
ESP-32S User Manual

REV 1.0 2017.3

FCC STATEMENT

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Please notice that if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID:

2AHMR-ESP32S" any similar wording that expresses the same meaning may be used.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cmbetween the radiator & your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

The module is limited to OEM installation ONLY.

The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.

The module is limited to installation in mobile application;

A separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and difference antenna configurations.

There is requirement that the grantee provide guidance to the host manufacturer for compliance with Part 15B requirements.

Copyright © 2017 Ai-Thinker Technology Co., Ltd. All rights reserved.

Contents

1.Preface	1
2. Pin Definitions	3
2.1 Pin Layout	3
2.2 Pin Description	4
2.3 Strapping Pins	5
3. Functional Description	7
3.1 CPU and Internal Memory	
3.2 External Flash and SRAM	7
3.3 Crystal Oscillators	7
3.4 Power Consumption	8
3.5 Peripherals and Sensors	g
3.5.1 Peripherals and Sensors Description	9
3.5.2 Peripheral Schematics	14
4. Electrical Characteristics	15
4.1 Absolute Maximum Ratings	15
4.2 Recommended Operating Conditions	15
4.3 Digital Terminal Characteristics	15
4.4 Wi-Fi Radio	16
4.5 Bluetooth LE Radio	16
4.5.1 Receiver	16
4.5.2 Transmit	17
4.6 Reflow Profile	17
5. Schematics	18

1.Preface

ESP-32S is a powerful, generic Wi-Fi +BT+BLE MCU module that targets a wide variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WDQ6 chip*, which is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled or powered, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power coprocessor to constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors, low-noise sense amplifiers, SD card interface, Ethernet, high speed SDIO/SPI, UART, I2S and I2C.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted, and that the module is future proof: using Wi-Fi allows a large physical range and direct connection to the internet through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 μ A, making it suitable for battery powered and wearable electronics applications. ESP-32S supports data rates of up to 150 Mbps, and 22 dBm output power at the PA to ensure the widest physical range. As such the chip does offer industry-leading specifications and the best performance for electronic integration, range, power consumption, and connectivity.

The operating system chosen for ESP32 is free RTOS with LWIP; TLS 1.2 with hardware acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that developers can continually upgrade their products even after their release.

Table 1 provides the specifications of ESP-32S.

Table 1: ESP-32S Specifications

Categories	Items	Specifications		
	Standards	FCC/CE/IC/TELEC/KCC/SRRC/NCC		
		802.11 b/g/n/d/e/i/k/r (802.11n up to 150 Mbps)		
Wi-Fi	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μs guard		
Frequency range		interval support		
	Frequency range	2.4 ∽2.5 GHz		
	Protocols	Bluetooth v4.2 BR/EDR and BLE specification		
		NZIF receiver with -98 dBm sensitivity		
Bluetooth	Radio	Class-1, class-2 and class-3 transmitter		
		AFH		
Audio		CVSD and SBC		

Categories	Items	Specifications		
		SD card, UART, SPI, SDIO, I2C, LED PWM, Motor PWM,		
	Module interface	12S, 12C, IR		
	Wiodule Interface	GPIO, capacitive touch sensor, ADC, DAC, LNA pre-		
		amplier		
	On-chip sensor	Hall sensor, temperature sensor		
Hardware	On-board clock	40 MHz crystal		
	Operating voltage	2.2 ∽3.6V		
	Operating current	Average: 80 mA		
	Operating temperature range	-40°C ~ 85°C *		
	Ambient temperature range	Normal temperature		
	Package size	18 mm x 25.5 mm x 2.8 mm		
	Wi-Fi mode	Station/SoftAP/SoftAP+Station/P2P		
	Security	WPA/WPA2/WPA2-Enterprise/WPS		
	Encryption	AES/RSA/ECC/SHA		
	Firmware upgrade	UART Download / OTA (via network) / download and		
Software	Filliware upgrade	write firmware via host		
	Software development	Supports Cloud Server Development / SDK for custom		
	Software development	firmware development		
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT		
	User configuration	AT instruction set, cloud server, Android/iOS app		

