√BZT

FCC RADIO TEST REPORT FCC ID: 2AHQKDT-A10

Product : Bluetooth speaker Trade Name : N/A Model Name : DT-A10 Serial Model : N/A Report No. : 2016BZT030141F

Prepared for

Shenzhen Duntuo Electronics Co., Ltd.

Floor 4, building B, longshan industrial zone 11th, Naling Village, Longgang District, Shenzhen, Guangdong, China

Prepared by

BZT Testing Technology Co., Ltd. Buliding 17,Xinghua Road Xingwei industrial Park Fuyong,Baoan District Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Duntuo Electronics Co., Ltd
Address:	Floor 4, building B, longshan industrial zone 11th, Naling Village, Longgang District, Shenzhen, Guangdong, China
Manufacture's Name:	Shenzhen Duntuo Electronics Co., Ltd
Address:	Floor 4, building B, longshan industrial zone 11th, Naling Village, Longgang District, Shenzhen, Guangdong, China
Product description	
Product name:	Bluetooth speaker
Standards	FCC Part15.247
Test procedure	ANSI C63.4-2014

This device described above has been tested by BZT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BZT, this document may be altered or revised by BZT, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	10 Mar. 2016 ~21 Mar. 2016
Date of Issue	21 Mar. 2016
Test Result	Pass

Testing Engineer :

Ken Li (Ken Li)

Junmy

(Jimmy Yao)

(Terry Yang)

2

Technical Manager

Authorized Signatory:

Table of Contents

1	. SUMMARY OF TEST RESULTS	5
	1.1 TEST FACILITY	6
	1.2 MEASUREMENT UNCERTAINTY	6
2	GENERAL INFORMATION	7
	2.1 GENERAL DESCRIPTION OF EUT	7
	2.2 DESCRIPTION OF TEST MODES	9
	2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
	2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
	2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
	2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3	. EMC EMISSION TEST	13
	3.1 CONDUCTED EMISSION MEASUREMENT	13
	3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
	3.1.2 TEST PROCEDURE	14
	3.1.3 DEVIATION FROM TEST STANDARD	14
	3.1.4 TEST SETUP 3.1.5 EUT OPERATING CONDITIONS	14 14
	3.1.6 TEST RESULTS	14
	3.2 RADIATED EMISSION MEASUREMENT	17
	3.2.1 RADIATED EMISSIONLIMITS(FREQUENCY RANGE 9KHZ-1000MHZ)	17
	3.2.2 TEST PROCEDURE	17
	3.2.3 DEVIATION FROM TEST STANDARD	18
	3.2.4 TEST SETUP 3.2.5 EUT OPERATING CONDITIONS	19 20
	3.2.6 TEST RESULTS (BELOW 30 MHZ)	20 21
	3.2.7 TEST RESULTS (30MHZ-1GHZ)	22
	3.2.8 TEST RESULTS (1G-25GHZ)	24
4	NUMBER OF HOPPING CHANNEL	27
	4.1 APPLIED PROCEDURES / LIMIT	27
	4.1.1 TEST PROCEDURE	27
	4.1.2 DEVIATION FROM STANDARD	27
	4.1.3 TEST SETUP	27
	4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	27 28
~		-
5		29
	5.1 APPLIED PROCEDURES / LIMIT	29
	5.1.1 TEST PROCEDURE	29

Table of Contents

	Page
5.1.2 DEVIATION FROM STANDARD 5.1.3 TEST SETUP 5.1.4 EUT OPERATION CONDITIONS 5.1.5 TEST RESULTS	29 30 30 31
6. HOPPING CHANNEL SEPARATION MEASUREMENT	37
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP 6.1.4 EUT OPERATION CONDITIONS 6.1.5 TEST RESULTS	37 37 37 37 37 37 38
7 . BANDWIDTH TEST	44
7.1 APPLIED PROCEDURES / LIMIT 7.1.1 TEST PROCEDURE 7.1.2 DEVIATION FROM STANDARD 7.1.3 TEST SETUP 7.1.4 EUT OPERATION CONDITIONS 7.1.5 TEST RESULTS	44 44 44 44 44
8 . PEAK OUTPUT POWER TEST	51
8.1 APPLIED PROCEDURES / LIMIT 8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD 8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS 8.1.5 TEST RESULTS	51 51 51 51 51 51
9 . ANTENNA REQUIREMENT	58
9.1 STANDARD REQUIREMENT	58
9.2 EUT ANTENNA	58
10.CONDUCTED SPURIOUS EMISSIONS	59
11 . EUT TEST PHOTO	69

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(c)	Radiated Spurious Emission	PASS	
15.247(d)	Conducted spurious Emission	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

1.1 TEST FACILITY

BZT Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China. FCC Registered No.: 701733

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Bluetooth speaker			
Trade Name	N/A			
Model Name	DT-A10			
Serial Model	N/A			
Model Difference	N/A			
	The EUT is a Bluetooth	speaker		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	BT(1Mbps): GFSK		
		BT EDR(2Mbps):⊓/4-DQPSK		
		BT EDR(3Mbps): 8-DPSK		
	Bit Rate of Transmitter	1Mbps/2Mbps/3Mbps		
	Number Of Channel	79 CH		
Product Description	Antenna Designation:	Please see Note 3.		
	Output	BT(1Mbps): 7.337dBm		
	Power(Conducted):	BT EDR(2Mbps): 6.125dBm		
		BT EDR(3Mbps): 6.562dBm		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Please refer to the Note 2.			
Adapter	N/A			
Battery	DC 3.7V, 400mAh			
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3.

Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	PCB Antenna	NA	1.0	BT Antenna

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	BT Link

For Conducted Emission		
Final Test Mode	Description	
Mode 4	BT Link	

For Radiated Emission		
Final Test Mode	Description	
Mode 1	CH00	
Mode 2	CH39	
Mode 3	CH78	

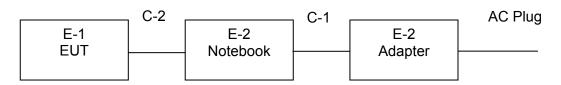
Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

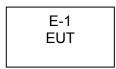
(2) The EUT use new battery.

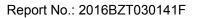
(3)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	re Version Test program: Broadc		
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters(1Mbps/2Mbps/3Mbps)	DEF	DEF	DEF




2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission:

Radiated Emission:

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Bluetooth speaker	N/A	DT-A10	N/A	EUT
E-2	Notebook	IBM	08K8202	N/A	
E-3	Adapter	IBM	2366	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	80cm	
C-2	NO	NO	40cm	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY451080 40	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 6	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	201107140 2	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619. 05	2015.07.06	2016.07.05	1 year
12	Signal Analyzer	Agilent	N9020A	MY4910006 0	2015.07.06	2016.07.05	1 year

Conduction Test equipment

Item	Kind of Equipment	Manufactu rer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2015.06.06	2016.06.05	1 year
2	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2015.06.07	2016.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2015.06.08	2016.06.07	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A (dBuV)		Class B	Standard	
	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

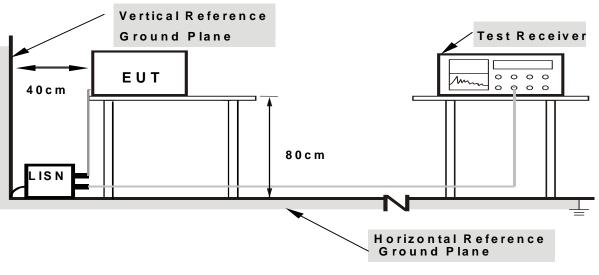
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		



3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- 3.1.3 DEVIATION FROM TEST STANDARD

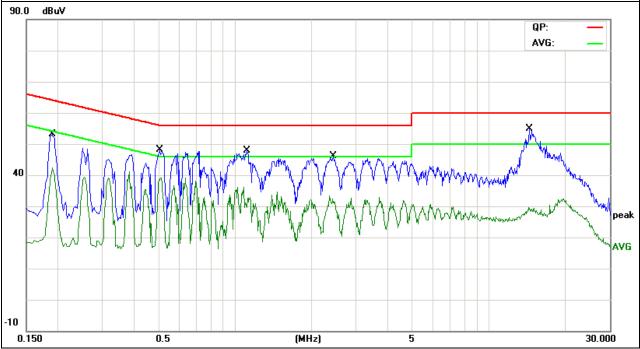
No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

