

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM161201083901 Page: 1 of 42

	FCC REPORT
Application No:	SZEM1612010839CR
Applicant:	Develco Products A/S
Manufacturer:	Develco Products A/S
Factory:	EDA Electronics Co. Ltd.
EUT Name:	ZigBee Humidity Sensor
Model No.:	HMSZB-110
Trade mark:	Develco Products
FCC ID:	2AHNM-HMSZB110
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-12-20
Date of Test:	2016-12-20 to 2016-12-27
Date of Issue:	2016-12-28
Test Result:	PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 2 of 42

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
00		2016-12-28		Original			

Tested By	Zdison Li (Edison Li) /Project Engineer	2016-12-27
Checked By	Eric Fu (Eric Fu) /Reviewer	2016-12-28

Report No.: SZEM161201083901 Page: 3 of 42

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	bpart C Section 247 (c) ANSI C63.10 2013	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)47 CFR Part 15, Subpart C Section 15.205/15.209ANSI		ANSI C63.10 2013	PASS

Report No.: SZEM161201083901 Page: 4 of 42

4 Contents

Page

1	со	VER PAGE	1
2	VE	RSION	2
3	TE	ST SUMMARY	
4	co	DNTENTS	
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	Test Environment	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	Test Facility	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TE	ST RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED PEAK OUTPUT POWER	
	6.3	6DB OCCUPY BANDWIDTH	
	6.4	POWER SPECTRAL DENSITY	
	6.5	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.6	Spurious RF Conducted Emissions	
	6.7	RADIATED SPURIOUS EMISSION	
	6.7	7.1 Spurious Emissions	
	6.8	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	OTOGRAPHS - EUT TEST SETUP	
	7.1	RADIATED EMISSION	
	7.2	RADIATED SPURIOUS EMISSION	
8	PH	OTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM161201083901 Page: 5 of 42

5 General Information

5.1 Client Information

Applicant:	Develco Products A/S
Address of Applicant:	Olof Palmes Alle 40, 8200 Aarhus N, Denmark.
Manufacturer:	Develco Products A/S
Address of Manufacturer:	Oluf Palmes alle 40, 8200 Aarhus N, Denmark
Factory:	EDA Electronics Co. Ltd.
Address of Factory:	Shui Wei Industrial Zone, TangJiao, Chashan Town, DongGuan City,

5.2 General Description of EUT

Product Name:	ZigBee Humidity Sensor
Model No.:	HMSZB-110
Trade Mark:	Develco Products
Frequency Range:	2405-2480MHz
Modulation Type:	QPSK
Channel Numbers:	16 Channels
Channel Separation:	5MHz
Antenna Type:	Integral
Antenna Gain:	1dBi
Battery:	3.0V DC (1.5V x 2 "AA" Size Batteries)

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 6 of 42

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz	16	2480MHz

Note:

Using test software was control EUT work in continuous transmitter and receiver mode. And select test channel as below:

Channel	Frequency
The lowest channel (CH1)	2405MHz
The middle channel (CH9)	2445MHz
The highest channel (CH16)	2480MHz

Report No.: SZEM161201083901 Page: 7 of 42

5.3 Test Environment

Operating Environment:	
Temperature:	25.0 °C
Humidity:	53 % RH
Atmospheric Pressure:	1010mbar

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 8 of 42

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM161201083901 Page: 9 of 42

5.10 Equipment List

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

Report No.: SZEM161201083901 Page: 10 of 42

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161201083901 Page: 11 of 42

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No.: SZEM161201083901 Page: 12 of 42

6.2 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10 :2013 Section 11.9.1	
Test Setup: Spectrum Analyzer		
	E.U.T	
	Non-Conducted Table	
	Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	30dBm	
Test Mode:	Transmitting with QPSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Measurement Data

QPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	0.56	30.00	Pass
Middle	1.25	30.00	Pass
Highest	1.31	30.00	Pass

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 13 of 42

Report No.: SZEM161201083901 Page: 14 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 15 of 42

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(2) Test Method: ANSI C63.10: 2013 Section 11.8 Test Setup: Spectrum Analyzer E.U.T C Non-Conducted Table **Ground Reference Plane** Limit: ≥ 500 kHz Transmitting with QPSK modulation. Test Mode: Instruments Used: Refer to section 5.10 for details. Test Results: Pass

