

Report No.: SET2020-10309

EMC TEST REPORT

Report No.: SET2020-10309

Product Name: Harman SmartAuto TAG2.0

FCC ID: 2AHPN- HSA-20UT-AA

Model No.: HSA-20UT-AA

Applicant: Harman International Industries Incorporated

Address: 30001, Cabot Drive, Novi, MI 48377, USA

Received Date: 2020.08.11

Dates of Testing: 11/08/2020 —01/09/2020

Issued by: CCIC Southern Testing Co., Ltd.

Electronic Testing Building, No. 43 Shahe Road, Xili Street,

Lab Location:

Nanshan District, Shenzhen, Guangdong, China.

This test report consists of **17** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product Name...... Harman SmartAuto TAG2.0

Model No. HSA-20UT-AA

Trade name Harman

Applicant...... Harman International Industries Incorporated

Applicant Address...... 30001, Cabot Drive, Novi, MI 48377, USA

Manufacturer Harman International Industries Incorporated

Manufacturer Address 30001, Cabot Drive, Novi, MI 48377, USA

Test Standards...... 47 CFR Part 15 Subpart B

Test Result PASS

Tested by Zhang Pei Son

PeiSen Zhang Test Engineer 2020.09.02

Reviewed by

Chris You Senior Engineer 2020.09.02

Approved by Shrangwan thomag

2020.09.02

Shuangwen Zhang, Manager

TABLE OF CONTENTS GENERAL INFORMATION4 1. EUT Description4 1.1 1.2 Test Standards and Results5 Facilities and Accreditations......6 1.3 1 3 1 Facilities 6 132 Test Environment Conditions 6 1.3.3 Measurement Uncertainty 6 2. TEST CONDITIONS SETTING......7 2.1 2.2 Test Setup and Equipments List......7 2.2.1 2.2.2 Radiated Emission8 3. 47 CFR PART 15B REQUIREMENTS......11 3.1 3.1.1 3 1 2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 Test Result 13 Change History Reason for change Issue Date 1.0 2020.09.02 First edition

1. GENERAL INFORMATION

1.1 EUT Description

EUT Name Harman SmartAuto TAG2.0

Trade Name : Harman
Brand Name : Harman
Hardware Version : v1.0

Software Version N75NA_TAG20_V05

Power supply..... : 12/24V DC

Note1: The EUT is a Harman SmartAuto TAG2.0

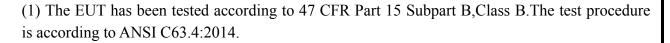
Note 2:For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Note 3: All the patterns have been tested and only the worst results are recorded in the report.

Note 4: Please refer to ANNEX I for the photographs of the EUT. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacture

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 4 of 17

1.2 Test Standards and Results


The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	Subpart B	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.107	Conducted Emission	PASS
2	15.109	Radiated Emission	PASS

NOTE:

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 5 of 17

Report No.: SET2020-10309

1.3 **Facilities and Accreditations**

1.3.1 **Facilities**

FCC-Registration No.: CN5031

CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031, valid time is until December 31, 2020.

ISED Registration: 11185A-1

CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until December 31, 2020.

NVLAP Lab Code: 201008

CCIC-SET is a third party testing organization accredited by NVLAP according to ISO/IEC 17025. The accreditation certificate number is 201008

1.3.2 **Test Environment Conditions**

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C - 35°C
Relative Humidity (%):	25% -75%
Atmospheric Pressure (kPa):	86kPa-106kPa

1.3.3 **Measurement Uncertainty**

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

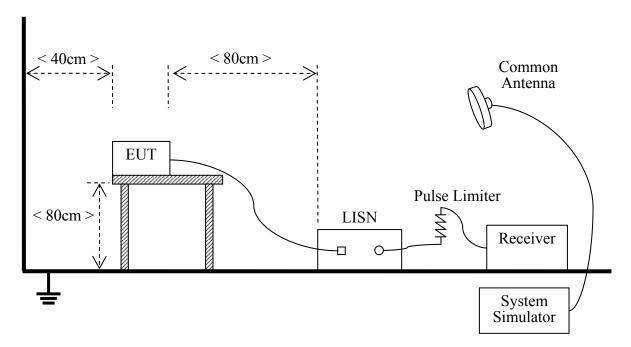
Uncertainty of Conducted Emission:	Uc = 3.6 dB (k=2)
Uncertainty of Radiated Emission:	Uc = 4.5 dB (k=2)