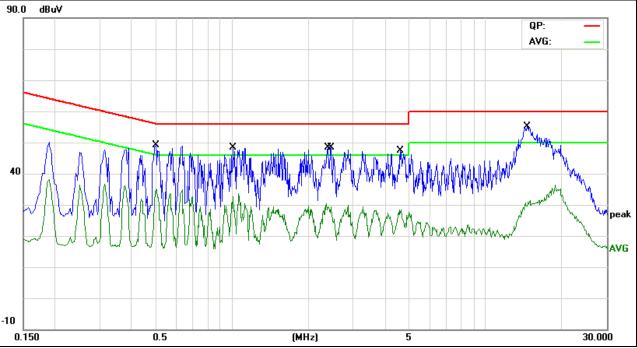

3.1.6 TEST RESULTS

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Detector Turce
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.1900	36.87	10.00	46.87	64.03	-17.16	QP
0.1900	31.16	10.00	41.16	54.03	-12.87	AVG
0.5060	34.63	10.02	44.65	56.00	-11.35	QP
0.5060	28.61	10.02	38.63	46.00	-7.37	AVG
1.1140	30.67	10.06	40.73	56.00	-15.27	QP
1.1140	19.17	10.06	29.23	46.00	-16.77	AVG
2.4380	28.88	10.05	38.93	56.00	-17.07	QP
2.4380	20.14	10.05	30.19	46.00	-15.81	AVG
14.4820	34.15	10.25	44.40	60.00	-15.60	QP
14.4820	16.25	10.25	26.50	50.00	-23.50	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


Page 16 of 70

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 4

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.5020	33.19	10.02	43.21	56.00	-12.79	QP
0.5020	24.57	10.02	34.59	46.00	-11.41	AVG
1.0100	30.88	10.06	40.94	56.00	-15.06	QP
1.0100	20.01	10.06	30.07	46.00	-15.93	AVG
2.3900	27.30	10.05	37.35	56.00	-18.65	QP
2.3900	16.10	10.05	26.15	46.00	-19.85	AVG
2.4539	27.03	10.04	37.07	56.00	-18.93	QP
2.4539	15.21	10.04	25.25	46.00	-20.75	AVG
4.6140	28.47	9.97	38.44	56.00	-17.56	QP
4.6140	16.89	9.97	26.86	46.00	-19.14	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSIONLIMITS(FREQUENCY RANGE 9KHZ-1000MHZ)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.(unintentional radiator)

Frequencies	Field Strength Measurement Dist	
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

The following table is the setting of the receiver

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

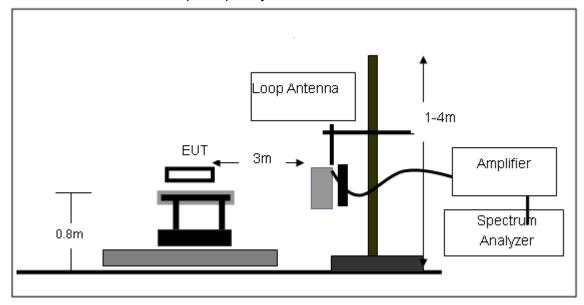
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

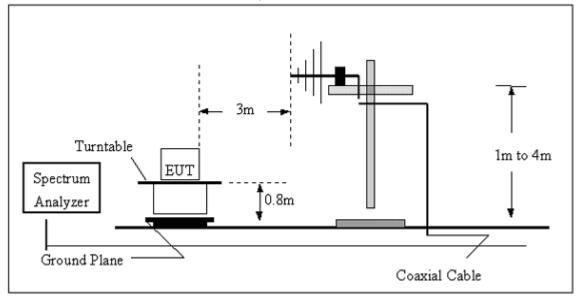
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

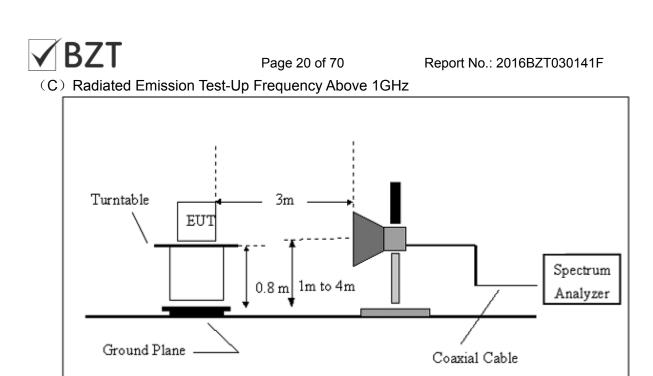
Page 18 of 70

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


3.2.3 DEVIATION FROM TEST STANDARD

No deviation




3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BELOW 30 MHZ)

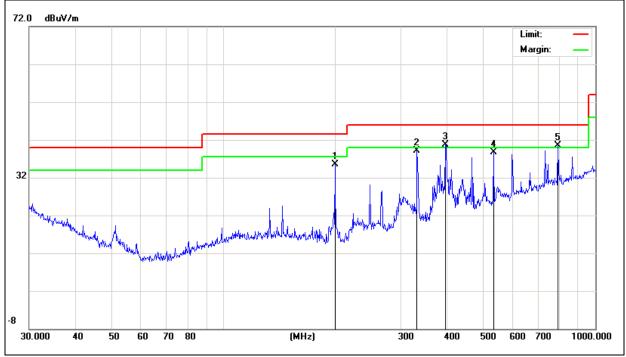
EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Polarization :	
Test Voltage :	DC 3.7V by battery		
Test Mode :	ТХ		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m) (dB)	
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

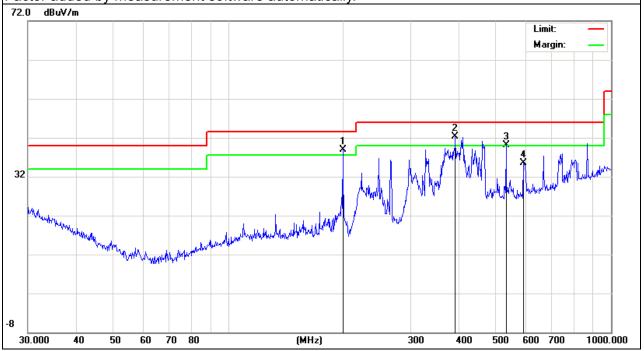

3.2.7 TEST RESULTS (30MHZ-1GHZ)

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Polarization :	Horizontal
Test Voltage :	DC 3.7V by battery		
Test Mode :	ТХ		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type
199.2855	26.88	8.71	35.59	43.5	-7.91	QP
331.3546	24.23	14.97	39.2	46	-6.8	QP
394.8543	23.77	17.03	40.8	46	-5.2	QP
531.9633	18.85	19.76	38.61	46	-7.39	QP
793.3958	16.51	23.91	40.42	46	-5.58	QP

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Factor added by measurement software automatically.



EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 3.7V by battery		
Test Mode :	ТХ		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
199.2855	30.12	8.71	38.83	43.5	-4.67	QP
392.0951	25.41	16.93	42.34	46	-3.66	QP
531.9633	20.35	19.76	40.11	46	-5.89	QP
590.9737	14.71	20.79	35.5	46	-10.5	QP

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Factor added by measurement software automatically.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment			
	Low Channel (2402 MHz)									
4804.20	PK	Vertical								
4804.22	47.30	-3.62	43.68	54	-10.32	AV	Vertical			
7206.13	62.88	-0.9	61.98	74	-12.02	PK	Vertical			
7206.12	42.23	-0.9	41.33	54	-12.67	AV	Vertical			
4804.00	62.76	-3.65	59.11	74	-14.89	PK	Horizontal			
4803.99	45.39	-3.65	41.74	54	-12.26	AV	Horizontal			
		М	lid Channel (2441	MHz)						
4882.09	65.57	-3.65	61.92	74	-12.08	PK	Vertical			
4882.07	50.22	-3.65	46.57	54	-7.43	AV	Vertical			
7323.21	61.47	-0.84	60.63	74	-13.37	PK	Vertical			
7323.21	45.09	-0.84	44.25	54	-9.75	AV	Vertical			
4882.18	62.14	-3.68	58.46	74	-15.54	PK	Horizontal			
4882.14	45.75	-3.68	42.07	54	-11.93	AV	Horizontal			
		Hi	gh Channel (2480	MHz)						
4960.25	61.80	-3.59	58.21	74	-15.79	PK	Vertical			
4960.30	46.37	-3.59	42.78	54	-11.22	AV	Vertical			
7440.33	61.79	-0.83	60.96	74	-13.04	PK	Vertical			
7440.30	46.18	-0.83	45.35	54	-8.65	AV	Vertical			
4960.32	61.77	-3.59	58.18	74	-15.82	PK	Horizontal			
4960.31	46.14	-3.59	42.55	54	-11.45	AV	Horizontal			