6.3 6dB Occupy Bandwidth

Measurement Data

QPSK mode			
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	1.620	≥500	Pass
Middle	1.615	≥500	Pass
Highest	1.610	≥500	Pass

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 16 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 17 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 18 of 42

6.4 Power Spectral Density

Measurement Data

QPSK mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-17.56	≤8.00	Pass	
Middle	-15.52	≤8.00	Pass	
Highest	-15.24	≤8.00	Pass	

Report No.: SZEM161201083901 Page: 19 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 20 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 21 of 42

6.5 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.13	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark:	
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with QPSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 22 of 42

Report No.: SZEM161201083901 Page: 23 of 42

6.6 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.11	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that in produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiate measurement.	
Test Mode:	Transmitting with QPSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Report No.: SZEM161201083901 Page: 24 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 27 of 42

Report No.: SZEM161201083901 Page: 28 of 42

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 29 of 42

6.7 Radiated Spurious Emission

6.7.1 Spurious Emissions						
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10 :2013 Section 11.12					
Test Site:	Measurement Distance	: 3m	า			
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	Z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	Z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak
			Peak	1MHz	3MHz	Peak
	Above TGHZ		Peak	1MHz	10Hz	Average
Limit:	Frequency	Fie (mic	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz 2400/F(kHz) 0.490MHz-1.705MHz 24000/F(kHz)		400/F(kHz)	-	-	300
			4000/F(kHz)	-	-	30
	1.705MHz-30MHz		30	-	-	30
	30MHz-88MHz		100	40.0	Quasi-peak	< 3
	88MHz-216MHz		150	43.5	Quasi-peak	د 3
	216MHz-960MHz		200	46.0	Quasi-peak	< 3
	960MHz-1GHz 500		54.0	Quasi-peak	د 3	
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), Unless otherwise specified, the limit on peak r frequency emissions is 20dB above the maximum permitted average emis limit applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.			n peak radio rage emission ies to the total		

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 30 of 42

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-end-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions/Terms-end-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's so its Client and this document does not excencerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 31 of 42

	margin would be re-tested one by one using peak, quasi-peak o average method as specified and then reported in a data sheet.	
	 h. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) 	
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.	
	j. Repeat above procedures until all frequencies measured was complete.	
Exploratory Test	Transmitting with QPSK modulation.	
Mode:	Transmitting mode	
Final Test Mode:	Transmitting with QPSK modulation.	
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.	
	Only the worst case is recorded in the report.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results: Pass		

Report No.: SZEM161201083901 Page: 32 of 42

Radiated Emission below 1GHz			
30MHz~1GHz (QP)			
Test mode:	Transmitting mode	Vertical	

Condition:	3m VERTICAL
Job No. :	10839CR
Test mode.	TX mode

est	mode: IX	mode						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHZ	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.00	0.60	18.70	27.36	22.87	14.81	40.00	-25.19
2	89.28	1.10	8.63	27.22	24.97	7.48	43.50	-36.02
3	263.82	1.74	12.58	26.50	25.99	13.81	46.00	-32.19
4	510.04	2.61	18.08	27.68	24.84	17.85	46.00	-28.15
5	612.06	2.73	20.14	27.53	25.43	20.77	46.00	-25.23
6 p	p 955.44	3.66	23.30	26.51	24.14	24.59	46.00	-21.41

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful uitand offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 33 of 42

Test mode: Trans	mitting mode	Horizontal
------------------	--------------	------------

Condition:	3m HORIZONTAL
Job No. :	10839CR
Test mode.	TX mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	30.00	0.60	18.70	27.36	22.92	14.86	40.00	-25.14
2	105.64	1.22	8.82	27.16	23.66	6.54	43.50	-36.96
3	159.23	1.33	9.55	26.86	22.92	6.94	43.50	-36.56
4	271.32	1.77	12.73	26.47	28.91	16.94	46.00	-29.06
5	627.27	2.76	20.51	27.51	23.25	19.01	46.00	-26.99
6	993.01	3.69	24.02	26.33	22.05	23.43	54.00	-30.57

