

TEST REPORT

Applicant Name: Address: Report Number: FCC ID: Bytech NY Inc. 2585 West 13th Street, Brooklyn NY 11223.USA 2401S71807E-RF-00 2AHN6-AUBE176

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Issue Date: BE Meter Earbuds-Asst BY-AU-BE-176-AC

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

2024/04/26 2024/05/14

Prepared and Checked By:

Sajo. Curo

Jojo Guo RF Engineer

Approved By:

Wang

Nancy Wang RF Supervisor

Note: The information marked [#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF001

Page 1 of 78

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 - RF EXPOSURE	11
APPLICABLE STANDARD	
Measurement Result	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup Test Procedure	
FACTOR & OVER LIMIT/MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	-
TEST DATA	
FCC §15.247(A) (1) - 20 DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(A) (1) (III) - QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
Test Procedure Test Data	

TR-EM-RF001

FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) § 5.5 - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
EUT PHOTOGRAPHS	40
TEST SETUP PHOTOGRAPHS	41
APPENDIX	42
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	60
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	73

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401S71807E-RF-00	Original Report	2024/05/14

TR-EM-RF001

GENERAL INFORMATION

Product	BE Meter Earbuds-Asst
Tested Model	BY-AU-BE-176-AC
Multiple Model(s)	N/A
UPC number	805112128969, 805112128976, 805112128983
SKU number	9150703
Lot number	BY051324
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Peak Power	6.93dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification [#]	2.67dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery
Sample serial number	2KJL-4 (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A
Note: The left earbud and th	e right earbud are electrically identical. All tests were performed with left earbud.

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF output power, conducted		conducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz-150kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MH	z~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
		18GHz - 40GHz	5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
Humidity			±1%
Supply voltages		ges	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

"bt-tool-v1.0.9" exercise software was used and the power level is $5^{\#}$. The software and power level was provided by the applicant.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Ianufacturer Description Model		Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

	EUT	1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane		
✓	1.5 Meters	▼ →

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC 15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	Compliant
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Not Applicable
FCC §15.205, §15.209, §15.247(d)	Radiated Emissions	Compliant
FCC §15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	Band edges	Compliant

Not Applicable, the device was powered by battery when operating.

Report No.: 2401S71807E-RF-00

TEST EQUIPMENT LIST

Manufacturer	Description Model		Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
R&S	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15
Sonoma instrument	Pre-amplifier	310 N	186238	2023/06/08	2024/06/07
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
BACL	Active Loop Antenna	1313-1A	4031911	2024/03/21	2025/03/20
Unknown	Cable	Chamber Cable 1	F-03-EM236	2023/08/03	2024/08/02
Unknown	Cable	Chamber Cable 4	EC-007	2023/08/03	2024/08/02
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
COM-POWER	Pre-amplifier	PA-122	181919	2023/06/29	2024/06/28
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	0735	2023/10/08	2024/10/07
Unknown	RF Cable	UFA147	219661	2023/10/08	2024/10/07
SNSD	2.4G Band Reject filter	BSF2402-2480MN- 0898-001	2.4G filter	2023/08/03	2024/08/02
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
A.H.System	Pre-amplifier	PAM-1840VH	190	2023/08/02	2024/08/01
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
UTIFLEX	RF Cable	NO. 13	232308-001	2023/08/03	2024/08/02
		RF Conducted Test			
Tonscend	RF control Unit	JS0806-2	19D8060154	2023/09/06	2024/09/05
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15
MARCONI	10dB Attenuator	6534/3	2942	2023/07/04	2024/07/03
Unknown	RF Cable	65475	01670515	2023/07/04	2024/07/03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BT	2402-2480	7.0	5.01	5	1.6	3.0	Yes

Result: Compliant

FCC §15.203 - ANTENNA REQUIREMENT

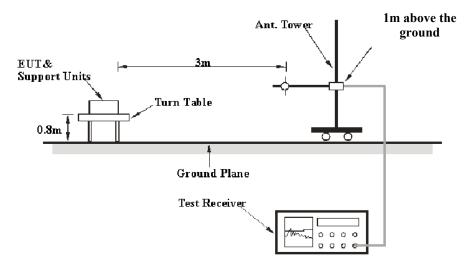
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

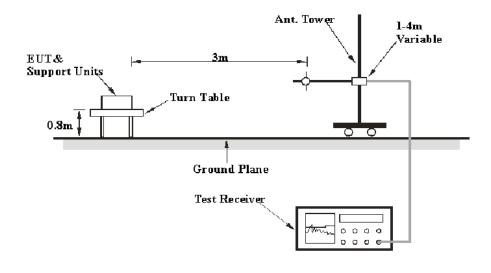
Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain[#] is 2.67dBi, fulfill the requirement of this section. Please refer to the EUT photos.

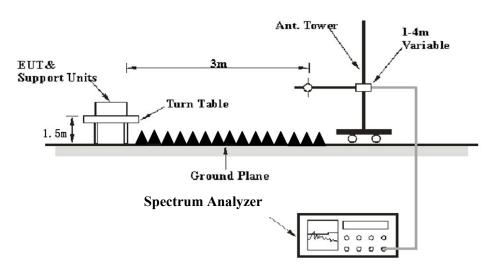
Result: Compliant


FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement			
0111 150111	/	/	200 Hz	QP			
9 kHz – 150 kHz	300 Hz	1 kHz	/	РК			
150 kHz – 30 MHz	/	/	9 kHz	QP			
150 KHZ – 50 MHZ	10 kHz	30 kHz	/	РК			
30 MHz – 1000 MHz	/	/	120 kHz	QP			
	100 kHz	300 kHz	/	РК			
	Harmonics & Band Edge						
	1MHz	3 MHz	/	РК			
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)						
Above I GHZ		Other Em	issions				
	1MHz	1MHz 3 MHz /		РК			
	1MHz	10 Hz	/	Average			

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

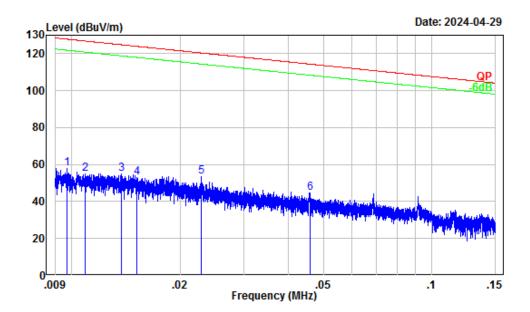
Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

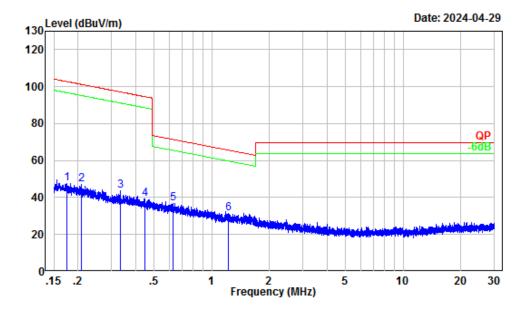
Temperature:	22~25.3 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Warren Huang on 2024-04-29 for below 1GHz and Tyler Wu on 2024-04-29 for above 1GHz.


Test mode: Transmitting

Note: After pre-scan in the X, Y and Z axes of orientation, the worst case z-axis of orientation were recorded.

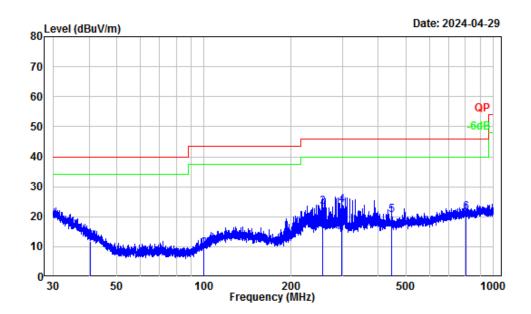
9 kHz-30MHz: (Maximum output power mode, EDR Mode (8DPSK) Low channel)


Note: When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.