3.2.8 TEST RESULTS (1G-25GHZ)

Note: 1) Scan with GFSK, π /4-DQPSK,8DPSK, the worst case is GFSK Mode

2) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Limit - Emission Leve

Unhopping-Band edge:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
	V 1 7	V 7	GFSK			21	
2390.0	69.55	-12.99	56.56	74	-17.44	PK	Vertical
2390.0	55.21	-12.99	42.22	54	-11.78	AV	Vertical
2390.0	70.26	-12.99	57.27	74	-16.73	PK	Horizontal
2390.0	54.16	-12.99	41.17	54	-12.83	AV	Horizontal
2483.6	71.15	-12.78	58.37	74	-15.63	PK	Vertical
2483.6	54.17	-12.78	41.39	54	-12.61	AV	Vertical
2483.6	71.40	-12.78	58.62	74	-15.38	PK	Horizontal
2483.6	54.33	-12.78	41.55	54	-12.45	AV	Horizontal
			π/4-DQPSK				•
2390.0	71.52	-12.99	58.53	74	-15.47	PK	Vertical
2390.0	54.48	-12.99	41.49	54	-12.51	AV	Vertical
2390.0	70.17	-12.99	57.18	74	-16.82	PK	Horizontal
2390.0	55.08	-12.99	42.09	54	-11.91	AV	Horizontal
2483.6	71.48	-12.78	58.70	74	-15.30	PK	Vertical
2483.6	56.23	-12.78	43.45	54	-10.55	AV	Vertical
2483.6	71.24	-12.78	58.46	74	-15.54	PK	Horizontal
2483.6	54.57	-12.78	41.79	54	-12.21	AV	Horizontal
			8DPSK				
2390.0	71.52	-12.99	58.53	74	-15.47	PK	Vertical
2390.0	54.48	-12.99	41.49	54	-12.51	AV	Vertical
2390.0	70.17	-12.99	57.18	74	-16.82	PK	Horizontal
2390.0	55.08	-12.99	42.09	54	-11.91	AV	Horizontal
2483.6	71.48	-12.78	58.70	74	-15.30	PK	Vertical
2483.6	56.23	-12.78	43.45	54	-10.55	AV	Vertical
2483.6	71.24	-12.78	58.46	74	-15.54	PK	Horizontal
2483.6	54.57	-12.78	41.79	54	-12.21	AV	Horizontal

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz. Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.

Hopping-Band edge:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	0
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
		•	GFSK			•	
2390.0	69.15	-12.99	56.16	74	-17.84	PK	Vertical
2390.0	55.19	-12.99	42.20	54	-11.80	AV	Vertical
2390.0	68.46	-12.99	55.47	74	-18.53	PK	Horizontal
2390.0	54.14	-12.99	41.15	54	-12.85	AV	Horizontal
2483.6	67.18	-12.78	54.40	74	-19.60	PK	Vertical
2483.6	55.23	-12.78	42.45	54	-11.55	AV	Vertical
2483.6	68.14	-12.78	55.36	74	-18.64	PK	Horizontal
2483.6	55.11	-12.78	42.33	54	-11.67	AV	Horizontal
			π/4-DQPSK				
2390.0	69.10	-12.99	56.11	74	-17.89	PK	Vertical
2390.0	56.24	-12.99	43.25	54	-10.75	AV	Vertical
2390.0	68.06	-12.99	55.07	74	-18.93	PK	Horizontal
2390.0	54.07	-12.99	41.08	54	-12.92	AV	Horizontal
2483.6	68.09	-12.78	55.31	74	-18.69	PK	Vertical
2483.6	54.22	-12.78	41.44	54	-12.56	AV	Vertical
2483.6	69.15	-12.78	56.37	74	-17.63	PK	Horizontal
2483.6	55.23	-12.78	42.45	54	-11.55	AV	Horizontal
			8DPSK				
2390.0	69.11	-12.99	56.12	74	-17.88	PK	Vertical
2390.0	55.11	-12.99	42.12	54	-11.88	AV	Vertical
2390.0	68.07	-12.99	55.08	74	-18.92	PK	Horizontal
2390.0	55.22	-12.99	42.23	54	-11.77	AV	Horizontal
2483.6	69.16	-12.78	56.38	74	-17.62	PK	Vertical
2483.6	55.24	-12.78	42.46	54	-11.54	AV	Vertical
2483.6	68.08	-12.78	55.30	74	-18.70	PK	Horizontal
2483.6	55.14	-12.78	42.36	54	-11.64	AV	Horizontal

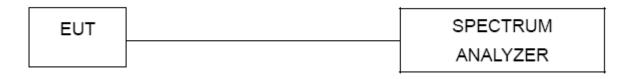
Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz. Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.

4. NUMBER OF HOPPING CHANNEL

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	= the frequency band of operation
RB	$RBW \ge 1\%$ of the span
VB	$VBW \ge RBW$
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


4.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 1MHz, VBW=1MHz, Sweep time = Auto.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

EUT :	Bluetooth speaker	Model Name :	DT-A10		
Temperature :	25 ℃	Relative Humidity :	60%		
Pressure :	1015 hPa	Test Voltage :	DC 3.7V		
Test Mode :	Hopping Mode				
Number of Honning Channel			70		

5. AVERAGE TIME OF OCCUPANCY

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

5.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- C. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \dot{h} . Measure the maximum time duration of one single pulse.
- i. A Period Time = (channel number)*0.4
 - DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
 - DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
 - DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

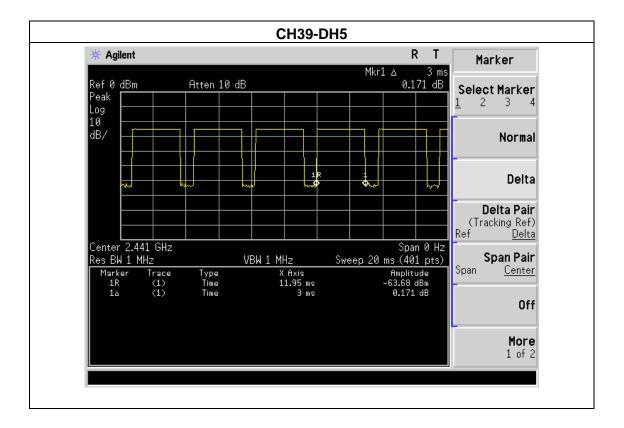
5.1.2 DEVIATION FROM STANDARD

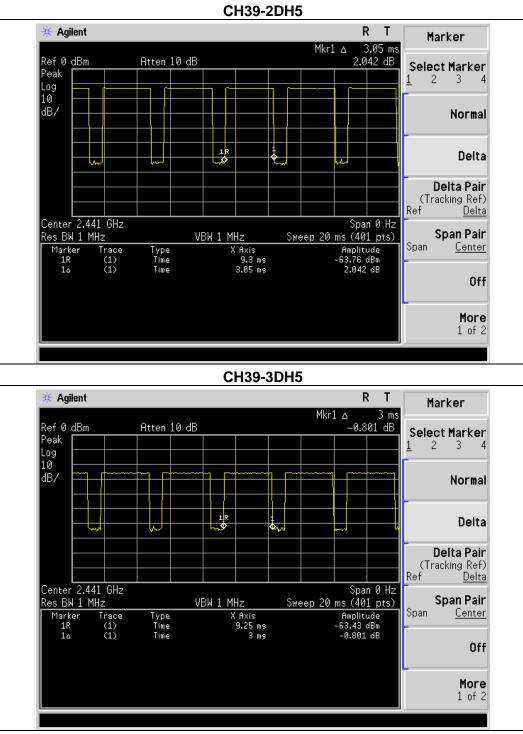
No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