Page 6 of 17 CCIC-SET/TRF: GJ-EMC-E (2020-01-09)

2. TEST CONDITIONS SETTING

2.1 Test Mode

The EUT have the following typical setups during the test:


Setup1: EUT(LTE Traffic) Setup2: EUT(WIFI + Traffic)

Note: only worst-case mode setup 1 mode data provide at the report

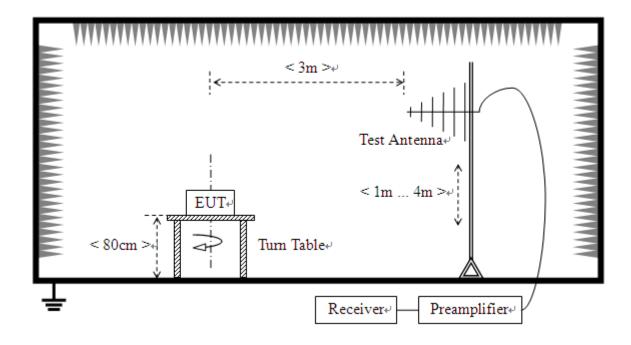
2.2 Test Setup and Equipments List

2.2.1 Conducted Emission

A.Test Setup:

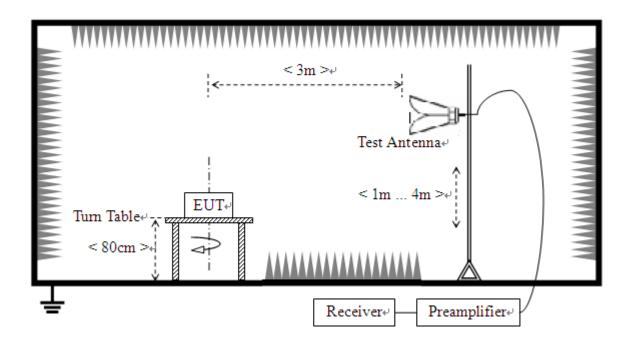
The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. The Common Antenna is used for the call between the EUT and the System Simulator (SS). A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

B.Equipments List:



Description	Manufacturer	Model	Serial No.	Calibration	Calibration
Description	Manufacturei	Model	Seriai No.	Date	Due. Date
Test Receiver	KEYSIGHT	N9038A	A141202036	2019.11.21	2020.11.21
LISN	ROHDE&SCHWARZ	ENV216	A140701847	2019.11.21	2020.11.21
Cable	MATCHING PAD	W7	/	2020.08.02	2021.08.01

2.2.2 Radiated Emission


A. Test Setup:

1) For radiated emissions from 30MHz to1GHz

2) For radiated emissions above 1GHz

B. Test Procedure

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.

For the test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

C. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due. Date
				Date	Duc. Date
Test Receiver	Test Receiver KEYSIGHT		A141202036	2019.11.21	2020.11.21
LISN	ROHDE&SCHWARZ	ENV216	A140701847	2019.11.21	2020.11.21
Shield Room	Shield Room Xinju Electronics		A181003226	2018.09.06	2021.09.05
EMI Test Receiver	ROHDE&SCHWARZ	ESCI	A0902601	2020.06.23	2021.06.23

Description	Manufacturer	Model	Serial No.	Calibration	Calibration	
Description	Manufacturer	Model	Serial No.	Date	Due. Date	
Broadband Ant.	2786	ETC	A150402239	2018.09.17	2021.09.16	
3M Anechoic	Albatross	SAC-3MAC	A0412375	2019.03.26	2023.03.25	
Chamber	Albanoss	9*6*6m	A04123/3	2019.03.20	2023.03.23	
EMI Test Receiver	ROHDE&SCHWARZ	ESW26	A180502935	2019.10.22	2020.10.21	
System Simulator	ROHDE&SCHWARZ	CMW500	A150802214	2019.07.30	2021.07.29	
5M Anechoic	Albatross	SAC-5MAC	A0304210	2019.03.25	2023.03.24	
Chamber	Aivatioss	12.8x6.8x6.4m	A0304210	2019.03.23	2023.03.24	
EMI Horn Ant.	ROHDE&SCHWARZ	HF906	A0304225	2019.04.17	2022.04.17	

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 10 of 17

3. 47 CFR PART 15B REQUIREMENTS

3.1 Conducted Emission

3.1.1 Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Eraguanay ranga (MHz)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

Note:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.1.2 Test Description

See section 2.2.1 of this report.