Parallel (worst case)

Site :	Chamber A
Condition :	Зm
Project Number:	2401S71807E-RF
Note :	BT
Tester :	Warren Huang

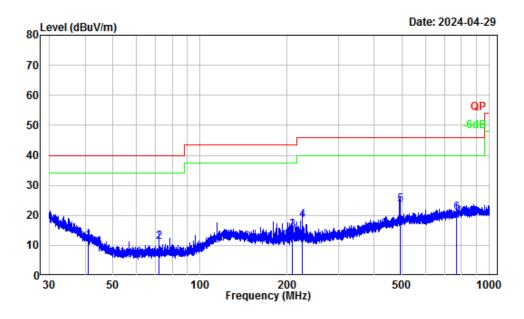
	Freq	Factor			Limit Line		Remark
				15.11	15.11		
	MHZ	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	37.89	20.08	57.97	127.83	-69.86	Peak
2	0.01	37.23	17.61	54.84	126.85	-72.01	Peak
3	0.01	35.75	19.23	54.98	124.81	-69.83	Peak
4	0.02	35.02	17.89	52.91	123.95	-71.04	Peak
5	0.02	31.07	22.46	53.53	120.39	-66.86	Peak
6	0.05	23.98	20.78	44.76	114.38	-69.62	Peak



Site :	Chamber A
Condition :	3m
Project Number:	2401571807E-RF
Note :	BT
Tester :	Warren Huang

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.18	13.50	34.28	47.78	102.69	-54.91	Peak
2	0.21	11.97	35.05	47.02	101.21	-54.19	Peak
3	0.33	7.00	36.47	43.47	97.13	-53.66	Peak
4	0.45	4.57	34.63	39.20	94.57	-55.37	Peak
5	0.63	1.96	34.81	36.77	71.61	-34.84	Peak
6	1.23	-2.39	33.77	31.38	65.64	-34.26	Peak

30MHz-1GHz: (*Maximum output power mode, EDR Mode (8DPSK) Low channel*)


Horizontal

Chamber A
3m Horizontal
2401571807E-RF
BT
Warren Huang

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.40	-11.77	23.63	11.86	40.00	-28.14	QP
2	99.97	-15.47	24.84	9.37	43.50	-34.13	QP
3	257.54	-14.27	37.60	23.33	46.00	-22.67	QP
4		-12.79	36.67	23.88	46.00	-22.12	QP
5	444.85	-9.69	30.26	20.57	46.00	-25.43	QP
6	803.90	-5.26	26.61	21.35	46.00	-24.65	QP

Site	:	Cha	amber	- A
Conditio	on :	Зm	Vert	tical
Project	Number:	240	91571	L807E-RF
Note	:	BT		
Tester	:	War	rren	Huang

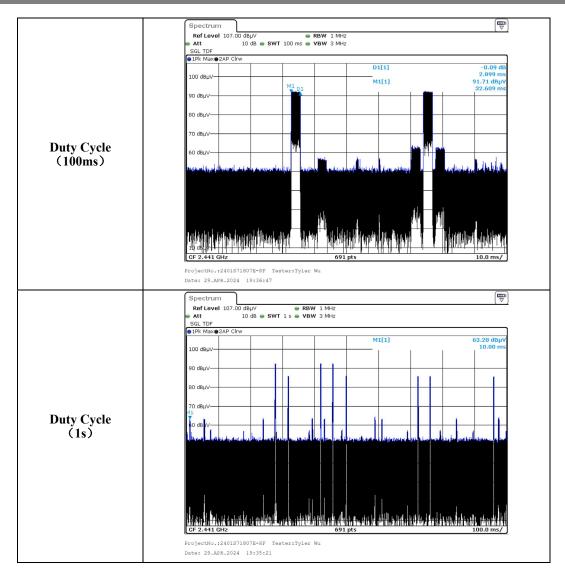
					Limit		
	Freq	Factor	Level	Level	Line	Limit	Remark
-							
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.88	-13.52	24.90	11.38	40.00	-28.62	QP
2	71.99	-18.67	29.95	11.28	40.00	-28.72	QP
3	208.03	-14.71	29.94	15.23	43.50	-28.27	QP
4							
5	490.74	-8.77	32.31	23.54	46.00	-22.46	QP
6	770.43	-5.77	26.68	20.91	46.00	-25.09	QP

Above 1GHz:

_	Rece	iver			Corrected						
Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
	8DPSK										
	Low Channel 2402MHz										
2345.95	55.34	PK	Н	-3.03	52.31	74	-21.69				
2370.26	55.65	PK	V	-2.93	52.72	74	-21.28				
4804.00	57.05	PK	Н	2.42	59.47	74	-14.53				
4804.00	57.56	PK	V	2.42	59.98	74	-14.02				
			Middle Channel 2441	MHz							
4882.00	57.26	PK	Н	2.58	59.84	74	-14.16				
4882.00	56.23	PK	V	2.58	58.81	74	-15.19				
			High Channel 2480N	ИНz							
2483.55	62.09	PK	Н	-3.17	58.92	74	-15.08				
2488.94	54.50	РК	V	-3.18	51.32	74	-22.68				
4960.00	56.56	PK	Н	2.68	59.24	74	-14.76				
4960.00	56.02	РК	V	2.68	58.70	74	-15.30				

Note:

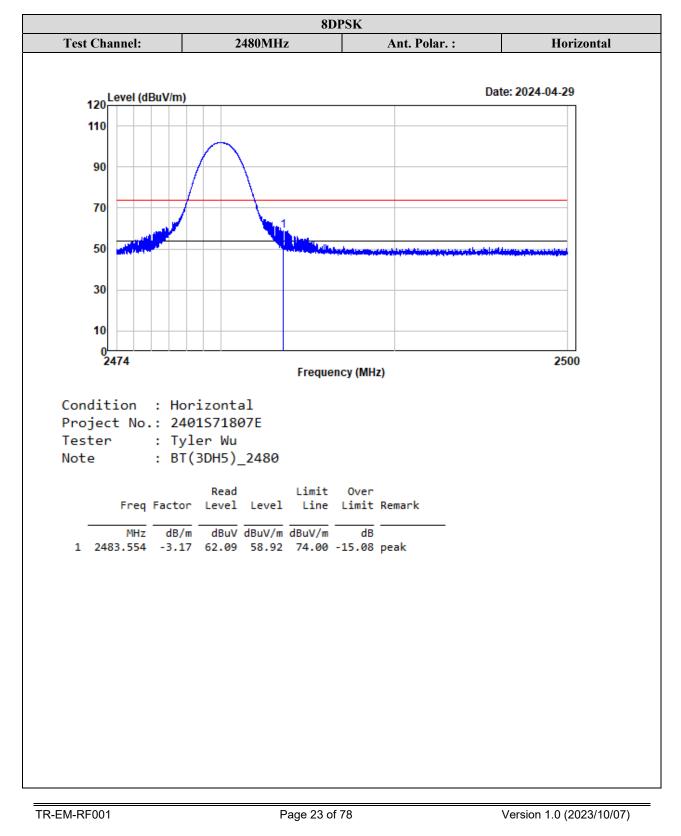
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit The other spurious emission which is in the noise floor level was not recorded.

