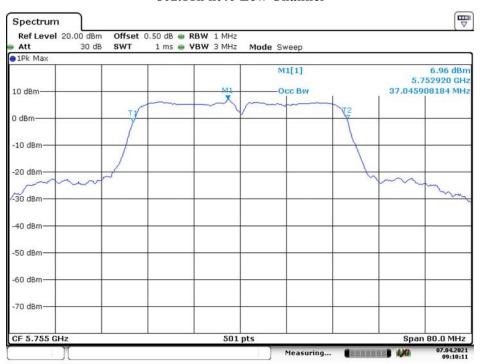
Report No.: RDG210329004-00B


Date: 7.APR.2021 09:01:49

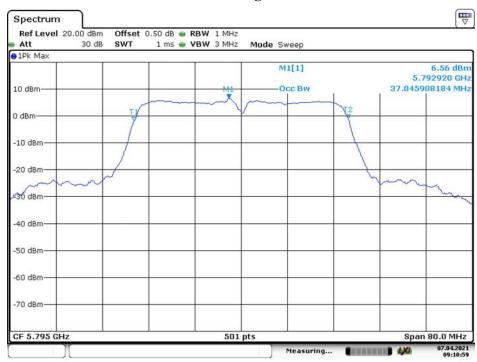
802.11n ht20 Low Channel

802.11n ht20 Middle Channel

Report No.: RDG210329004-00B


Date: 7.APR.2021 09:07:06

802.11n ht20 High Channel


802.11n ht40 Low Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 09:10:11

802.11n ht40 High Channel

802.11ac vht80 Middle Channel

Report No.: RDG210329004-00B

FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.407(a)

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
E-Microwave	Blocking Control	EMDCB- 00036	0E01201047	2020-05-06	2021-05-06
E-Microwave	Coaxial Attenuators	EMCA10- 5RN-6	OE01203239	2020-09-06	2021-09-06
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2020-09-12	2021-09-12

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Data

Environmental Conditions

Temperature:	26.2°C
Relative Humidity:	44%
ATM Pressure:	101.6kPa
Test by:	Tiger Mo
Test Date:	2021-04-07

Test Mode: Transmitting

Band	Mode	Frequency (MHz)	Conducted Average Output Power (dBm)	Limit (dBm)
		5745	14.98	30
	802.11 a	5785	13.61	30
		5825	13.60	30
5725	902 11	5745	13.71	30
-	802.11n ht20	5785	13.78	30
5850		5825	13.70	30
MHz	802.11n	5755	13.79	30
	ht40	5795	13.61	30
	802.11ac vht80	5775	12.71	30

Report No.: RDG210329004-00B

Note:

The duty cycle factor has been calculated into the test data. The maximum antenna gain is 2dBi in 5GHz band.

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

According to FCC §15.407(a)

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

Page 46 of 53

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RDG210329004-00B

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibratio n Date	Calibratio n Due Date
R&S	Spectrum Analyzer	FSV40	101591	2020-06-29	2021-06-28
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

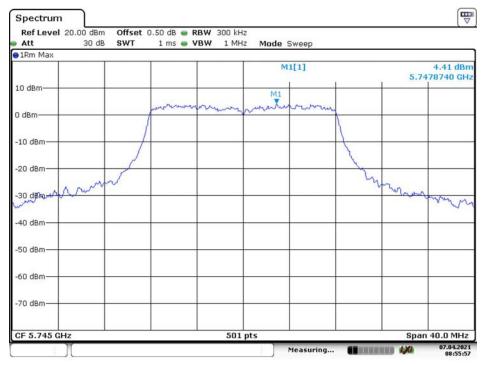
Temperature:	26.2°C
Relative Humidity:	44%
ATM Pressure:	101.7kPa
Test by:	Tiger Mo
Test Date:	2021-04-07

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plot.