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161201083901 Page: 34 of 42

Transmitte	Transmitter Emission above 1GHz								
Test mode: C		QPSK	Test channel:		Lowes	Lowest		emark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit (dBu	Line V/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	38.63	44.78	47.09	7	4	-26.91	Vertical
4810.000	34.17	8.88	39.03	45.33	49.35	7	4	-24.65	Vertical
6069.413	34.76	10.47	38.96	44.52	50.79	7	4	-23.21	Vertical
7215.000	36.41	10.68	38.17	43.26	52.18	7	4	-21.82	Vertical
9620.000	37.52	12.51	36.98	40.75	53.8	7	4	-20.2	Vertical
12639.790	38.87	14.55	38.95	38.61	53.08	7	4	-20.92	Vertical
3786.970	33.03	7.74	38.6	44.89	47.06	7	4	-26.94	Horizontal
4810.000	34.17	8.88	39.03	45.09	49.11	7	4	-24.89	Horizontal
6247.618	34.9	10.24	38.84	45.08	51.38	7	4	-22.62	Horizontal
7215.000	36.41	10.68	38.17	43.48	52.4	7	4	-21.6	Horizontal
9620.000	37.52	12.51	36.98	40.25	53.3	7	4	-20.7	Horizontal
12190.740	38.72	14.4	38.5	39	53.62	7	4	-20.38	Horizontal

Test mo	de:	QPSK	Te	est channel:	Midd	lle Re		lemark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit (dBu\	Line //m)	Over Limit (dB)	Polarization
3909.457	33.36	7.78	38.66	44.87	47.35	74	ŀ	-26.65	Vertical
4890.000	34.31	8.99	39.06	45.41	49.65	74	ŀ	-24.35	Vertical
6238.584	34.89	10.25	38.85	44.81	51.1	74	ŀ	-22.9	Vertical
7335.000	36.36	10.73	38.05	43.37	52.41	74	ŀ	-21.59	Vertical
9780.000	37.56	12.59	36.91	40.17	53.41	74	ŀ	-20.59	Vertical
12050.440	38.63	14.52	38.35	38.35	53.15	74	ŀ	-20.85	Vertical
3732.570	32.87	7.72	38.58	44.96	46.97	74	ŀ	-27.03	Horizontal
4890.000	34.31	8.99	39.06	45.27	49.51	74	ŀ	-24.49	Horizontal
6166.787	34.84	10.34	38.89	44.07	50.36	74	ŀ	-23.64	Horizontal
7335.000	36.36	10.73	38.05	42.83	51.87	74	ŀ	-22.13	Horizontal
9780.000	37.56	12.59	36.91	40.53	53.77	74	ŀ	-20.23	Horizontal
12279.26	38.77	14.33	38.59	38.27	52.78	74	ŀ	-21.22	Horizontal

Report No.: SZEM161201083901 Page: 35 of 42

Test me	ode:	QPSK	Те	st channel:	Highe	est	st Remark:		Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit (dBu\	Line //m)	Over Limit (dB)	Polarization
3960.700	33.5	7.8	38.68	44.75	47.37	74	ŀ	-26.63	Vertical
4960.000	34.43	9.09	39.09	45.52	49.95	74	ŀ	-24.05	Vertical
5939.103	34.66	10.39	39.01	44.66	50.7	74	ŀ	-23.3	Vertical
7440.000	36.32	10.77	37.94	43.75	52.9	74	ŀ	-21.1	Vertical
9920.000	37.58	12.67	36.84	39.55	52.96	74	ŀ	-21.04	Vertical
12694.780	38.86	14.7	39	39.04	53.6	74	ŀ	-20.4	Vertical
3847.726	33.19	7.76	38.63	44.37	46.69	74	ŀ	-27.31	Horizontal
4960.000	34.43	9.09	39.09	44.88	49.31	74	ŀ	-24.69	Horizontal
6069.413	34.76	10.47	38.96	44.74	51.01	74	ŀ	-22.99	Horizontal
7440.000	36.32	10.77	37.94	43.03	52.18	74	ŀ	-21.82	Horizontal
9920.000	37.58	12.67	36.84	40.4	53.81	74	ŀ	-20.19	Horizontal
12332.670	38.8	14.29	38.64	39.24	53.69	74	ŀ	-20.31	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM161201083901 Page: 36 of 42