2. Pin Definitions

2.1 Pin Layout

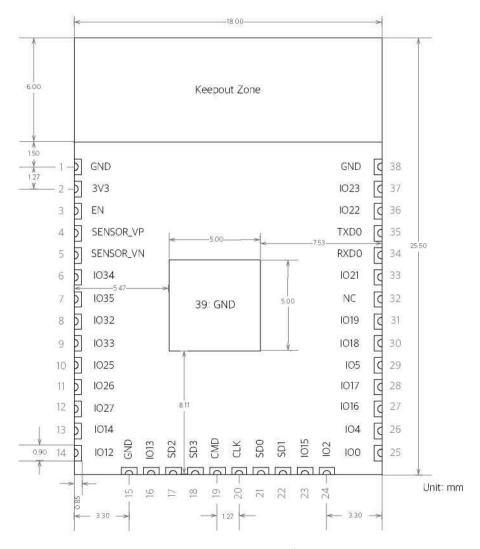


Figure 1: Top and Side View of ESP-32S

Table 2: ESP-32S Dimensions

Length	Width	Height	PAD size (bottom)	Pin pitch	Shielding can height	PCBthickness
18 mm	25.5 mm	2.8± 0.1 mm	0.85 mm x 0.9 mm	1.27 mm	2 mm	±0.1mm

2.2 Pin Description

ESP -32S has 39 pins. See pin definitions in Table 3.

Table 3: ESP-32S Pin Definitions

Name	No.	Туре	Function		
GND	1	Р	Ground		
3V3	2	Р	Power supply.		
EN	3	I	Chip-enable signal. Active high.		
SENSOR_VP	4	I	GPI036, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPI00		
SENSOR_VN	5	I	GPI039, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPI03		
IO34	6	I	GPI034, ADC1_CH6, RTC_GPI04		
IO35	7	I	GPI035, ADC1_CH7, RTC_GPI05		
1022	o	1/0	GPI032, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,		
1032	8	I/O	TOUCH9, RTC_GPI09		
1033	9	I/O	GPI033, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,		
1033	9	1/0	TOUCH8, RTC_GPI08		
IO25	10	I/O	GPI025, DAC_1, ADC2_CH8, RTC_GPI06, EMAC_RXD0		
IO26	11	I/O	GPI026, DAC_2, ADC2_CH9, RTC_GPI07, EMAC_RXD1		
IO27	12	I/O	GPI027, ADC2_CH7, TOUCH7, RTC_GPI017, EMAC_RX_DV		
1014	12	1/0	GPraM,ADC2_CH6, T0UCH6,MTMS, HSPHK, HS2_CLK, SD_CLK,		
IO14	13	I/O	EMAC_TXD2		
1012	1.4	1/0	GPI012, ADC2_CH5, TOUCH5, RTC_GPI015, MTDL HSPIQ, HS2_DATA2,		
1012	14	I/O	SD_DATA2, EMAC_TXD3		
GND	15	Р	Ground		
1013	16	I/O	GPI013, ADC2_CH4, TOUCH4, RTC_GPI014, MTCK, HSPID, HS2_DATA3,		
1013	16	1/0	SD_DATA3, EMAC_RX_ER		
SHD/SD2*	17	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD		
SWP/SD3*	18	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD		
SCS/CMD*	19	I/O	GPIO11, SD_CMD, SPICSO, HS1_CMD, U1RTS		
SCK/CLK*	20	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS		
SDO/SD0*	21	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS		
SDI/SD1*	22	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS		
10.15	22		GPIO15, ADC2_CH3, TOUCH3, MTD0, HSPICSO, RTC_GPI013, HS2_CMD,		
IO 15	23	I/O	SD_CMD, EMAC_RXD3		
IO 2	24	I/O	GPIO2, ADC2_CH2, TOUCH2,HSPIWP, HS2_DATA0, SD_DATA0		
10 0	25	I/O	GPIO0, ADC2_CH1, TOUCH1, CLK_OUT1, EMAC_TX_CLK		
10.4	26	1/0	GPIO4,ADC2_CH0,T0UCH0, RTC_GPI010, HSPIHD, HS2_DATA1,		
IO 4	26	I/O	SD_DATA1, EMAC_TX_ER		
IO 16	27	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT		
IO 17	28	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_0UT_180		
10 5	29	I/O	GPIO5, VSPICSO, HS1_DATA6, EMAC_RX_CLK		
1018	30	1/0	GPIO18, VSPHK, HS1 DATA7		
1019	31	1/0	GPIO19, VSPIQ, UOCTS, EMAC—TXDO		
.013	J-1	ļ', J	of 1015, vol 10, 00015, Living 1750		