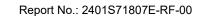

Report No.: 2401S71807E-RF-00

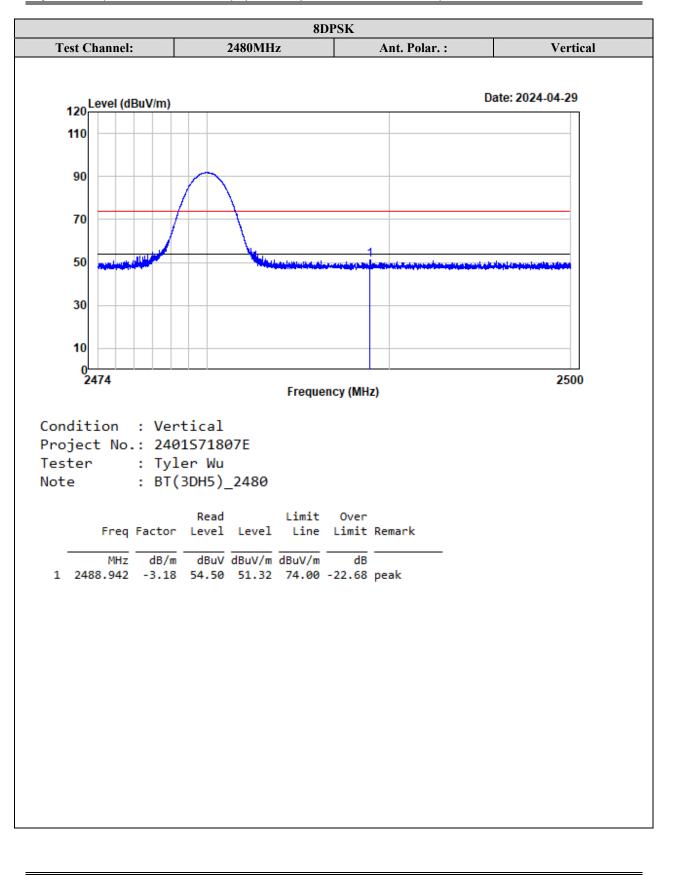
Field Strength of Average										
Frequency	Peak Measurement	Polar	Duty Cycle Corrected	Corrected	FC	C Part 15.2	47			
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment			
Low Channel 2402MHz										
2345.95	52.31	Н	-24.73	27.58	54	-26.42	Bandedge			
2370.26	52.72	V	-24.73	27.99	54	-26.01	Bandedge			
4804.00	59.47	Н	-24.73	34.74	54	-19.26	Harmonic			
4804.00	59.98	V	-24.73	35.25	54	-18.75	Harmonic			
			Middle Chann	el 2441MHz		-				
4882.00	59.84	Н	-24.73	35.11	54	-18.89	Harmonic			
4882.00	58.81	V	-24.73	34.08	54	-19.92	Harmonic			
			High Channe	1 2480MHz						
2483.55	58.92	Н	-24.73	34.19	54	-19.81	Bandedge			
2488.94	51.32	V	-24.73	26.59	54	-27.41	Bandedge			
4960.00	59.24	Н	-24.73	34.51	54	-19.49	Harmonic			
4960.00	58.70	V	-24.73	33.97	54	-20.03	Harmonic			

Note: Average level= Peak level+ Duty Cycle Corrected Factor

Worst case duty cycle: Duty cycle = Ton/100ms = 2.899*2/100=0.05798 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.05798 = -24.73

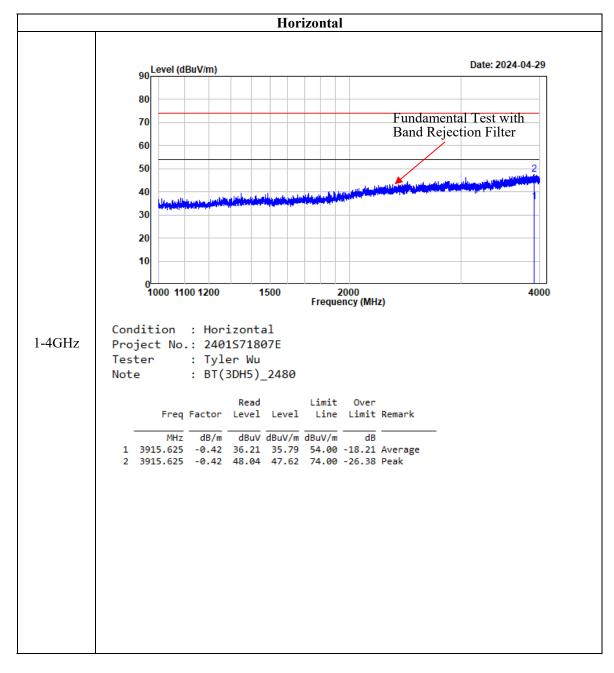

Report No.: 2401S71807E-RF-00

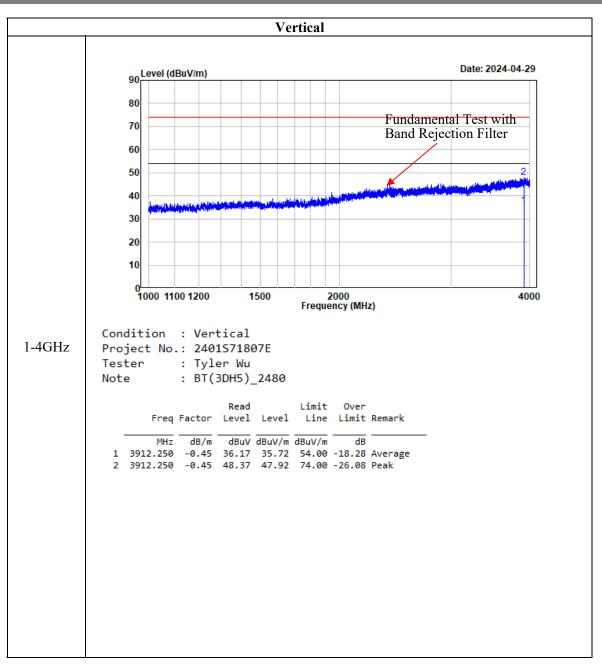


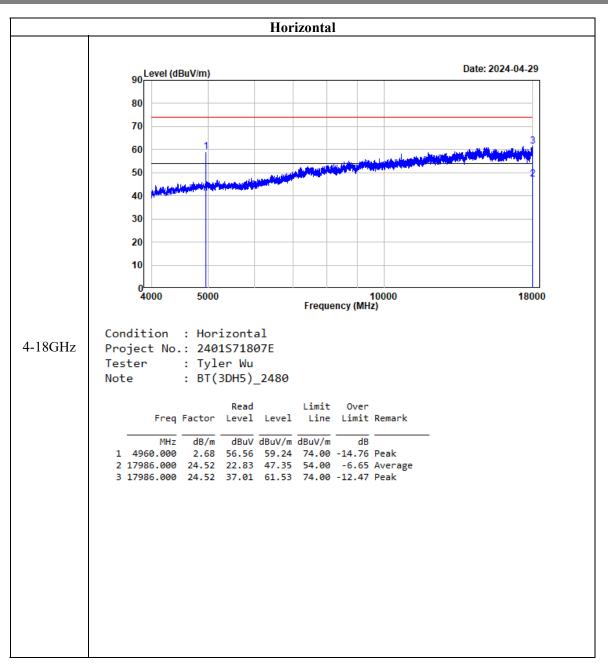

Report No.: 2401S71807E-RF-00

Test plots for example as below:

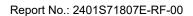
Band Edge Measurements (Radiated):