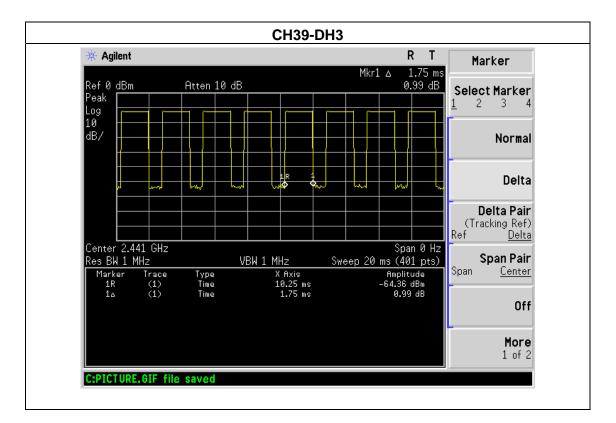
5.1.4 EUT OPERATION CONDITIONS

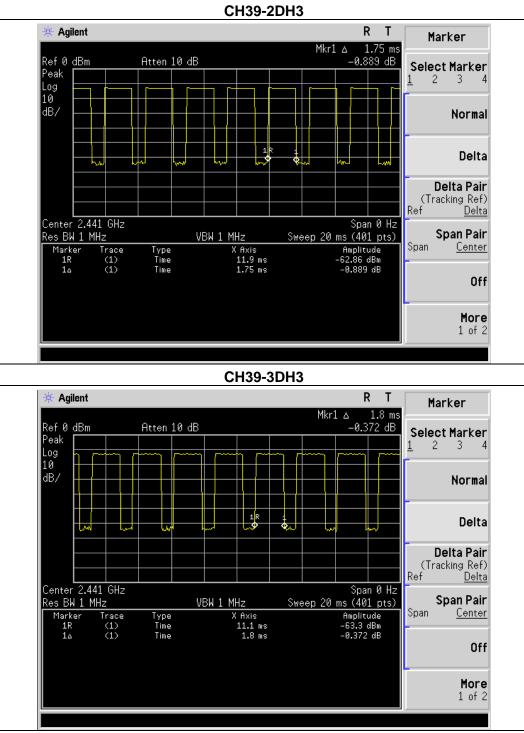

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


5.1.5 TEST RESULTS

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH5 ,2DH5,3DH5		

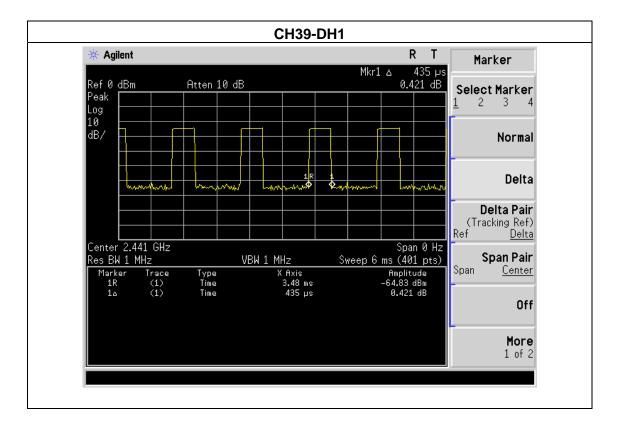
Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2441 MHz	3.00	0.32	0.4
2DH5	2441 MHz	3.05	0.33	0.4
3DH5	2441 MHz	3.00	0.32	0.4

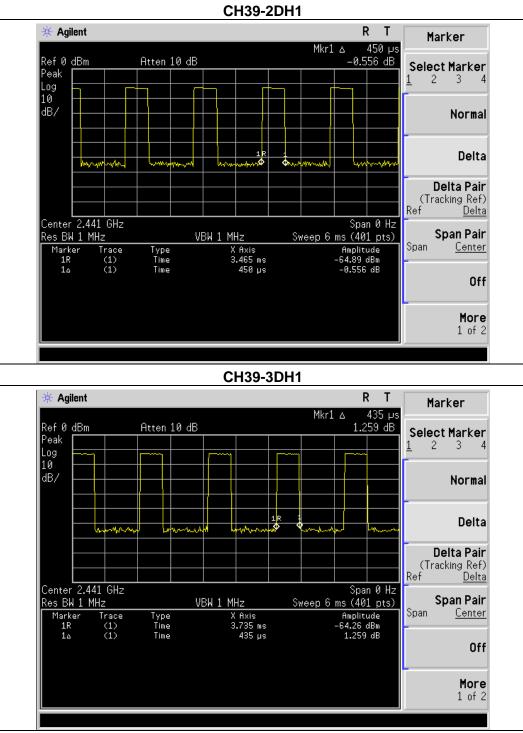




EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH3,2DH3,3DH3		

Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH3	2441 MHz	1.75	0.28	0.4
2DH3	2441 MHz	1.75	0.28	0.4
3DH3	2441 MHz	1.80	0.29	0.4




Page 35 of 70 Report No.: 2016BZT030141F

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH1,2DH1,3DH1		

Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH1	2441 MHz	0.435	0.14	0.4
2DH1	2441 MHz	0.450	0.14	0.4
3DH1	2441 MHz	0.435	0.14	0.4

6. HOPPING CHANNEL SEPARATION MEASUREMENT

6.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	100 kHz (Channel Separation)	
VB	300 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised for channel separation measurement.

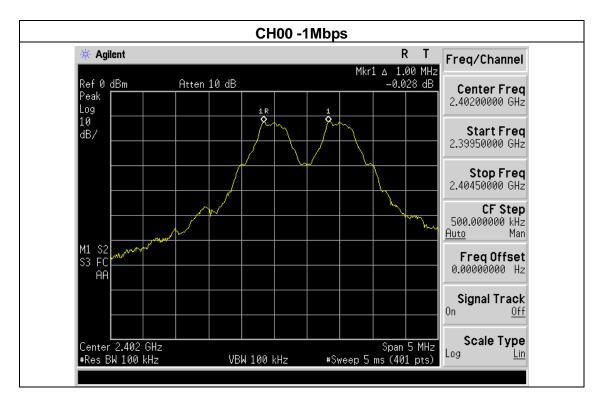
6.1.2 DEVIATION FROM STANDARD

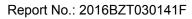
No deviation.

6.1.3 TEST SETUP

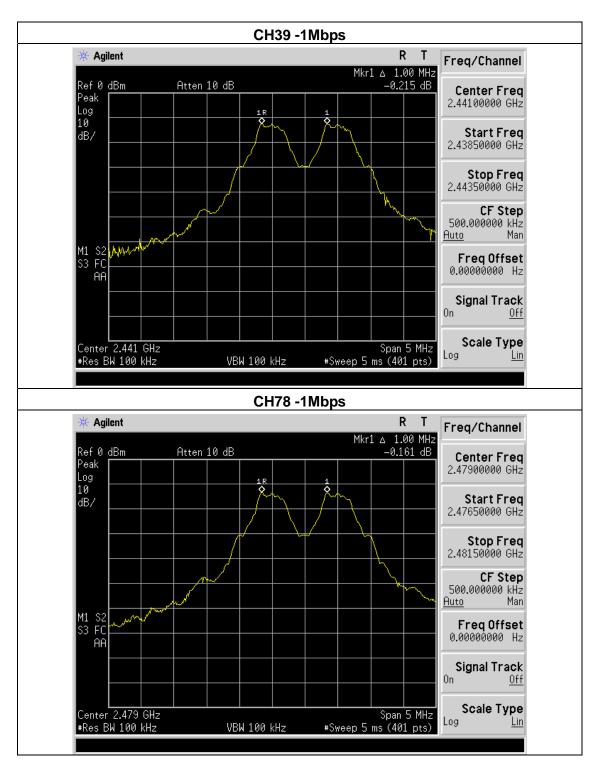
6.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

