

Report No. : EED32J00186201 Page 1 of 64

TEST REPORT

Product : ESP-12F

Trade mark : N/A

Model/Type reference : ESP-12F

Serial Number : N/A

Report Number : EED32J00186201 FCC ID : 2AHMR-ESP12F

Date of Issue : Sep. 13, 2017

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Ai-Thinker Technology Co., LTD 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

10M- Chen

Tom chen (Test Project)

Compiled by:

pproved t

Report Seal

Kevin lan (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Sep. 13, 2017

Check No.:3043877948

Page 2 of 64

2 Version

Version No.	Date	(6	Description	7
00	Sep. 13, 2017		Original	
		100	75	/05
		(45)		

Report No.: EED32J00186201 Page 3 of 64

3 Test Summary

3 rest Summary	(30)		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04 ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)		
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 KDB 558074 D01v04	PASS

Remark:

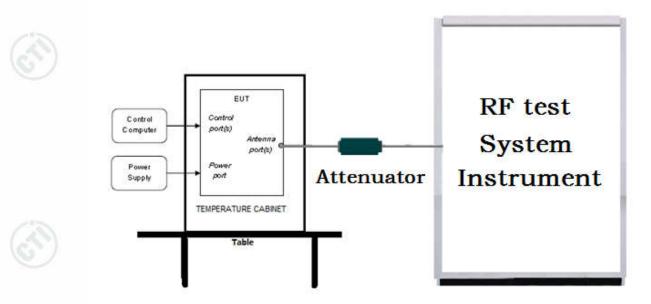
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No.: EED32J00186201 Page 4 of 64

4 Content

1 COVER PAGE			•••••		1
2 VERSION		•••••	•••••		2
3 TEST SUMMARY		•••••	•••••		3
4 CONTENT				•••••	
5 TEST REQUIREMENT					
5.1.1 For Conducted to 5.1.2 For Radiated Em 5.1.3 For Conducted E 5.2 TEST ENVIRONMENT	est setupissions test setupmissions test setup				6
6 GENERAL INFORMATION	N		•••••	•••••	8
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUPP 6.5 TEST LOCATION 6.6 DEVIATION FROM STAN 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION F	N OF EUTON SUBJECTIVE TO THIS STA ORT UNITSDARDSSTANDARD CONDITIONSREQUESTED BY THE CUSTON ITAINTY (95% CONFIDENCE	ANDARD			3 3 9 9
7 EQUIPMENT LIST			•••••	•••••	10
8 RADIO TECHNICAL REQ					
Appendix B): 6dB Occu Appendix C): Band-edg Appendix D): RF Cond Appendix E): Power Sp Appendix F): Antenna I Appendix G): AC Power Appendix H): Restricter	ed Peak Output Power upied Bandwidth ge for RF Conducted Emis ucted Spurious Emissions pectral Density Requirement er Line Conducted Emissio d bands around fundamer Spurious Emissions	ssions on ntal frequency (Rad	iated)		
PHOTOGRAPHS OF TEST	SETUP		•••••	•••••	58
PHOTOGRAPHS OF EUT O	CONSTRUCTIONAL DET	AILS			61



Report No.: EED32J00186201 Page 5 of 64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

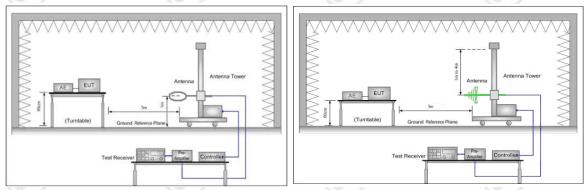


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

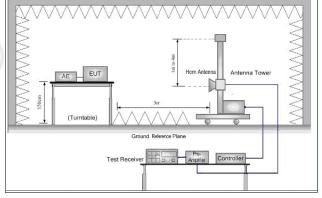
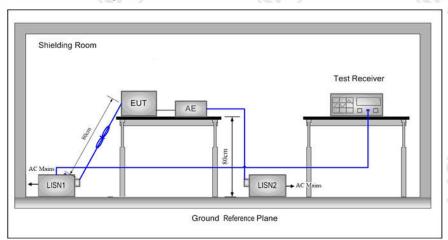