Name	No.	Туре	Function	
NC	32	-	-	
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN	
RXD0	34	I/O	GPIO3, UORXD, CLK_OUT2	
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2	
IO22	36	I/O	GPIO22, VSPIWP,UORTS, EMAC_TXD1	
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE	
GND	38	Р	Ground	
GND	39	Р	Ground	

Note:

2.3 Strapping Pins

ESP32-D0WDQ6 has five strapping pins. Software can read the value of these five bits from the register "GPIO_STRAPPING". During the chip power-on reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strap-ping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host MCU5s GPIOs to control the voltage level of these pins when powering ESP32 on.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 4 for detailed boot modes of configuration by strapping pins.

Table 4: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)					
Pin	Default	3.3V		1.8V	
MTDI	Pull-down	0		1	
Booting N	lode				
Pin	Default	SPI Flash Boot		Download Boot	
GPIO0	Pull-up	1		0	
GPIO2	Pull-down	Don't-care		0	
Debugging	Log on UOT	(D During Booting			
Pin	Default	U0TXD Toggling		U0TXD Silent	
MTDO	Pull-up	1		0	
Timing of	SDIO Slave				
Pin	Default	Falling-edge Input Falling-edge Input		Rising-edge Input	Rising-edge Input
FIII	Delauit	Falling-edge Output Rising-edge Output		Falling-edge Output	Rising-edge Output
MTDO	Pull-up	0	0	1	1
GPIO5	Pull-up	0	1	0	1

^{*} Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to the integrated SPI flash integrated on ESP-32S and are not recommended for other uses.

Note:

Firmware can configure register bits to change the settings of "Voltage of Internal LDO(VDD_SDIO)" and "Timing of SDIO Slave" after booting.

3. Functional Description

This chapter describes the modules and functions integrated in ESP-32S.

3.1 CPU and Internal Memory

ESP32-DOWDQ6 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory includes:

- 448 KB of ROM for booting and core functions.
- 520 KB of on-chip SRAM for data and instruction.
- 8KB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor during the Deep-sleep mode.
- 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed by the main CPU during RTC Boot from the Deep-sleep mode.
- 1 kbit of eFuse, of which 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32-DOWDQ6 supports up to four 16-MB external QSPI flash and SRAM with hardware encryption based on AES to protect developer's programs and data.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash are memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.
- Up to 8 MB of external flash/SRAM are memory-mapped onto the CPU data space, supporting 8, 16 and 32-bit access. Data-read is supported on the flash and SRAM. Data-write is supported on the SRAM.

ESP-32S integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported. The integrated SPI flash is connected to GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11. These six pins cannot be used as regular GPIO.

3.3 Crystal Oscillators

The frequencies of the main crystal oscillator supported include 40 MHz, 26 MHz and 24 MHz. The accuracy of crystal oscillators applied should be ±10PPM, and the operating temperature ranges from-40°C to 85°C. When using the downloading tools, remember to select the right crystal oscillator type. In circuit design, capacitors C1 and C2 that connect to the earth are added to the input and output terminals of the crystal oscillator, respectively. The values of the two capacitors can be flexible, ranging from 6 pF to 22 pF. However, the specific capacitive values of C1 and C2 depend on further tests and adjustments of the overall performance of the whole circuit. Normally, the capacitive values ofC1 and C2 are within 10 pF when the crystal oscillator frequency is 26 MHz, or 10 pF<C1 and C2<22 pF when the crystal oscillator frequency is 40 MHz.

The frequency of the RTC crystal oscillator is typically 32 kHz or 32.768 kHz. The accuracy can be out of the range of ± 20 PPM, when the internal calibration is applied to correct the frequency offset. When the chip

operates in low-power modes, the application chooses the external low-speed (32 kHz) crystal clock, rather than the internal RC oscillators, to achieve the accurate wakeup time.