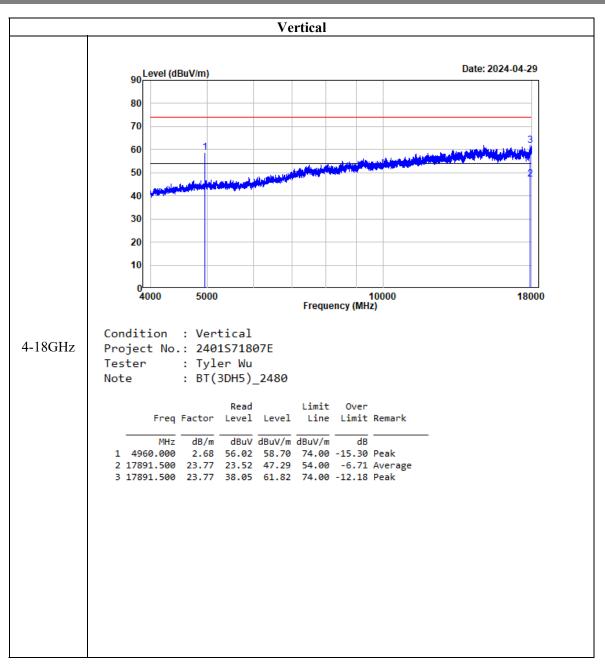


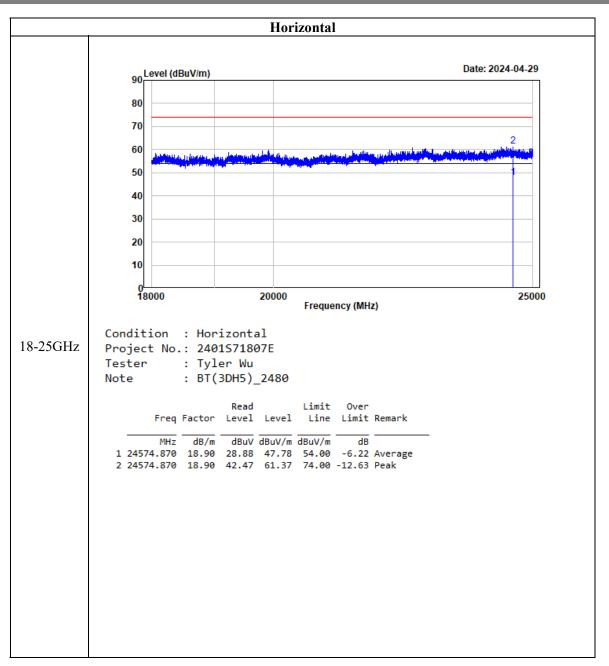



TR-EM-RF001

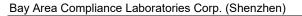
Harmonic and Spurious Emissions Measurements:

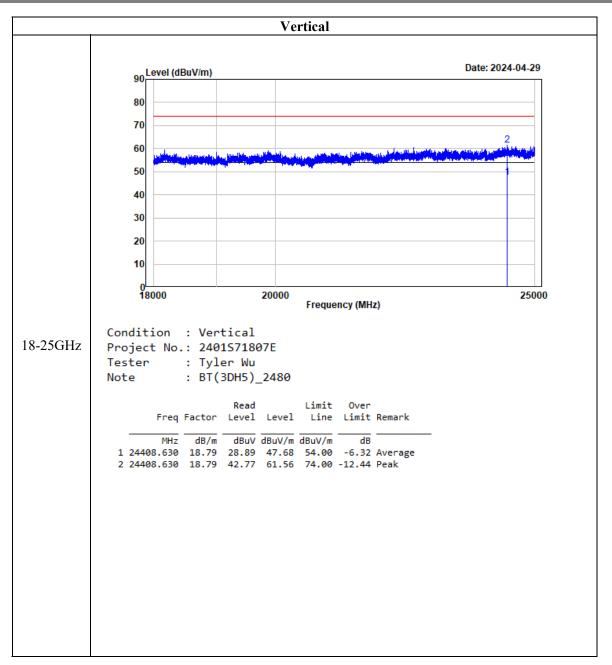



TR-EM-RF001



TR-EM-RF001




TR-EM-RF001

TR-EM-RF001

Report No.: 2401S71807E-RF-00

TR-EM-RF001

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

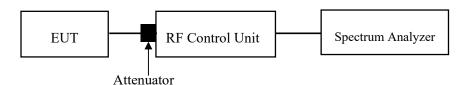
FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2


The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW/ 20dB bandwidth and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

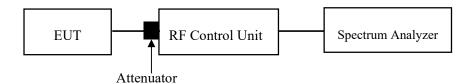
The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

TR-EM-RF001

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST


Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)


Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

Note 2: Totalhops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Data

Environmental Conditions

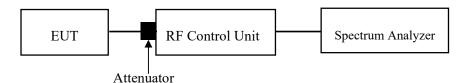
Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT


Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

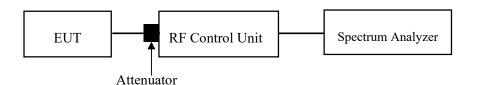
Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) § 5.5 - BAND EDGES TESTING


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-05-05.

EUT operation mode: Transmitting

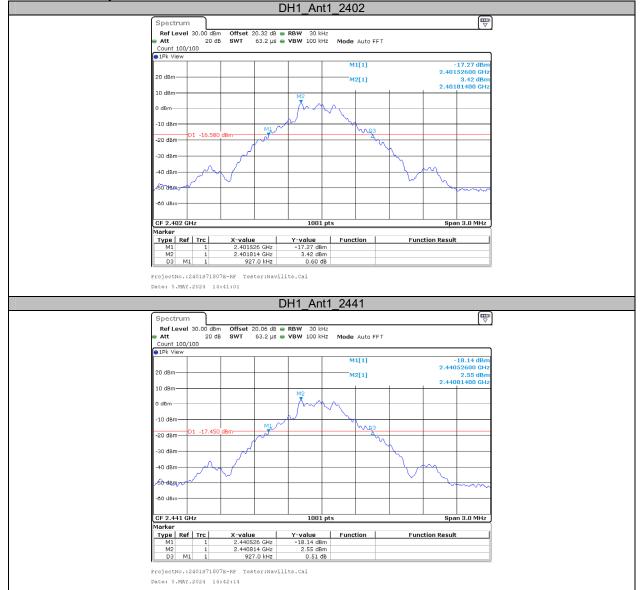
Test Result: Compliant. Please refer to the Appendix.

EUT PHOTOGRAPHS

Please refer to the attachment 2401S71807E-RF External photo and 2401S71807E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401S71807E-RF Test Setup photo.

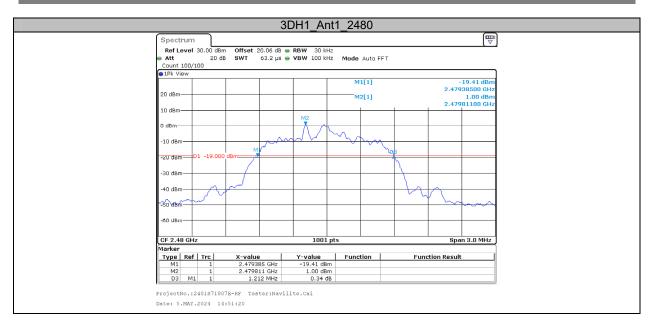

APPENDIX

Appendix A: 20dB Emission Bandwidth

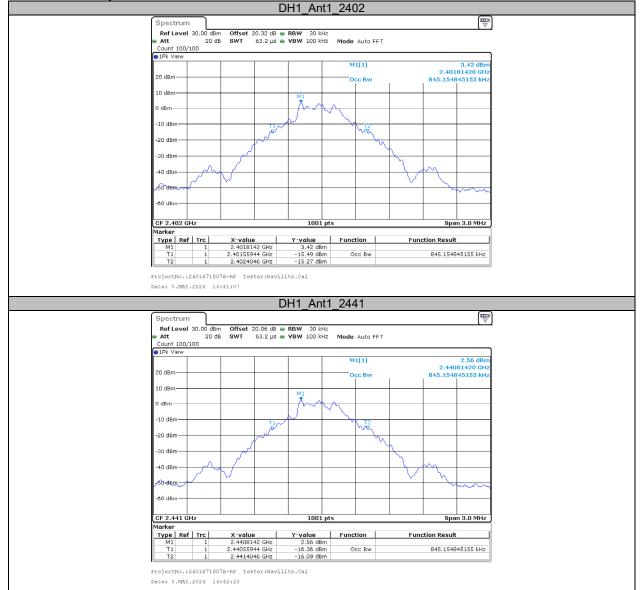
Test Result

Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.927	2401.53	2402.45		
DH1	Ant1	2441	0.927	2440.53	2441.45		
		2480	0.924	2479.53	2480.45		
		2402	1.251	2401.35	2402.60		
2DH1	Ant1	2441	1.251	2440.35	2441.60		
		2480	1.251	2479.35	2480.60		
		2402	1.212	2401.39	2402.60		
3DH1	Ant1	2441	1.215	2440.39	2441.60		
		2480	1.212	2479.39	2480.60		