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(0)
Temperature:	25.3 °C	
Humidity:	63 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Ty/Dy	RF Channel				
rest Mode	Tx/Rx	Low(L)	200	High(H)		
902 11h/a/a/UT20)	24420411- 24620411-	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz		
Transmitting mode:	Keep the EUT in transmit data rate.	ting mode with all	kind of modulation	and all kind of		

(TI)

Report No.: EED32J00186201

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b	,				
Data Rate	1M	bps	2Mbp	s 5.5Mbp	s 11Mbp	s			
Power(dBm)	14	.93	15.02	2 15.11	15.27		40%		
Mode 80			2.11g	(4)		(2			
Data Rate	6N	bps	9Mbp	s 12Mbps	18Mbps	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm) 15	.95	15.88	3 15.80	15.69	15.57	15.45	15.33	15.20
Mode		802.11n			(HT20)				
Data Rate	6.5Mbp	s 1	3Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	16.39		16.30	16.21	16.10	15.98	15.90	15.81	15.69

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Report No.: EED32J00186201 Page 8 of 64

6 General Information

6.1 Client Information

	Applicant:	Shenzhen Ai-Thinker Technology Co., LTD		
	Address of Applicant:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China		
١	Manufacturer:	Shenzhen Ai-Thinker Technology Co., LTD		
1	Address of Manufacturer: 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan distribution Shenzhen, China			
	Factory:	Shenzhen Ai-Thinker Technology Co., LTD		
	Address of Factory:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China		

6.2 General Description of EUT

(3)
0.

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Operation requestey.	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)
Test Power Grade:	Backoff: 0.00
Test Software of EUT:	ESP Series Modules FCC & CE Test Tool V2.2.3.exe
Antenna Type and Gain:	Type: PCB Antenna Gain: 2dBi
Test Voltage:	DC 3.3V and AC 120V/60Hz

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	6.	

6.4 Description of Support Units

The EUT has been tested independently

Report No.: EED32J00186201 Page 9 of 64

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

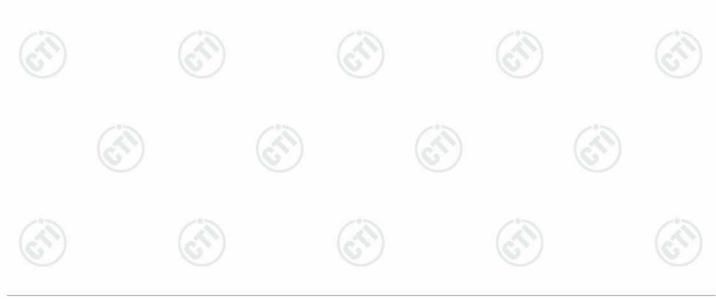
Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions


None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
100	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Churique emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No.: EED32J00186201 Page 10 of 64

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Communication test set	Agilent	N4010A	MY51400230	03-14-2017	03-13-2018
Spectrum Analyzer Keysight		N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(0)	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018

Report No. : EED32J00186201 Page 11 of 64

	3M	Semi/full-anech	oic Chamber			
Equipment	Manufacturer	Manufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2017	05-22-2018	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2016	07-28-2018	
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018	
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018	
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018	
Multi device Controller	maturo	NCD/070/10711 112		01-11-2017	01-10-2018	
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018	
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018	
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018	
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018	
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	6.	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	(4)	01-11-2017	01-10-2018	

Conducted disturbance Test									
Equipment	Manufacturer	facturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018				
Temperature/ Humidity Indicator	TAYLOR	1451 1905		05-08-2017	05-07-2018				
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018				
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018				
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018				
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018				
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018				
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018				