3.4 Power Consumption

With the advanced power management technology, ESP32-D0WDQ6 can switch between different power modes as follows:

• Power mode

- Active mode: chip radio is powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: the CPU is operational and the clock is configurable. Wi-Fi / Bluetooth baseband and radio are disabled.
- Light-sleep mode: the CPU is paused. The RTC and ULP-coprocessor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
- Deep-sleep mode: Only RTC is powered on. Wi-Fi and Bluetooth connection data are stored in RTC memory. The ULP-coprocessor can work.
- Hibernation mode: The internal 8MHz oscillator and ULP-coprocessor are disabled. The RTC recovery memory is powered down. Only one RTC timer on the slow clock and some RTC GPIOs are active. The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

• Sleep Pattern

- Association sleep pattern: The power mode switches between the active mode and Modem-sleep/Light- sleep mode during this sleep pattern. The CPU, Wi-Fi, Bluetooth, and radio wake up at pre-determined intervals to keep Wi-Fi / BT connections on.
- ULP sensor-monitored pattern: The main CPU is in the Deep-sleep mode. The ULP co-processor does sensor measurements and wakes up the main system, based on the measured data from sensors.

The power consumption varies with different power modes/sleep patterns, and work status, of functional modules (see Table 5).

Table 5: Power Consumption by Power Modes

wer mode Comment Powe

Power mode	Comment	Power consumption	
	Wi-Fi Tx packet 13 dBm ~ 21 dBm	160 ∽260 mA	
Active mode (RF working)	Wi-Fi / BT Tx packet 0 dBm	120mA	
Active mode (Kr working)	Wi-Fi / BT Rx and listening	80 ∽90 mA	
	Association sleep pattern (by Light-	0.9 mA@DTIM3, 1.2 mA@DTIM1	
		Max speed: 20 mA	
Modem-sleep mode	The CPU is powered on.	Normal: 5 ∽10 mA	
		Slow speed: 3 mA	
Light-sleep mode	-	0.8 mA	
	The ULP-coprocessor is powered on.	0.15 mA	
Deep-sleep mode	ULP sensor-monitored pattern	25 μA@1% duty	
	RTC timer + RTC memories	20 μΑ	
Hibernation mode	RTC timer only	5μΑ	

3.5 Peripherals and Sensors

3.5.1 Peripherals and Sensors Description

Table 6: Peripherals and Sensors Description

Interface	Signal	Pin	Function	
	ADC1_CH0	SENSOR_VP		
	ADC1_CH3	SENSOR_VN		
	ADC1_CH4	IO32		
	ADC1_CH5	IO33		
	ADC1_CH6	IO34		
	ADC1_CH7	IO35		
	ADC2_CH0	104		
ADC	ADC2_CH1	100	Two 12-bit SAR ADCs	
	ADC2_CH2	102		
	ADC2_CH3	IO15		
	ADC2_CH4	IO13		
	ADC2_CH5	IO12		
	ADC2_CH6	IO14		
	ADC2_CH7	1027		
	ADC2_CH8	IO25		
	ADC2_CH9	IO26		
Ultra Low Noise	SENSOR_VP	IO36	Provides about 60dB gain by using larger	
Analog Pre-Amplifier	SENSOR_VN	IO39	capacitors on PCB	
DAC	DAC_1	IO25	Two 8-bit DACs	
DAC	DAC_2	IO26	TWO 8-BIT DACS	
	тоисно	IO4		
	TOUCH1	100		
	TOUCH2	102		
	TOUCH3	IO15		
Tauch Canaan	TOUCH4	IO13	Canasitiva tavah sanasya	
Touch Sensor	TOUCH5	IO12	Capacitive touch sensors	
	TOUCH6	IO14		
	TOUCH7	1027		
	TOUCH8	IO33		
	TOUCH9	IO32		

Interface	Signal	Pin	Function
SD/SDIO/MMC Host	HS2_CLK	MTMS	Supports SD memory card V3.01 standard
	HS2_CMD	MTDO	
	HS2_DATA0	102	
	HS2_DATA1	104	
	HS2_DATA2	MTDI	
	HS2_DATA3	MTCK	
Motor PWM	PWMO_OUTO~2	Any GPIOs*	Three channels of 16-bit timers generate
	PWM1_OUT_INO~2		
	PWM0_FLT_IN0~2		
	PWM1_FLT_IN0~2		
	PWM0_CAP_IN0~2		
	PWM1_CAP_IN0~2		
	PWM0_SYNC \ N0~2		
	PWM1_SYNC \ N0~2		
LED PWM	ledc_hs_sig_out0~7	Any GPIOs*	16 independent channels @80MHz
	ledc_ls_sig_out0~7		
UART	U0RXD_in	Any GPIOs*	Two UART devices with hardware
	U0CTS_in		
	U0DSR_in		
	U0TXD_out		
	U0RTS_out		
	U0DTR_out		
	U1RXD_in		
	U1CTS_in		
	U1TXD_out		
	U1RTS_out		
	U2RXD_in		
	U2CTS_in		
	U2TXD_out		
	U2RTS_out		
12C	I2CEXTO_SCL_in	Any GPIOs*	Two I2C devices in slave or master modes
	I2CEXTO_SDA_in		
	I2CEXT1_SCL_in		
	I2CEXT1_SDA_in		
	I2CEXTO_SCL_out		
	I2CEXTO_SDA_out		
	I2CEXT1_SCL_out		
	I2CEXT1_SDA_out		