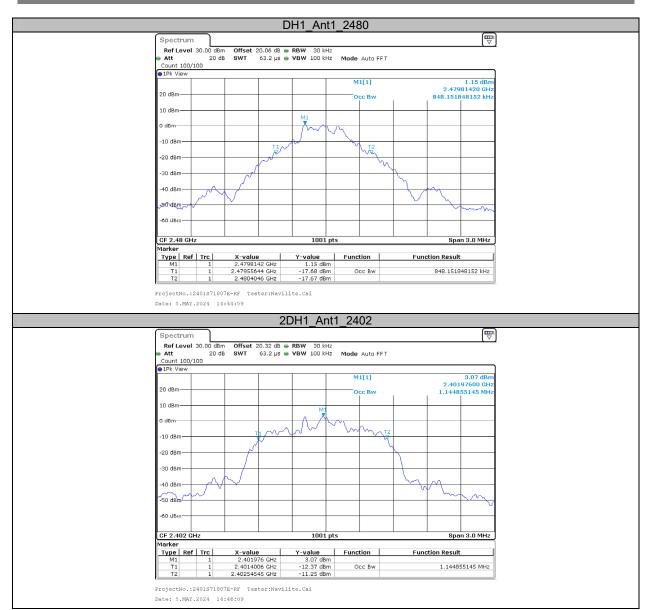

Test Graphs

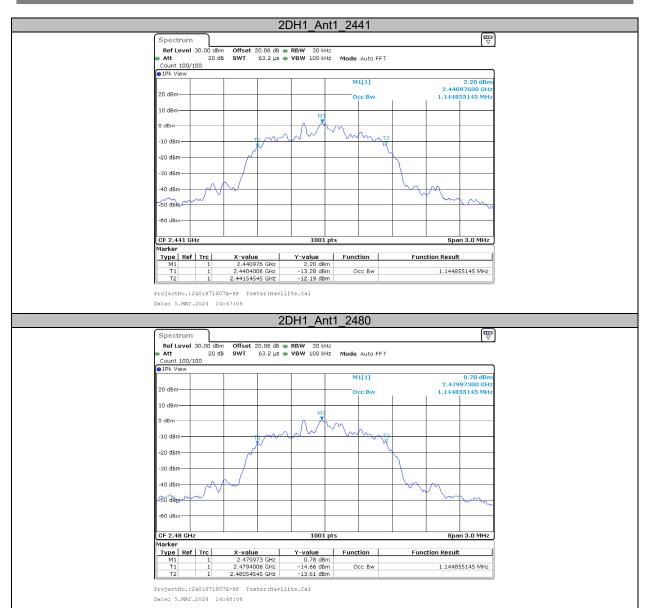


Version 1.0 (2023/10/07)


Report No.: 2401S71807E-RF-00

Appendix B: Occupied Channel Bandwidth


Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.845	2401.5594	2402.4046		
DH1	Ant1	2441	0.845	2440.5594	2441.4046		
		2480	0.848	2479.5564	2480.4046		
		2402	1.145	2401.4006	2402.5455		
2DH1	Ant1	2441	1.145	2440.4006	2441.5455		
		2480	1.145	2479.4006	2480.5455		
		2402	1.139	2401.4186	2402.5574		
3DH1	Ant1	2441	1.139	2440.4156	2441.5544		
		2480	1.139	2479.4156	2480.5544		

Test Graphs



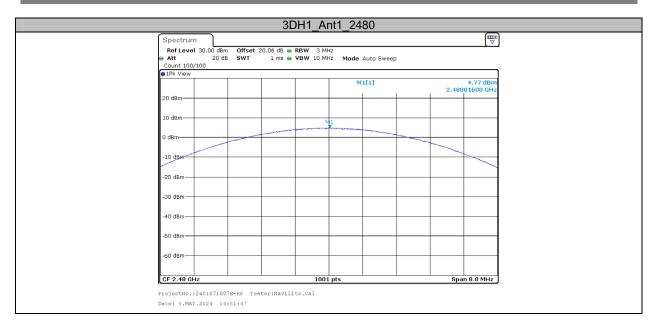
Version 1.0 (2023/10/07)

Appendix C: Maximum Conducted Output Power

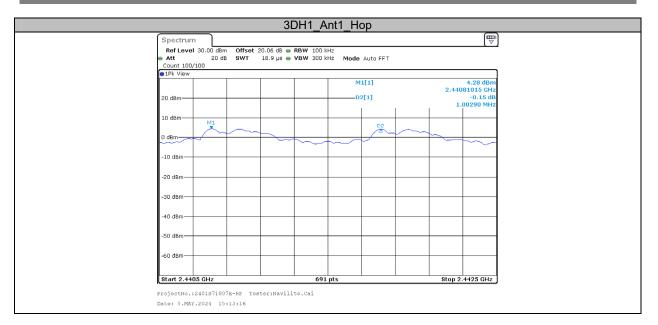
Test Result

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	5.52	≤20.97	PASS
DH1	Ant1	2441	4.69	≤20.97	PASS
		2480	3.31	≤20.97	PASS
		2402	6.25	≤20.97	PASS
2DH1	Ant1	2441	5.40	≤20.97	PASS
		2480	4.07	≤20.97	PASS
		2402	6.93	≤20.97	PASS
3DH1	Ant1	2441	6.10	≤20.97	PASS
		2480	4.77	≤20.97	PASS

Test Graphs


root orap		DH1 Ant1 2402		
	Spectrum			
	Ref Level 30.00 dBm Offset Att 20 dB SWT	t 20.32 dB e RBW 3 MHz 1 ms e VBW 10 MHz Mode Auto Sweep		
	Count 100/100	Tins - +BW 10 Minz Mode Addo Sweep		
	●1Pk View	M1[1]	5.52 dBm	
		mili	2.40192010 GHz	
	20 dBm			
	10 dBm	541		
		MI		
	0 dBm			
	-10.d8m			
	-10.4011			
	-20 dBm			
	20.40-			
	-30 dBm			
	-40 dBm			
	50 Jp.			
	-50 dBm			
	-60 dBm			
	CF 2.402 GHz	1001 pts	Span 8.0 MHz	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24	ester:Navilite.Cai		
	ProjectNo.:2401S71807E-RF Te			
	ProjectNo.:2401S71807E-RF Te Date: 5.MAY.2024 14:41:24	ostor:Navilite.Cai	(m) V	
	Projectno.:2401s71807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum RefLevel 30.00 dBm Offset Att 20 dB SWT	ester:Navilite.Cai	(TTT) V	_
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum RefLevel 30.00 dBm Offset Att 20 dB SWT Count 100/100	DH1_Ant1_2441	 	
	Projectno.:2401s71807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum RefLevel 30.00 dBm Offset Att 20 dB SWT	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 1Pk View	DH1_Ant1_2441		
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum RefLevel 30.00 dBm Offset Att 20 dB SWT Count 100/100	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 1Pk View	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 IPK View 20 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Ount 100/100 IPk View 20 dBm 10 dBm 0 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 1Pk View 20 dBm 10 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Ount 100/100 IPk View 20 dBm 10 dBm 0 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 10 dBm 10 dBm 10 dBm -10 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 10 dBm 10 dBm 10 dBm -10 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24 Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT Count 100/100 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24	DH1_Ant1_2441	4.69 dBm	
	ProjectNo.:2401871807E-RF Te Date: 5.MAY.2024 14:41:24	DH1_Ant1_2441	4.69 dBm	