6.8 Restricted bands around fundamental frequency

		J.203 and 10.200	
	ANSI C63.10: 2013 Section	11.12	
	Measurement Distance: 3m		
	Frequency	Limit (dBuV/m @3m)	Remark
	30MHz-88MHz	40.0	Quasi-peak Value
	88MHz-216MHz	43.5	Quasi-peak Value
	216MHz-960MHz	46.0	Quasi-peak Value
	960MHz-1GHz	54.0	Quasi-peak Value
		54.0	Average Value
	Above 1GHz	74.0	Peak Value
A Reference Plane A Reference P	Antenna Tower Antenna Tower Antenn	Figure 2. Above Figure	the table was rotated for each power and
	Reference Plane	ANSI C63.10: 2013 Section Measurement Distance: 3m Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Above 1GHz 00MHz to 1GHz a. For below 1GHz, the EUT was above the ground at a 3 meter 360 degrees to determine the p b. For above 1GHz, the EUT was above the ground at a 3 meter 360 degrees to determine the p b. For above 1GHz, the EUT was above the ground at a 3 meter 360 degrees to determine the p b. For above 1GHz, the EUT was above the ground at a 3 meter 360 degrees to determine the p c. The EUT was set 3 meters which was mounted on the top d. The antenna height is varied f to determine the maximum v vertical polarizations of the anter b. For each suspected emission, the antenna was tuned to heig table was turned from 0 degrees f. The test-receiver system was Bandwidth with Maximum Hold g. Place a marker at the end frequency to show compliance bands. Save the spectrum modulation for lowest and hight h. Test the EUT in the lowest cha	ANSI C63.10: 2013 Section 11.12 Measurement Distance: 3m Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

Report No.: SZEM161201083901 Page: 37 of 42

	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test	Transmitting with QPSK modulation.
Mode:	Transmitting mode.
Final Test Mode:	Transmitting with QPSK modulation.
	Only the worst case is recorded in the report.
Instruments	Refer to section 5.10 for details.
Used:	
Test Results:	Pass

Report No.: SZEM161201083901 Page: 38 of 42

Test plot as follows:

Test channel:	Lowest	Remark:	Peak	Vertical
---------------	--------	---------	------	----------

Job No	o: : 108	39CR								
Mode:	: 240	5 Band	edge							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2390.000	5.34	29.08	38.14	45.57	41.85	74.00	-32.15	Peak	
2 pp	2404.491	5.35	29.12	38.15	91.72	88.04	74.00	14.04	Peak	

MHz

2390.000

2 pp 2404.593

1

dB

dB/m

dB

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201083901 Page: 39 of 42

Test channel: Lowest Remark: Peak Horizontal	Test channel:	Lowest	Remark:	Peak	Horizontal
--	---------------	--------	---------	------	------------

dBuV dBuV/m dBuV/m

5.34 29.08 38.14 47.73 44.01 74.00 -29.99 Peak

5.35 29.12 38.15 101.55 97.87 74.00 23.87 Peak

dB

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for
electronic tormat documents, subject to lerms and Conditions for Electronic Documents at <u>http://www.sds.com/en/lerms-and-Conditions/lerms-Document.aspx</u> . Attention is drawn to the limitation of liability, indemnification and luricidicition issues defined therein. Any holder of this documents at <u>http://www.sds.com/en/lerms-and-Conditions/lerms-bocument.aspx</u> . Attention is a disclosed of the intervention.
only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and
obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the
content or appearance or this document is unhawru and orenears may be prosecuted to the fullest extent or the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201083901 Page: 40 of 42

Test channel: Highest Remark: Peak Vertical

	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2480.528 2 2483.500	5.41 5.41	29.34 29.35	38.15 38.15	86.66 53.84	83.26 50.45	74.00 74.00	9.26 -23.55	Peak Peak

Report No.: SZEM161201083901 Page: 41 of 42

Test channel: Highest Remark: Peak Horizontal

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM161201083901 Page: 42 of 42

7 Photographs - EUT Test Setup

Test model No.: HMSZB-110

7.1 Radiated Emission

7.2 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010839CR.