ESP-32S User Manual

Interface	Signal	Pin	Function
	I2S0I_DATA_in0~15		
	I2SOO_BCK_in		
	12S0O_WS_in		
	I2S0I_BCK_in		
	12S0I_WS_in		
	I2S0I_H_SYNC		
	I2S0I_V_SYNC		
	I2S0I_H_ENABLE		
	I2SOO_BCK_out		
	I2S0O_WS_out		
	I2S0I_BCK_out		
	I2S0I_WS_out		
I2S	I2S0O_DATA_out0~23	Any GPIOs*	Stereo input and output from/to the audio
123	I2S1I_DATA_inO~15	Ally di los	codec, and parallel LCD data output
	I2S1O_BCK_in		
	I2S10_WS_in		
	I2S1I_BCK_in		
	I2S1LWS_in		
	I2S1LH_SYNC		
	I2S1I_V_SYNC		
	I2S1I_H_ENABLE		
	I2S1O_BCK_out		
	I2S1O_WS_out		
	I2S1I_BCK_out		
	I2S1I_WS_out		
	I2S1O DATA outO~23		
Domoto Controllor	RMT_SIG_IN0~7	Any CDIOa*	Eight channels of IR transmitter and
Remote Controller	RMT_SIG_OUTO~7	Any GPIOs*	receiver for various waveforms

Interface	Signal	Pin	Function
	SPIHD	SHD/SD2	
	SPIWP	SWP/SD3	
	SPICS0	SCS/CMD	
	SPICLK	SCK/CLK	
	SPIQ	SDO/SD0	
	SPID	SDI/SD1	
	HSPICLK	IO14	
	HSPICS0	IO15	Supports Standard SPI, Dual SPI, and
Parallel QSPI	HSPIQ	IO12	Quad SPI that can be connected to the
	HSPID	IO13	external flash and SRAM
	HSPIHD	104	
	HSPIWP	102	
	VSPICLK	IO18	
	VSPICS0	105	
	VSPIQ	IO19	
	VSPID	1023	
	VSPIHD	IO21	
	VSPIWP	1022	
	HSPIQ_in/_out		Standard SPI consists of clock,
	HSPID_in/_out		chip-select, MOSI and MISO. These SPIs
	HSPICLK_in/_out		can be connected to LCD and other
	HSPI_CS0_in/_out		external devices. They support the
	HSPI_CS1_out		following features:
General Purpose	HSPI_CS2_out	Any CDIOc*	 both master and slave modes;
SPI	VSPIQ_in/_out	Any GPIOs*	 4 sub-modes of the SPI format
	VSPID_in/_out		transfer that depend on the clock
	VSPICLK_in/_out		phase (CPHA) and clock polarity
	VSPI_CS0_in/_out		(CPOL) control;
	VSPI_CS1_out		 CLK frequencies by a divider;
	VSPI_CS2_out		• up to 64 bytes of FIFO and DMA.
	MTDI	IO12	
ITAC	MTCK	IO13	ITAC for software debugging
JTAG	MTMS	IO14	JTAG for software debugging
	MTDO	IO15	