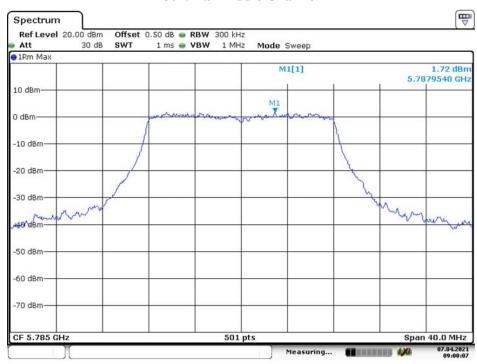
Mode	Frequency (MHz)	Reading (dBm/300kHz)	Maximum Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)
802.11a	5745	4.41	6.63	30
	5785	1.72	3.94	30
	5825	2.72	4.94	30
802.11n ht20	5745	3.12	5.34	30
	5785	2.94	5.16	30
	5825	2.33	4.55	30
802.11n ht40	5755	-0.44	1.78	30
	5795	-0.59	1.63	30
802.11ac vht80	5775	-3.79	-1.57	30

Note:

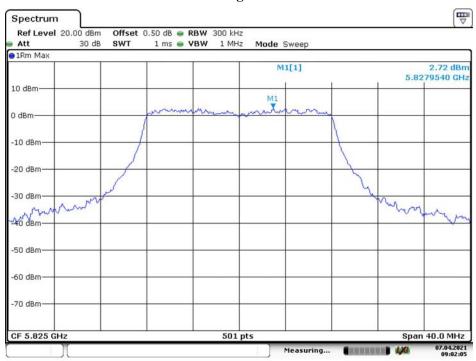

The maximum antenna gain is 2.0dBi in 5GHz band.

For $5.8 \mathrm{GHz}$ band, If measurement bandwidth of Maximum PSD is specified in $500 \mathrm{~kHz}$, add $10 \mathrm{log}(500 \mathrm{kHz/RBW})$ to the measured result, whereas RBW ($< 500 \mathrm{~KHz}$) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

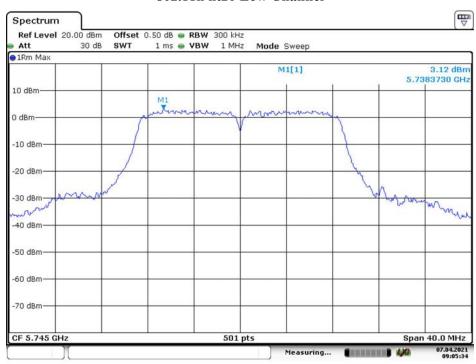
Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test.


802.11a Low Channel

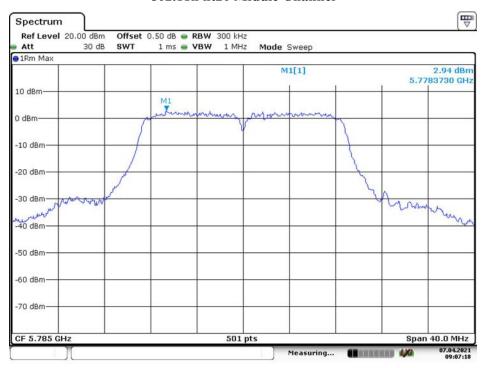
Report No.: RDG210329004-00B


Date: 7.APR.2021 08:55:58

802.11a Middle Channel


802.11a High Channel

Report No.: RDG210329004-00B


Date: 7.APR.2021 09:02:05

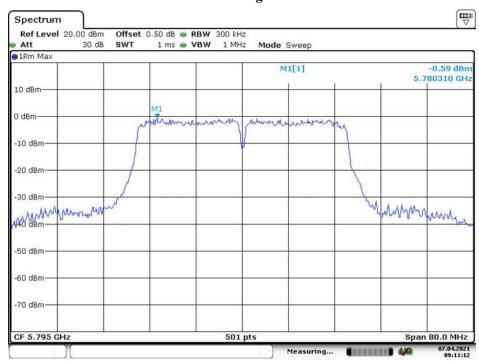
802.11n ht20 Low Channel

802.11n ht20 Middle Channel

Report No.: RDG210329004-00B


Date: 7.APR.2021 09:07:19

802.11n ht20 High Channel


802.11n ht40 Low Channel

Report No.: RDG210329004-00B


Date: 7.APR.2021 09:10:24

802.11n ht40 High Channel

802.11ac vht80 Middle Channel

Report No.: RDG210329004-00B

Date: 7.APR.2021 09:12:13

***** END OF REPORT *****