Version 1.0 (2023/10/07)

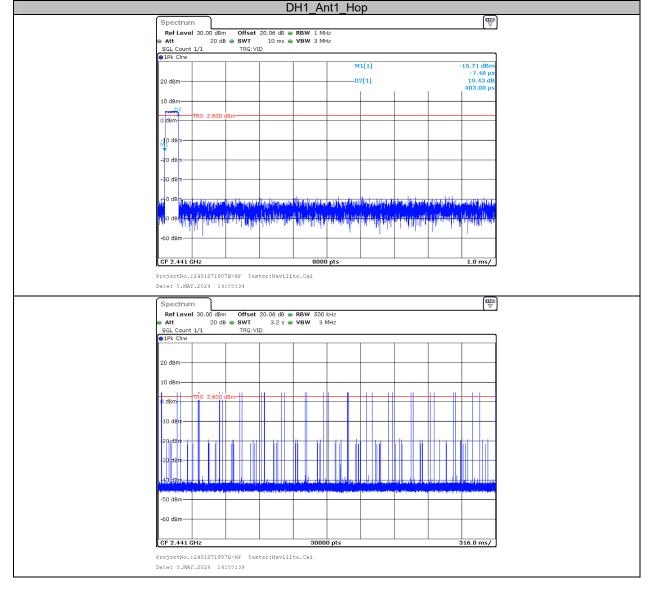

Appendix D: Carrier Frequency Separation

Test Result

Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.618	PASS
2DH1	Ant1	Нор	1	≥0.834	PASS
3DH1	Ant1	Нор	1.003	≥0.810	PASS
Note: Limit= Two-t	thirds of the 20 dB	bandwidth			

Test Graphs

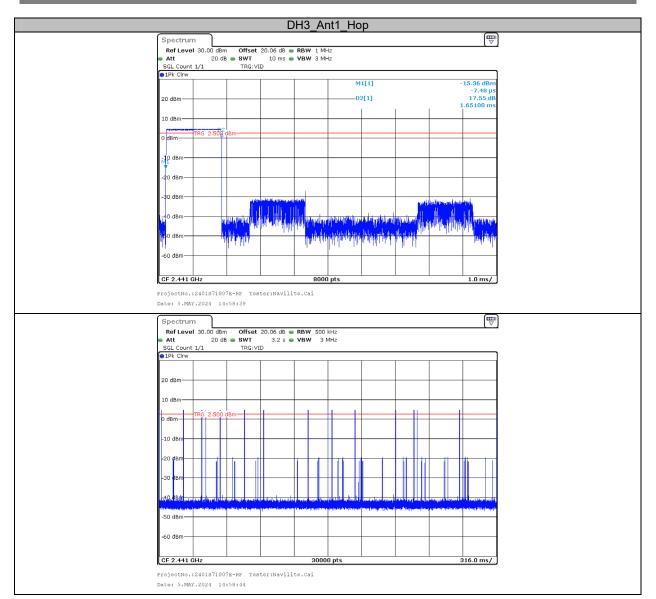
DH1_Ant1_Hop	
Spectrum 🕎	
RefLevel 30.00 dBm Offset 20.06 dB ● RBW 100 kHz ● Att 20 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT	
Count 100/100	
1Pk View M1[1] 4.35 dBm	
20 dBm D2[1] -0.17 dB	
20 UGIII 1.00290 MHz	
10 d8m M1	
-10.d8m	
-20 dBm	
*20 ddii	
-30 dBm	
-40 dBm-	
-50 dBm	
-60 dBm	
Start 2.4405 GHz 691 pts Stop 2.4425 GHz	
2DH1_Ant1_Hop	
Spectrum Image: Constraint of the sector of t	
👄 Att 20 dB SWT 18.9 μs 👄 VBW 300 kHz Mode Auto FFT	
Count 100/100 IPk View	
M1[1] 4.25 dBm 2.44081594 GHz	
20 dBm D2[1] -0.16 dB 1.00000 MHz	
10.49 ~	
0 dBm	
-10 dBm	
-20 dBm	
-30 d8m	
-40 d8m	
-50 dBm	
-60 dBm-	
Start 2.4405 GHz 691 pts Stop 2.4425 GHz	
ProjectNo.:2401S71807E-RF Tester:Navilite.Cai	
ProjectNo.:2401S/180/E-RF Tester:Navilite.Cai Date: 5.MAY.2024 15:07:56	