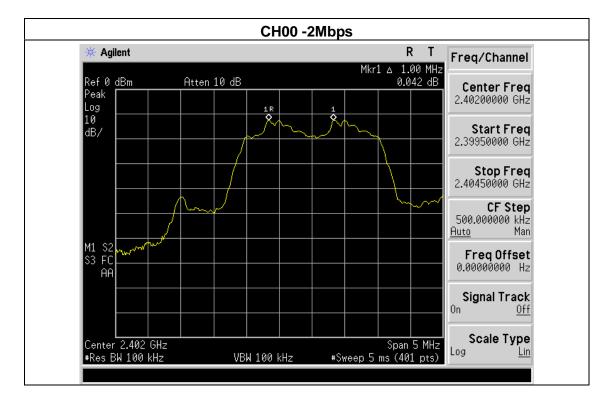



6.1.5 TEST RESULTS

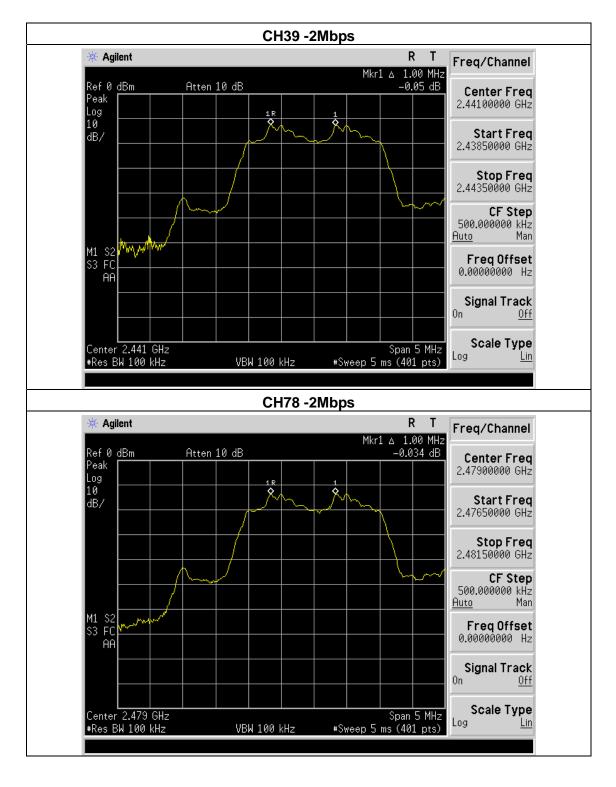
EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (1Mbps Mode)		


Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.00	Complies
2441 MHz	1.00	Complies
2480 MHz	1.00	Complies

Ch. Separation Limits: > 20dB bandwidth

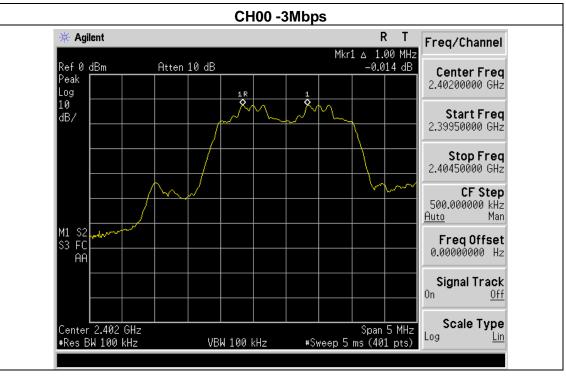


Page 40 of 70


EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (2Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.00	Complies
2441 MHz	1.00	Complies
2480 MHz	1.00	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth



EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (3Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.00	Complies
2441 MHz	1.00	Complies
2480 MHz	1.00	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

CH39 -3Mbps R T 🔆 Agilent Freq/Channel Mkr1 ∆ 1.00 MHz -0.009 dB Ref Ø dBm Atten 10 dB **Center Freq** Peak 2.44100000 GHz Log 10 1 R <u>^</u> Start Freq dB/ 2.43850000 GHz Stop Freq 2.44350000 GHz Apply March March **CF Step** 500.000000 kHz <u>Auto</u> Man M1 S2 S3 FC AA FreqOffset 0.0000000 Hz Signal Track 0n <u>0ff</u> Scale Type Center 2.441 GHz #Res BW 100 kHz Span 5 MHz #Sweep 5 ms (401 pts) Log Lin VBW 100 kHz CH78 -3Mbps 🔆 Agilent R Т Freq/Channel Mkr1 ∆ 1.00 MHz -0.075 dB Ref Ø dBm Atten 10 dB **Center Freq** Peak 2.47900000 GHz Log 10 dB/ 1 R \$ Start Freq 2.47650000 GHz Stop Freq 2.48150000 GHz \sim **CF** Step 500.000000 kHz Auto Man Auto M1 S2 S3 FC AA FreqOffset 0.0000000 Hz Signal Track 0n -<u> 0ff</u> Scale Type Center 2.479 GHz #Res BW 100 kHz Span 5 MHz #Sweep 5 ms (401 pts) Log <u>Lin</u> VBW 100 kHz

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS	

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.1.1 TEST PROCEDURE

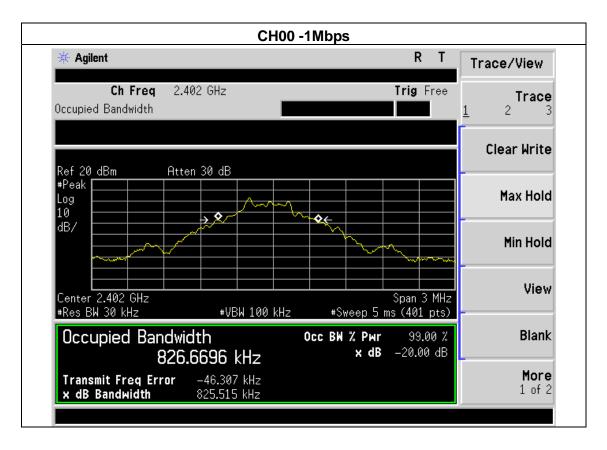
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

7.1.2 DEVIATION FROM STANDARD

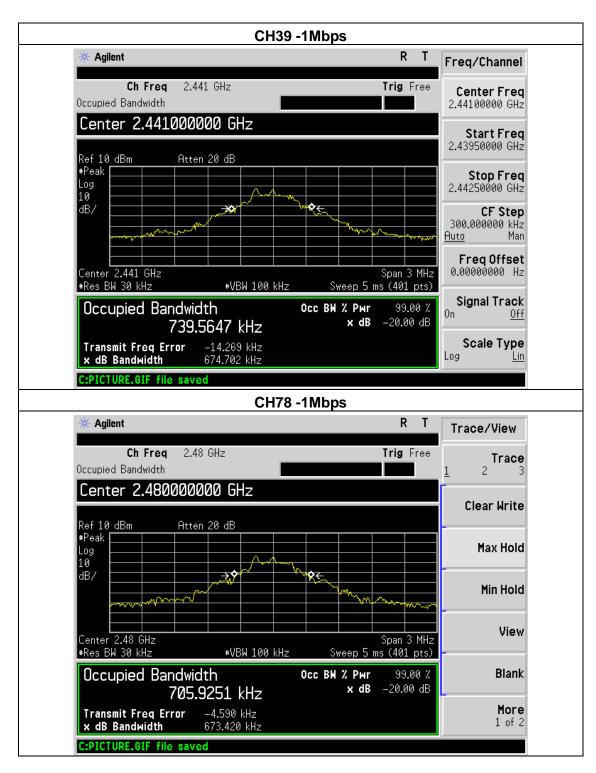
No deviation.