Interface	Signal	Pin	Function
	SD_CLK	106	
	SD_CMD	IO11	SDIO interface that conforms to the
SDIO Clavia	SD_DATA0	107	industry standard SDIO 2.0 card
SDIO Slave	SD_DATA1	108	specification. On ESP -32S these pins are
	SD_DATA2	109	connected to the integrated SPI flash.
	SD_DATA3	IO10	
	EMAC_TX_CLK	100	
	EMAC_RX_CLK	105	
	EMAC_TX_EN	IO21	
	EMAC—TXDO	IO19	
	EMAC—TXD1	1022	
	EMAC—TXD2	IO14	
	EMAC—TXD3	IO12	
	EMAC_RX_ER	IO13	
EMAC	EMAC_RX_DV	1027	
	EMAC_RXD0	1025	Ethernet MAC with MII/RMII interface
	EMAC_RXD1	1026	
	EMAC_RXD2	TXD	
	EMAC_RXD3	IO15	
	EMAC_CLK_OUT	IO16	
	EMAC_CLK_OUT_180	1017	
	EMAC_TX_ER	104	
	EMAC_MDC_out	Any GPIOs*	
l	EMAC_MDI_in	Any GPIOs*	
	EMAC_MDO_out	Any GPIOs*	
	EMAC_CRS_out	Any GPIOs*	
	EMAC_COL_out	Any GPIOs*	

Note:

- Functions of Motor PWM,LEDPWM,UART,I2C,I2S,general purpose SPI and Remote Controller can be configured to any GPIO except GPIO6,GPIO7,GPIO8,GPIO9,GPIO10 and GPIO11.
- In Table6, for the items marked with "Any GPIOs*" in the "Pin" column, users should note that GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11 are connected to the integrated SPI flash of ESP-32S and are not recommended for other uses.

3.5.2 Peripheral Schematics

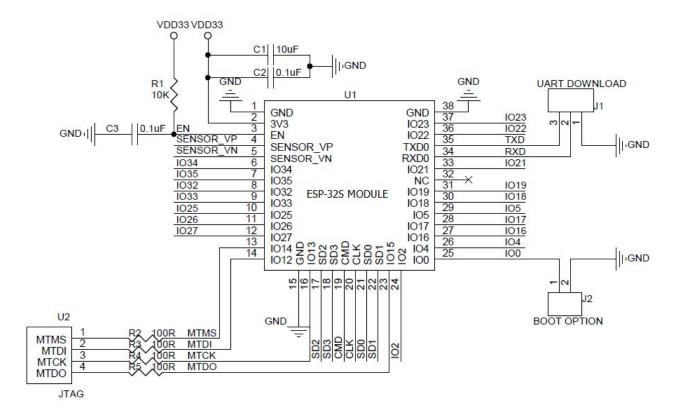


Figure 2: ESP-32S Peripheral Schematics

Note:

The MTDI should be kept at low electric level.

4. Electrical Characteristics

Note:

The specifications in this chapter have been tested under the following general condition: Vbat =3.3V'Ta =27°C, unless otherwise specified.

4.1 Absolute Maximum Ratings

Table 7: Absolute Maximum Ratings

Rating	Condition	Value	Unit
Storage temperature	-	-40 ~ 85	°C
Maximum soldering temperature	-	260	°C
Supply voltage	IPC/JEDEC J-STD-020	+2.2 ∽+3.6	V

4.2 Recommended Operating Conditions

Table 8: Recommended Operating Conditions

Operating condition	Symbol	Min	Тур	Max	Unit
Operating temperature	_	-40	20	85	°C
Supply voltage	VDD	2.2	3.3	3.6	V
Operating current	IVDD	0.5	-	-	Α

4.3 Digital Terminal Characteristics

Table 9: Digital Terminal Characteristics

Terminals	Symbol	Min	Тур	Max	Unit
Input logic level low	VIL	-0.3	-	0.25VDD	V
Input logic level high	Vih	0.75VDD	-	VDD+0.3	V
Output logic level low	Vol	N	-	0.1VDD	V
Output logic level high	Vон	0.8VDD	-	N	V

4.4 Wi-Fi Radio

Table 10: Wi-Fi Radio Characteristics

Description	Min	Тур	Max	Unit	
General Characteristics					
Input frequency	2412	-	2484	MHz	
Input impedance	-	50	-	Q	
Input reflection	-	-	-10	dB	
Output power of PA	15.5	19.5	21.5	dBm	
	Sensi	tivity			
DSSS, 1 Mbps	-	-98	-	dBm	
CCK, 11 Mbps	-	-90	-	dBm	
OFDM, 6 Mbps	-	-93	-	dBm	
OFDM, 54 Mbps	-	-75	-	dBm	
HT20, MCS0	-	-93	-	dBm	
HT20, MCS7	-	-73	-	dBm	
HT40, MCS0	-	-90	-	dBm	
HT40, MCS7	-	-70	-	dBm	
MCS32	-	-91	-	dBm	
Adjacent Channel Rejection					
OFDM, 6 Mbps	-	37	-	dB	
OFDM, 54 Mbps	-	21	-	dB	
HT20, MCS0	-	37	-	dB	
HT20, MCS7	-	20	-	dB	