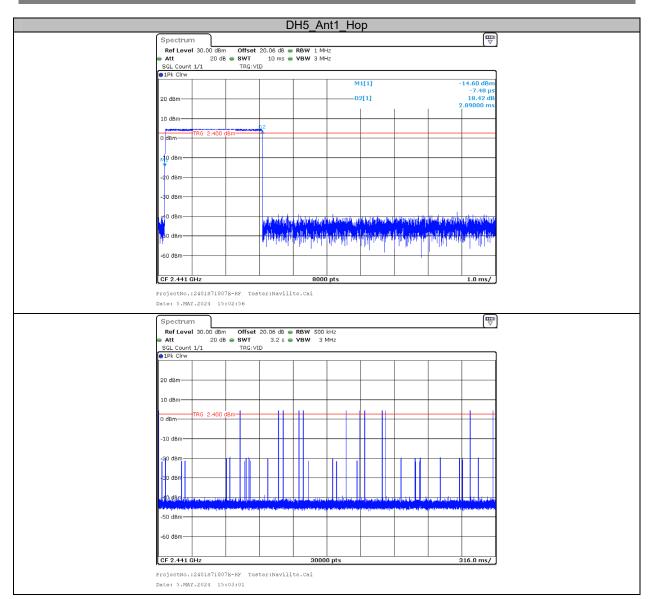

Report No.: 2401S71807E-RF-00

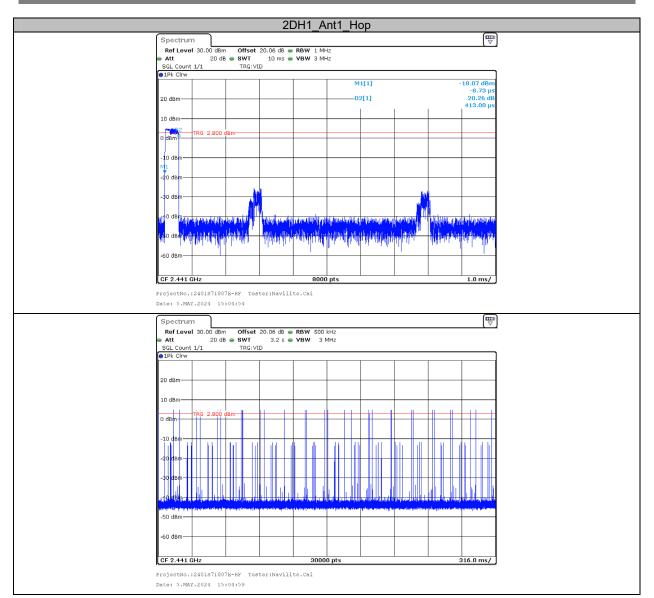
Appendix E: Time of Occupancy

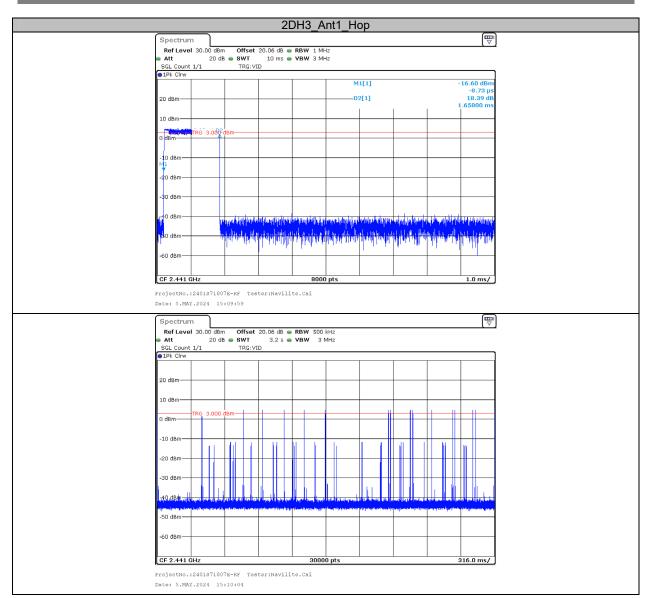
Test Result

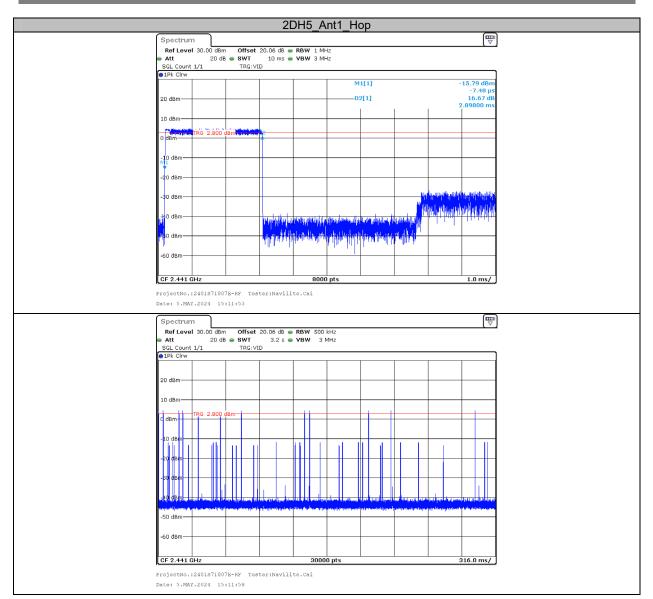
Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.403	320	0.129	≤0.4	PASS
DH3	Ant1	Нор	1.651	160	0.264	≤0.4	PASS
DH5	Ant1	Нор	2.890	130	0.376	≤0.4	PASS
2DH1	Ant1	Нор	0.413	320	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.658	160	0.265	≤0.4	PASS
2DH5	Ant1	Нор	2.898	120	0.348	≤0.4	PASS
3DH1	Ant1	Нор	0.415	320	0.133	≤0.4	PASS
3DH3	Ant1	Нор	1.656	150	0.248	≤0.4	PASS
3DH5	Ant1	Нор	2.899	130	0.377	≤0.4	PASS

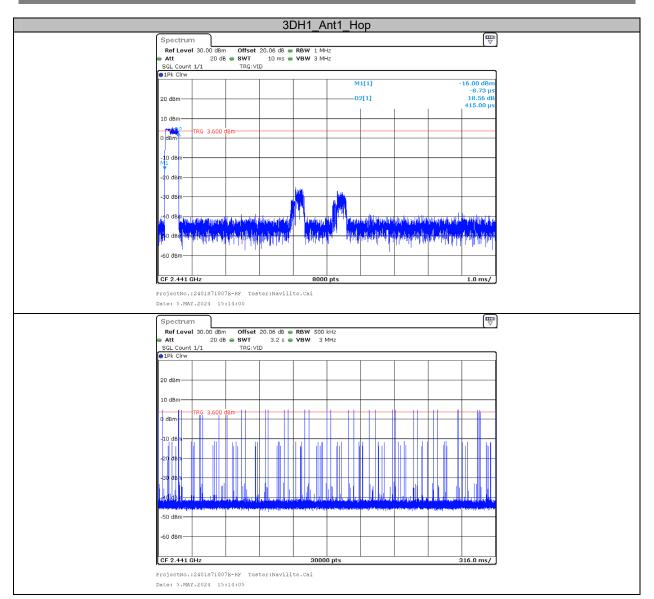

Test Graphs

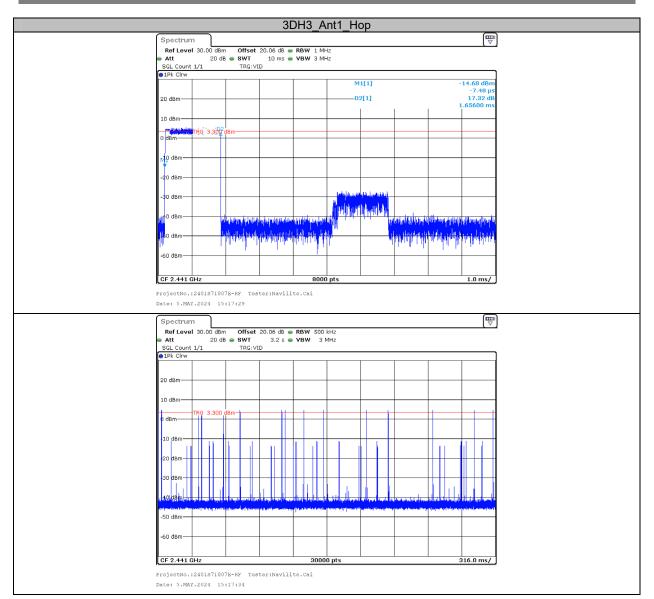


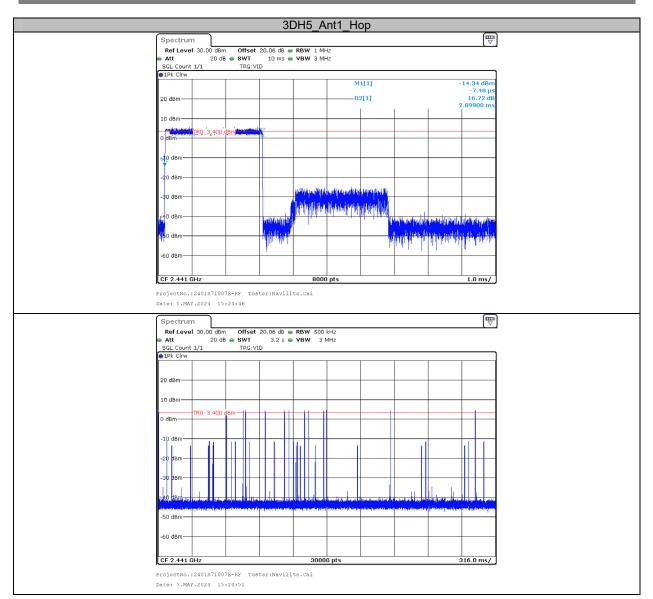

TR-EM-RF001


Version 1.0 (2023/10/07)