7.1.3 TEST SETUP

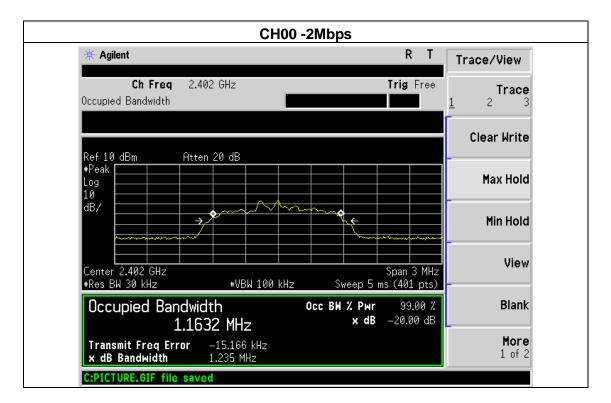
7.1.4 EUT OPERATION CONDITIONS

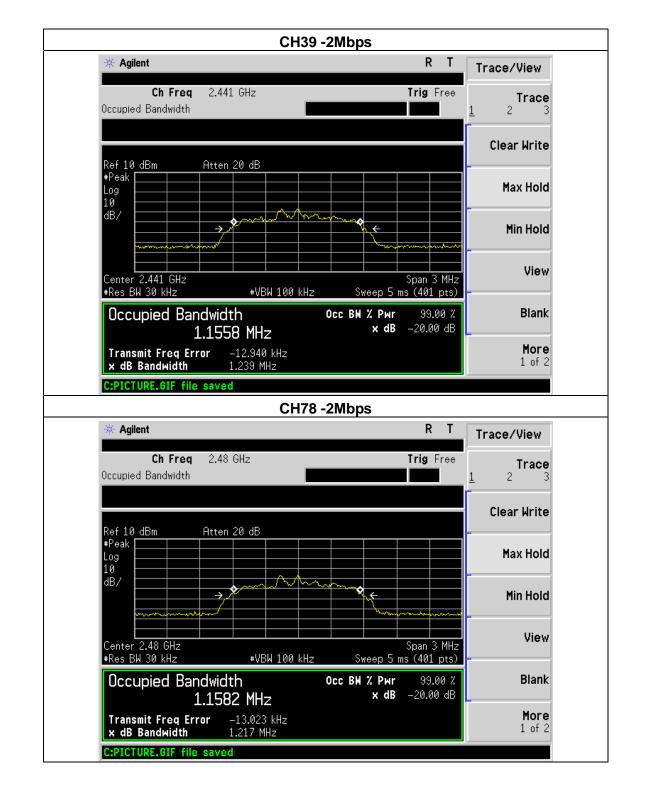

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS


EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (1Mbps)	·	

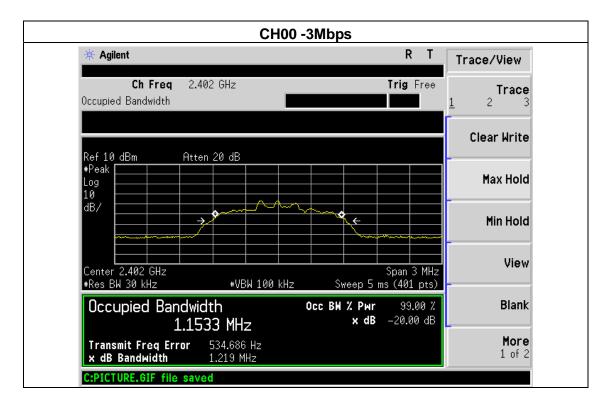
Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	825.515	PASS
2441 MHz	674.702	PASS
2480 MHz	673.420	PASS


Page 46 of 70

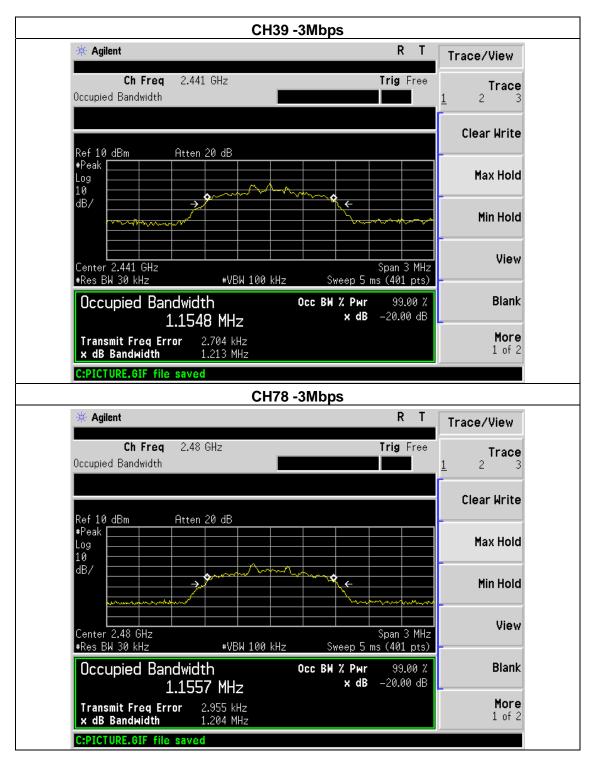

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (2Mbps)	·	

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.235	PASS
2441 MHz	1.239	PASS
2480 MHz	1.217	PASS

BZT



Page 49 of 70


EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (3Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.219	PASS
2441 MHz	1.213	PASS
2480 MHz	1.204	PASS

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247 (b)(i)	Peak Output Power	30dbm or 20.96dBm	2400-2483.5	PASS			

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel VBW \geq RBW

Sweep = auto

Detector function = peak

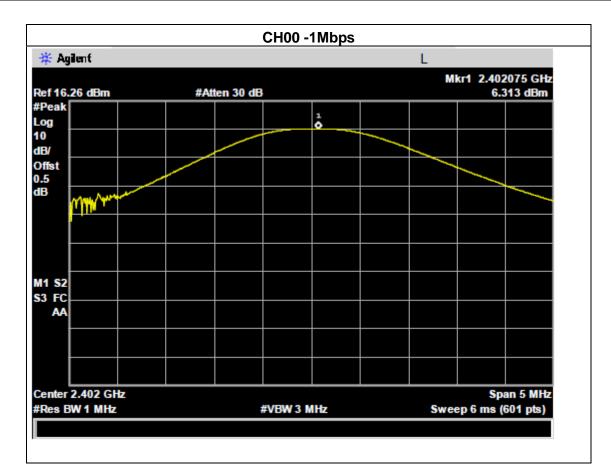
Trace = max hold

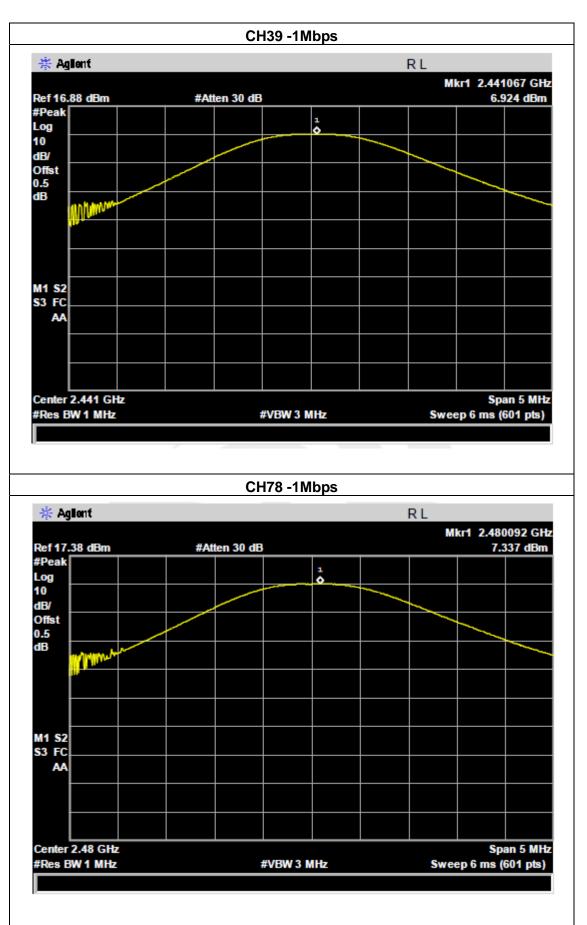
8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

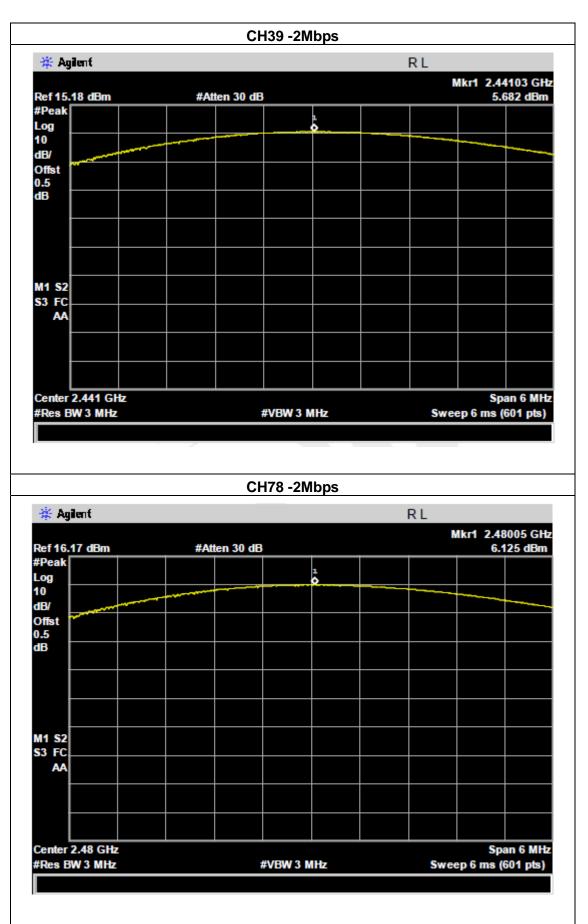
8.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