4.5 Bluetooth LE Radio

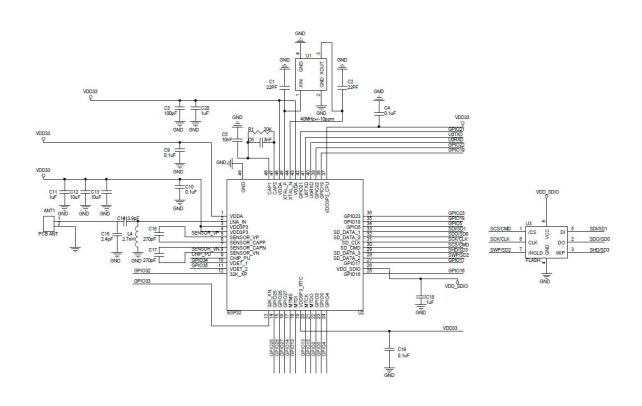
4.5.1 Receiver

Table 11: Receiver Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @0.1% BER	-	-	-98	-	dBm
Maximum received signal @0.1% BER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0+1 MHz	-	-5	-	dB
	F = F0-1 MHz	-	-5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-2 5	-	dB
Adjacent channel selectivity C/1	F = F0-2 MHz	-	- 35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0-3 MHz	-	-45	_	dB
	30 MHz - 2000 MHz	-10	_	-	dBm
Out-of-band blocking performance	2000 MHz - 2400 MHz	-27	-	-	dBm
	2500 MHz - 3000 MHz	-27	_	-	dBm
	3000 MHz-12.5GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.5.2 Transmit

Table 12: Transmit Characteristics – BLE


Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	+7.5	+10	dBm
RF power control range	-	-	25	-	dB
	F=F0+1 MHz	-	-14.6	-	dBm
	F=F0-1 MHz	-	-12.7	-	dBm
	F=F0 + 2 MHz	-	-44.3	-	dBm
Adjacent channel transmit power	F=F0-2 MHz	_	-38.7	-	dBm
Adjacent channel transmit power	F=F0 + 3 MHz	-	-49.2	-	dBm
	F=F0-3 MHz	-	-44.7	-	dBm
	F=F0+>3 MHz	-	-50	-	dBm
	F=F0->3 MHz	-	-50	-	dBm
△ f1avg	-	-	-	265	kHz
A f2	-	247	-	-	kHz
\triangle f2avg/ \triangle f1avg	_	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

4.6 Reflow Profile

Table 13: Reflow Profile

Item	Value
Ts max to TL (Ramp-up Rate)	3°C/second max
Preheat	
Temperature Min. (Ts Min.)	150°C
Temperature Typ. (Ts Typ.)	175°C
Temperature Min. (Ts Max.)	200°C
Time (Ts)	60 ~180 seconds
Ramp-up rate (TL to Tp)	3°C/second max
Time maintained above: -Temperature (TL)/Time (TL)	217°C/60 ~150 seconds
Peak temperature (Tp)	260°C max, for 10 seconds
Target peak temperature (Tp Target)	260°C +0/-5°C
Time within 5°C of actual peak (tp)	20~40 seconds
Ts max to TL (Ramp-down Rate)	6°C/second max
Tune25°C to Peak Temperature (t)	8 minutes max

5. Schematics

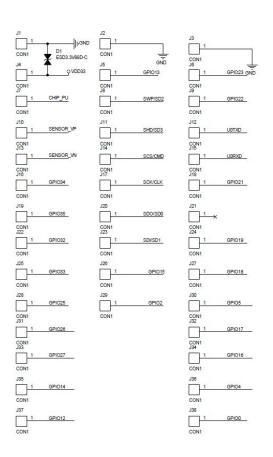


Figure 3: ESP-32S Schematics

Note:

The capacitance of Gland C2 varies with the selection of the crystal.