3.1.3 Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

Note:

Not reuiqrement for this vehicular device

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 11 of 17

3.2 Radiated Emission

3.2.1 Requirement

According to FCC section 15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field Strength		Field Strength Limitation at 3m Measurement Dist			
range (MHz)	(MHz) $\mu V/m$ Dist		(uV/m)	(dBuV/m)		
0.009 - 0.490	2400/F(kHz) 300m		10000* 2400/F(kHz)	20log 2400/F(kHz) + 80		
0.490 - 1.705	2400/F(kHz)	30m	100* 2400/F(kHz)	20log 2400/F(kHz) + 40		
1.705 - 30.00	30	30m	100*30	20log 30 + 40		
30.0 - 88.0	100	3m	100	20log 100		
88.0 - 216.0	150	3m	150	20log 150		
216.0 - 960.0	200	3m	200	20log 200		
Above 960.0	500	3m	500	20log 500		

- a) As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.
- b) Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.
- c) For below 1G:QP detector RBW 120kHz, VBW 300kHz.
- d) For Above 1G: PK detector RBW 1MHz,VBW 3MHz for PK value ;AV detector RBW 1MHz, VBW 10Hz for AV value.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * $(d2/d1)^2$.

Example:

F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as Ld1 = L1 = $30uV/m * (10)^2 = 100 * 30uV/m$.

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 12 of 17

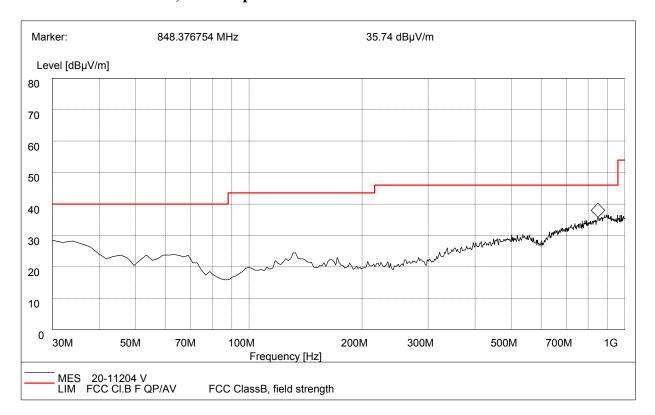
3.2.2 Test Description

See section 2.3.2 of this report.

3.2.3 Test Result

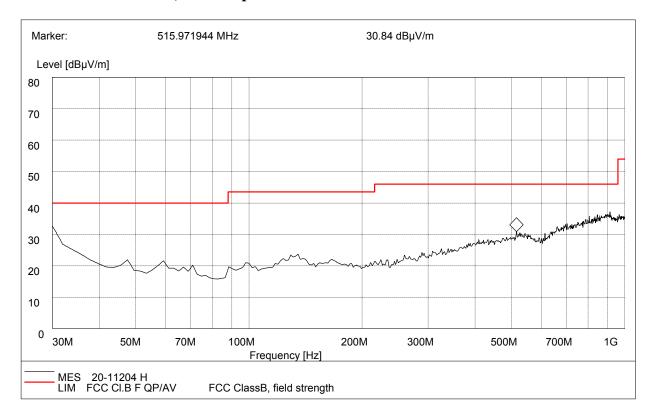
The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.


Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

CCIC-SET/TRF: GJ-EMC-E (2020-01-09) Page 13 of 17

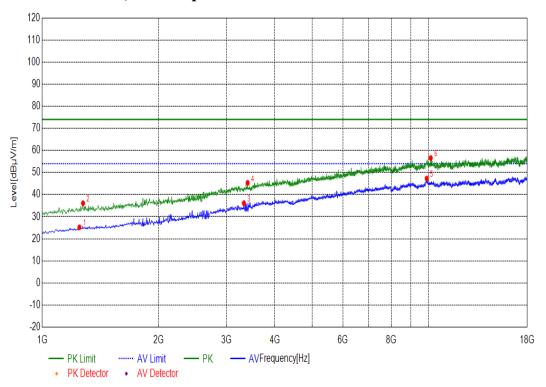
A.Radiation disturbances, antenna polarization: Vertical