8.1.5 TEST RESULTS

EUT :	Bluetooth speaker	Model Name :	DT-A10
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00/ CH39 /CH78 (1M/2M/3N	Ibps Mode)	

1Mbps						
Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT (dBm)			
CH00	2402	6.313	20.96			
CH39	2441	6.924	20.96			
CH78	2480	7.337	20.96			
		2Mbps				
CH00	2402	5.049	20.96			
CH39	2441	5.682	20.96			
CH78	2480	6.125	20.96			
		3Mbps				
CH00	2402	5.646	20.96			
CH39	2441	6.271	20.96			
CH78	2480	6.562	20.96			



CH00 -2Mbps								
🔆 Agilent			RL					
			Mkr1	2.40202 GHz				
Ref 15.03 dBm	#Atten 30 dB		5.049 dBm					
Peak		1						
og		• • • • • • • • • • • • • • • • • • •						
ID/								
Dffst								
0.5								
).5 IB								
M1 S2								
53 FC								
AA								
Center 2.402 GHz				Span 6 MHz				
Res BW 3 MHz		#VBW 3 MHz	Sweep 6	Sweep 6 ms (601 pts)				

CH00 -3Mbps							
🔆 Agilent		RL					
Ref15.69 dBm	#Atten 30 dB		Mkr1 2.40205 GH 5.646 dBm				
≇Peak ∟og							
10 dB/	~~~~						
Offst							
1B							
M1 S2 53 FC							
AA							
Center 2.402 GHz							
FRes BW 3 MHz	#VBW	/ 3 MHz	Sweep 6 ms	Span 6 MHz s (601 pts)			

	CH3						
🔆 Aglent			RL				
		Mkr1 2.44116 GH					
Ref 16.28 dBm #Peak	#Atten 30 dB			6.271 dBm			
Log							
10							
dB/							
Offst 0.5							
dB							
M1 S2							
\$3 FC							
AA							
Center 2.441 GHz				Span 6 MH			
	#1.0		C	Sweep 6 ms (601 pts)			
#Res BW 3 MHZ		BW 3 MHz	Swe	сроны (901 р <i>ы</i>)			
		8 -3Mbps					
#Res BW 3 MHZ			RL				
🔆 Agilent	CH7		RL	Mkr1 2.48006 GH			
🔆 Agilent Ref 16.59 dBm		8 -3Mbps	RL				
Agilant Ref 16.59 dBm	CH7		RL	Mkr1 2.48006 GH			
Ref 16.59 dBm #Peak Log 10	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2 S3 FC	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2 S3 FC	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2 S3 FC	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2 S3 FC	CH7	8 -3Mbps	RL	Mkr1 2.48006 GH			
Agilent Ref 16.59 dBm #Peak Log 10 dB/ Offst 0.5 dB M1 S2 S3 FC	CH7 #Atten 30 dB	8 -3Mbps	R L	Mkr1 2.48006 GH			

9. ANTENNA REQUIREMENT

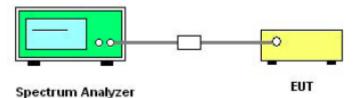
9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB antenna. It comply with the standard requirement.

BZT Page 59 of 70 10.CONDUCTED SPURIOUS EMISSIONS


10.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

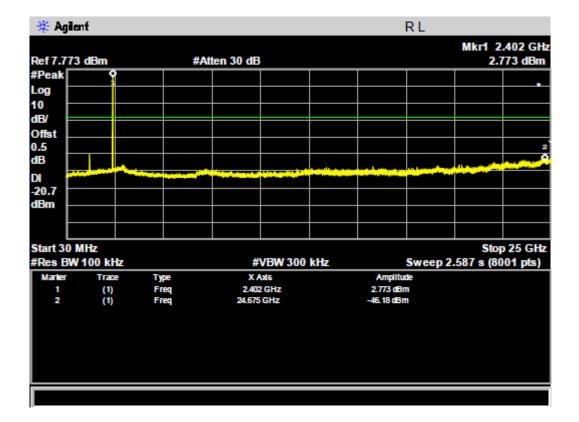
10.2 TEST PROCEDURE

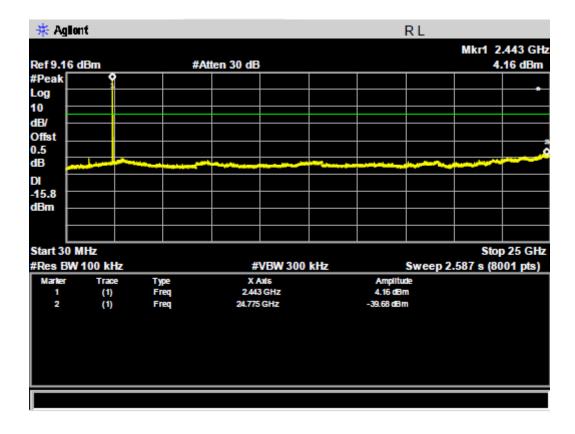
According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

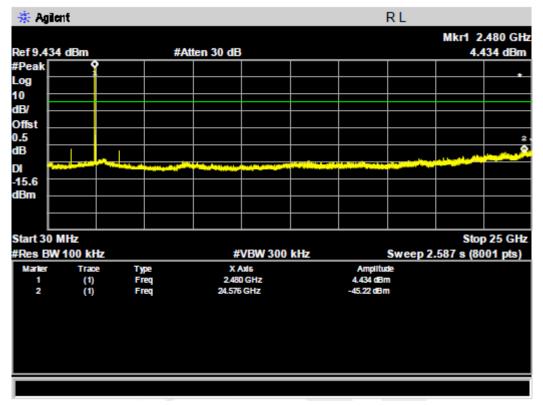
10.4 EUT OPERATION CONDITIONS

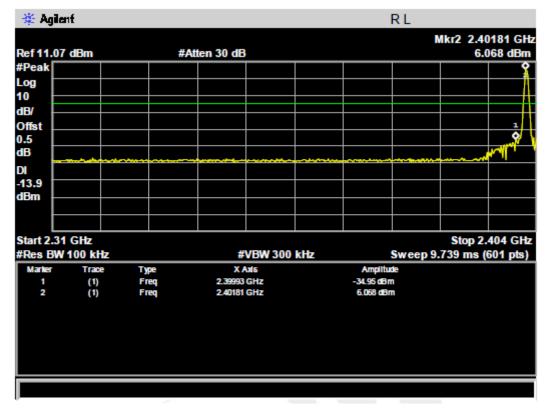

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

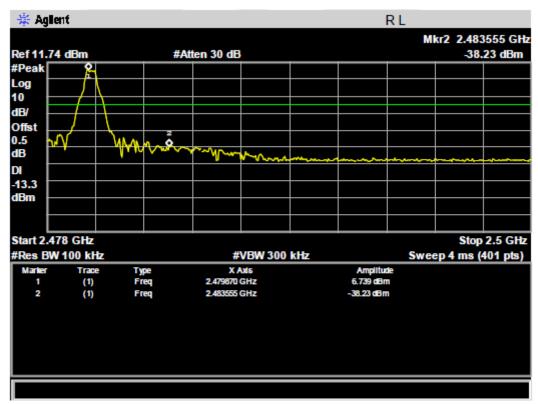


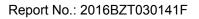
10.5 TEST RESULTS

1Mbps:


CH0

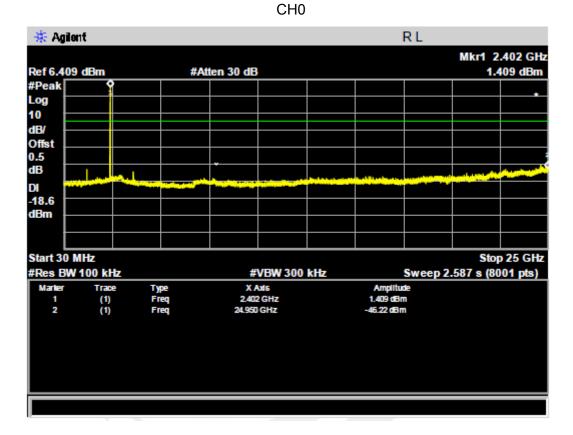






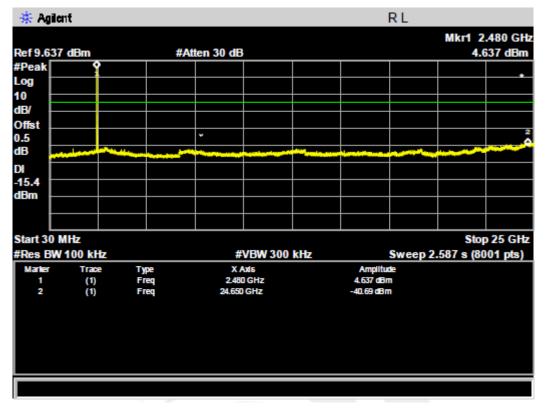
For Band Edge:

CH0



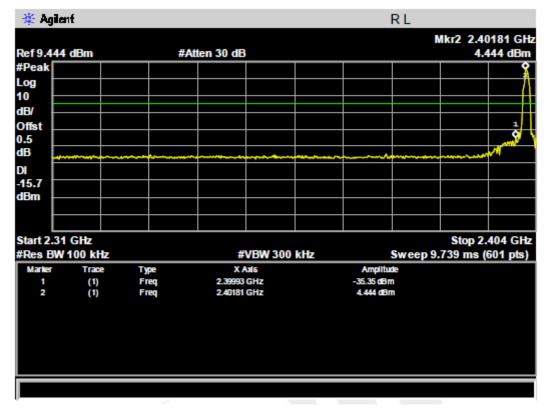
✓BZT

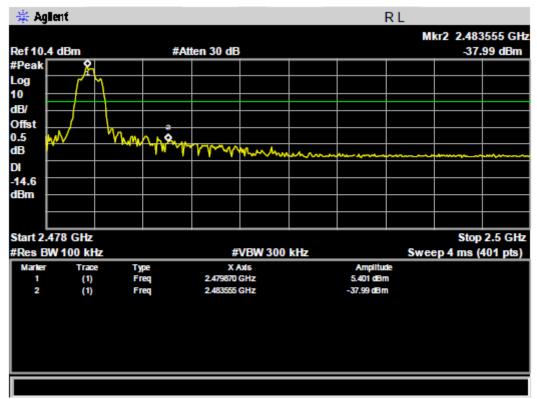
2Mbps:



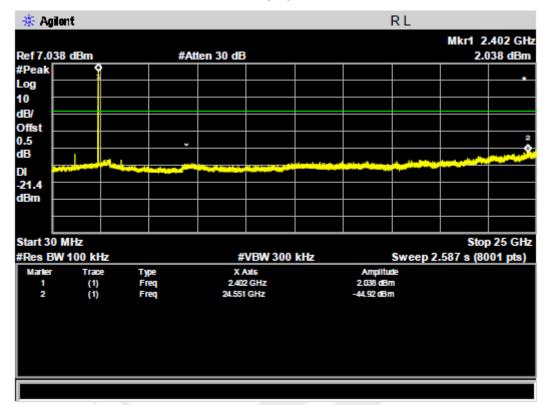
Ch39

* A	ilent							RL		
	61 dBm		#At	ten 30 dB						.443 GHz 461 dBm
#Peak	<u>۲</u>									
Log										
10										
dB/										
Offst										2.
0.5						10 m				<u>ہ</u>
dB								a second and		
DI										
-15.5										
dBm										
Start 3						1			Stor	25 GHz
	3W 100 ki	17		#	VBW 300	kHz		Sween 2	.587 s (80	
Marker			pe		lais		Amplitu		1001 0 (00	01 pt0/
1	(1)			2.44	GHz		4.461 dBr			
2	(1)	Fr	eq	24.625	GHz		-39.75 dBn	n		



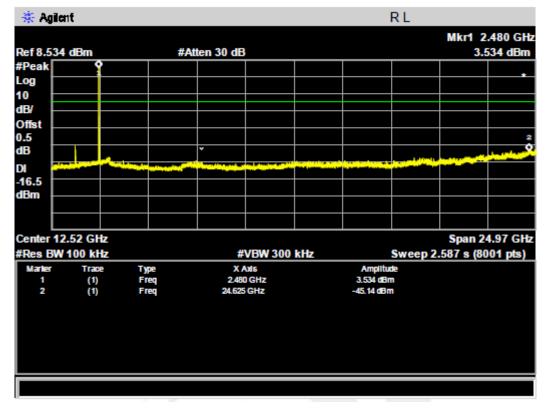


For Band Edge:

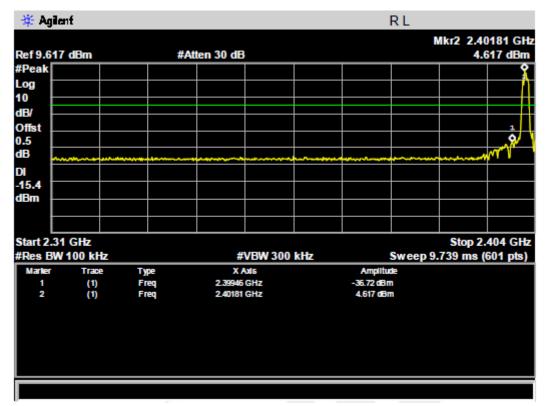


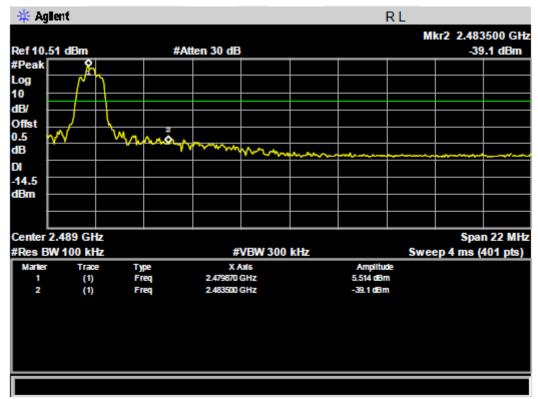
CH78

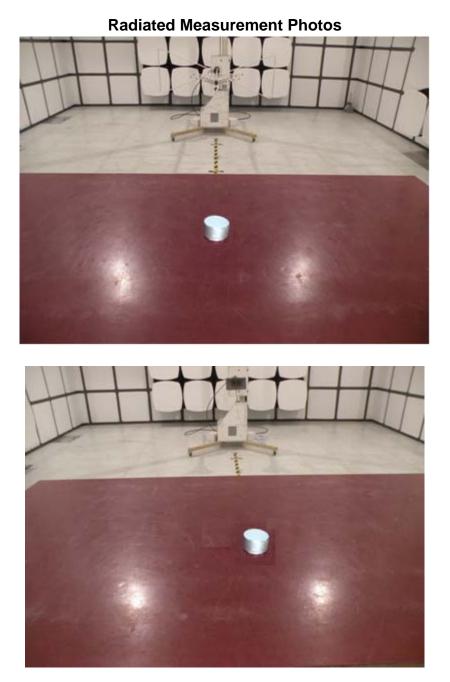
3Mbps:


CH0

* A	jia nt							RL		
	23 dBm		#At	ten 30 dB						2.443 GHz 223 dBm
#Peak	<u>۲</u>									
Log										
10										
dB/								_		
Offst										
0.5			•							•
dB		and the second second	and the state of t	-	-	-				
DI										
-16.8										
dBm										
Start 3	0 MHz			•	•				Sto	p 25 GHz
	3W 100 ki	lz		#	VBW 300) kHz		Sweet	2.587 s (8	
Marker			e		vis		Amp	litude		
1	(1)			2.44	3 GHz		3,223	d6im		
2	(1)	Fre	eq.	24.625	GHz		-39.85	d8 m		






For Band Edge

CH0

11. EUT TEST PHOTO

CONDUCTED EMISSION Photos