Report No.: 2401S71807E-RF-00





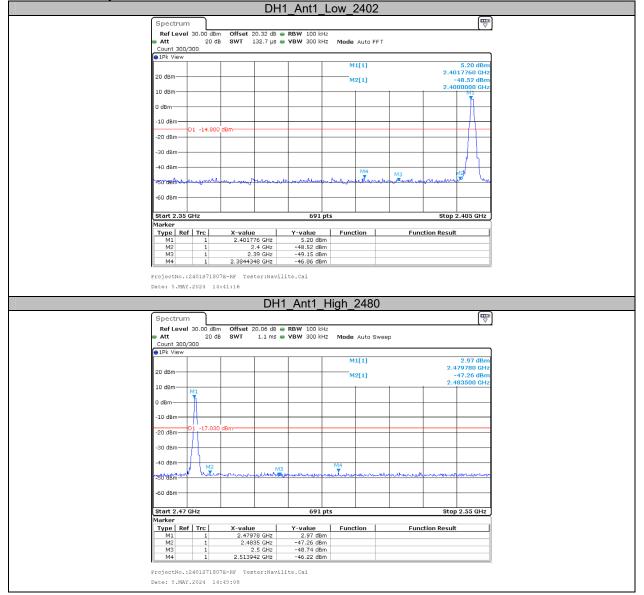


Report No.: 2401S71807E-RF-00

Appendix F: Number of Hopping Channels

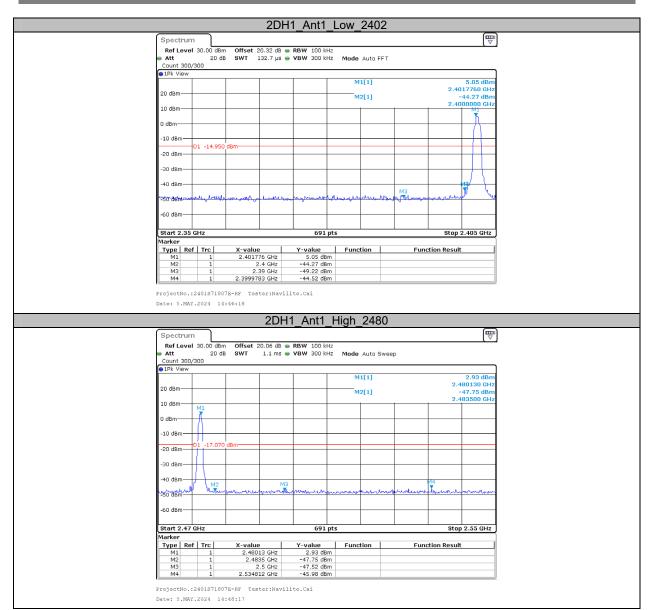
Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

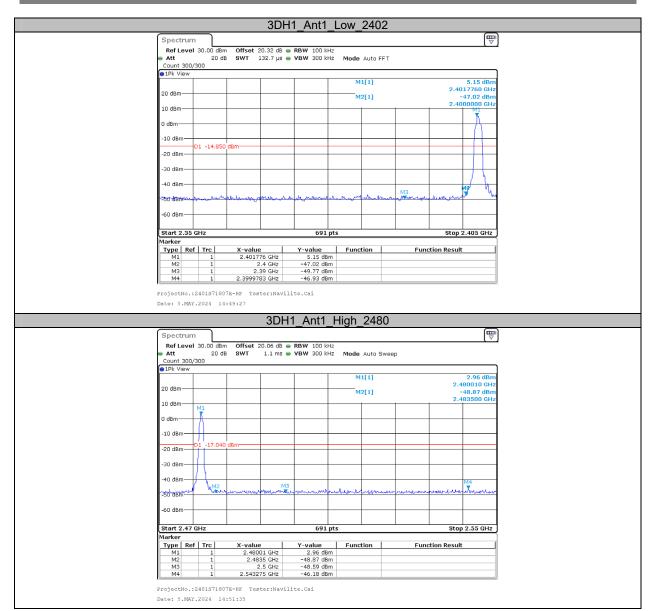

Test Graphs

DH1_Ant1_Hop	
Spectrum 🕎	
Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep	
Count 1000/1000	
20 dBm	
o #Emiliar Anna Anna Anna Anna Anna Anna Anna An	
-10 #50	
-20 dBm	
-50 dBm	
+40 dBm	
-50 dBm	
-60 dBm	
Start 2.4 GHz 691 pts Stop 2.4835 GHz	
ProjectNo.:2401S71807E-RF Tester:Navilite.Cai	
Projectic.22005/100/B-KF Tester:Wavilite.Cal Date: 5.MAY.2024 14:55:20	
2DH1_Ant1_Hop	
Spectrum	
RefLevel 30.00 dBm Offset 20.25 dB RBW 100 kHz	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000	
● Att 20 dB SWT 1 ms ● VBW 300 kHz Mode Auto Sweep	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count: 1000/1000	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Count 1000/1000	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Count 1000/1000	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Sweet and S	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Count 1000/1000	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Sweet and S	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 91Pk View 9	
Att 20 dB SwT 1 ms VBw 300 kHz Mode Auto Sweep Count 1000/1000 91Pk View 9	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 91Pk View 9	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count: 1000/1000 91% View 9	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 20 dB m 20 dBm	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count: 1000/1000 91% View 9	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Sweet	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Sweet	
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 IPK View Image: Sweep	

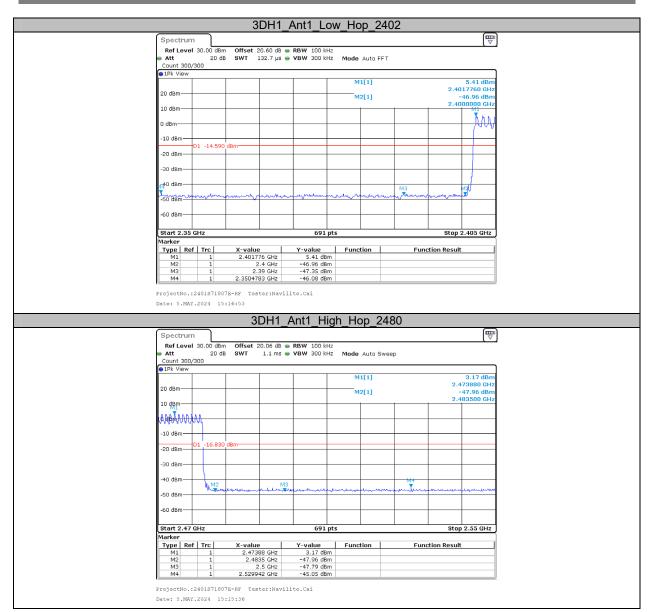
			- 3	DH1_A	nt1_H	ор				
Spectrum										⊽
Ref Level 30				RBW 100						
Att Count 1000/10	20 dB	SWI	1 ms 🖮	ARM 300 P	Hz Mode	Auto Swee	p			
●1Pk View										
20 dBm										
10 dBm										
6585659611	INNAKA	0.4.1.6.6.6.6.6	6 A A D J A A		AND ALBOA					
olaen	AAAAAA	HHAAAAAA	MANANA	ANNANA	1000000000000000000000000000000000000	KWWWW	MMM	WWWW	NW	
-10 dBm										-
-20 dBm										
-30 dBm										
40 dBm										
-50 dBm										h
-60 dBm										
Start 2.4 GHz				691	pts			Stop 2.	4835 G	Hz


Appendix G: Band Edge Measurements

Test Graphs


Report No.: 2401S71807E-RF-00

Version 1.0 (2023/10/07)



Report No.: 2401S71807E-RF-00

Version 1.0 (2023/10/07)

Report No.: 2401S71807E-RF-00

***** END OF REPORT *****

Version 1.0 (2023/10/07)