(Plot C: Test Antenna Vertical 30M - 1G)

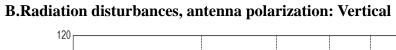
Frequency (MHz)	QuasiPeak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB µ V/m)	Margin (dB)	Antenna	Cable Loss(dB)	ANT. Factor(dB)	Verdict
30.06	26.88	120.000	208.0	40.00	13.12	Vertical	0.4	26.3	Pass
61.10	21.69	120.000	129.0	40.00	18.31	Vertical	0.6	26.3	Pass
133.02	22.69	120.000	147.0	43.50	20.81	Vertical	0.5	26.3	Pass
171.90	21.64	120.000	169.0	43.50	21.86	Vertical	0.7	29.0	Pass
535.41	29.36	120.000	207.0	46.00	16.64	Vertical	0.5	29.0	Pass
848.39	34.15	120.000	207.0	46.00	11.85	Vertical	1.1	28.9	Pass

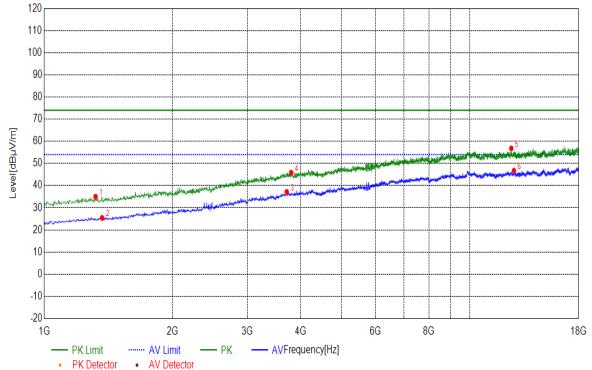
B.Radiation disturbances, antenna polarization: Horizontal

(Plot D: Test Antenna Horizontal 30M - 1G)


Frequency (MHz)	QuasiPeak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB µ V/m)	Margin (dB)	Antenna	Cable Loss(dB)	ANT. Factor(dB)	Verdict
30	30.12	120.000	223.0	40.00	9.88	Horizontal	0.5	26.3	Pass
59.15	20.36	120.000	209.0	40.00	19.64	Horizontal	0.5	26.3	Pass
129.13	21.36	120.000	126.0	43.50	22.14	Horizontal	0.6	29.0	Pass
166.07	21.25	120.000	268.0	43.50	22.25	Horizontal	0.6	29.0	Pass
515.95	37.64	120.000	214.0	46.00	8.36	Horizontal	0.6	29.0	Pass
409.04	26.08	120.000	364.0	46.00	19.92	Horizontal	1.2	28.9	Pass

Test Result: PASS




(Plot M: Test Antenna Horizontal 1G – 18G)

	(= ====================================									
NO.	Freq.	Level	Factor	Limit	Margin	Trace	Height	Angle	Dolority	
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Hace	[cm]	[°]	Polarity	
1	1248.24	25.16	-13.58	54.00	28.84	AV	100	100	Horizontal	
2	1275.45	36.08	-13.36	74.00	37.92	PK	100	210	Horizontal	
3	3326.06	36.12	-3.32	54.00	17.88	AV	100	210	Horizontal	
4	3400.88	45.32	-2.57	74.00	28.68	PK	100	70	Horizontal	
5	9885.97	47.26	11.71	54.00	6.74	AV	100	170	Horizontal	
6	10124.0	56.55	10.79	74.00	17.45	PK	100	80	Horizontal	

(Plot N: Test Antenna Vertical 1G – 18G)

NO.	Freq.	Level	Factor	Limit	Margin	Trace	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]		[cm]	[°]	
1	1319.66	35.03	-13.15	74.00	38.97	PK	100	10	Vertical
2	1367.27	25.43	-13.14	54.00	28.57	AV	100	350	Vertical
3	3710.34	37.16	-1.26	54.00	16.84	AV	100	90	Vertical
4	3802.16	45.82	-1.01	74.00	28.18	PK	100	20	Vertical
5	12497.6	56.82	12.97	74.00	17.18	PK	100	110	Vertical
6	12674.5	46.74	13.53	54.00	7.26	AV	100	130	Vertical

----End of Report----