Report No.: EED32J00186201 Page 13 of 64

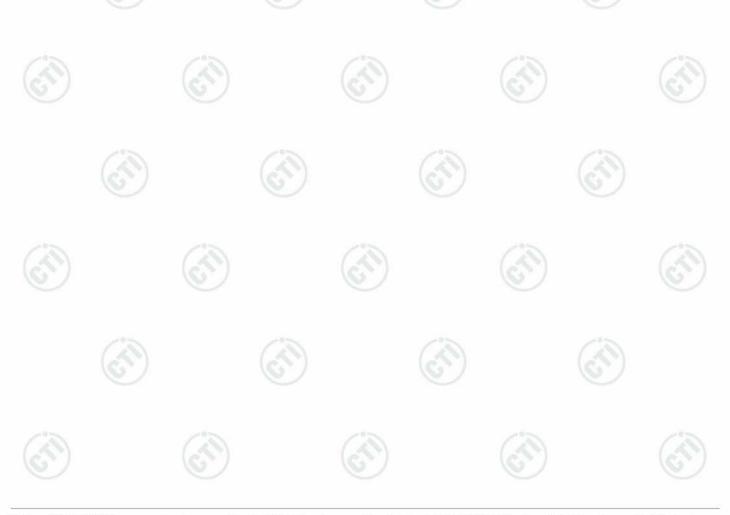
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

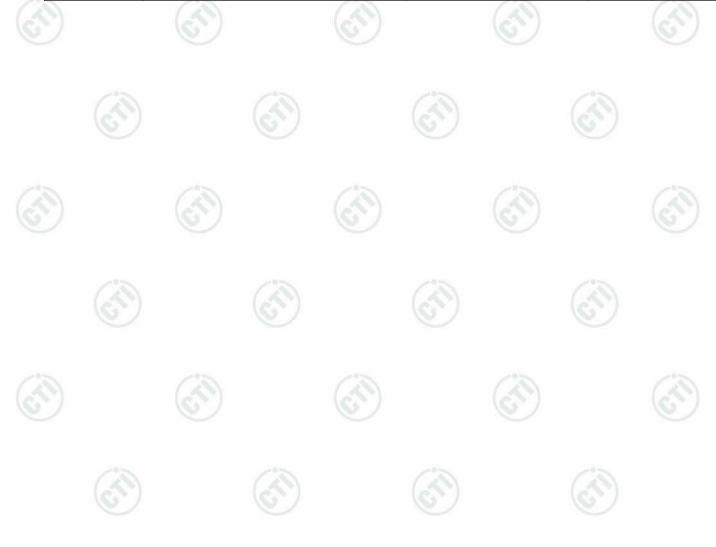

Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	15.27	PASS
11B	MCH	13.85	PASS
11B	нсн	13.09	PASS
11G	LCH	15.95	PASS
11G	MCH	14.67	PASS
11G	нсн	13.81	PASS
11N20SISO	LCH	16.39	PASS
11N20SISO	MCH	14.79	PASS
11N20SISO	НСН	13.90	PASS



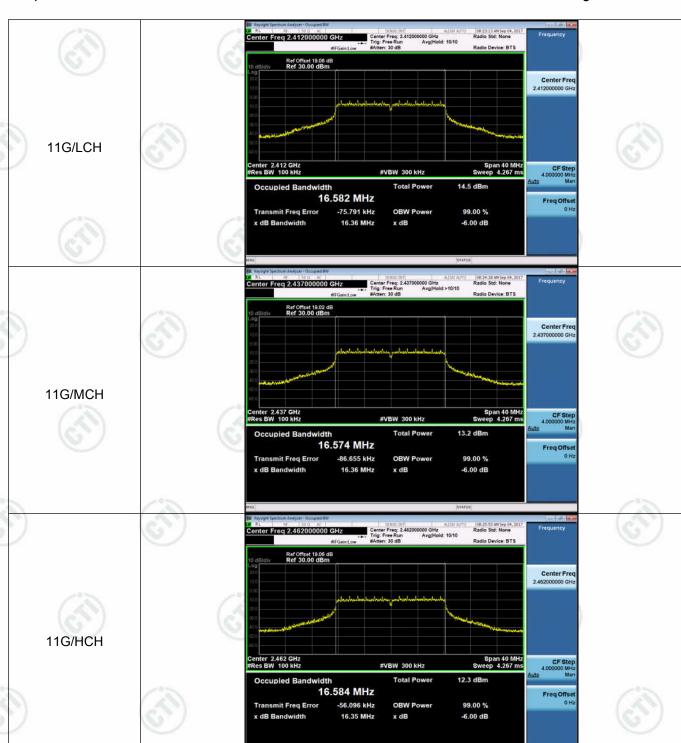
Report No.: EED32J00186201 Page 15 of 64

Appendix B): 6dB Occupied Bandwidth

Result Table

		1. 10.0 V	3.30	3.30	1
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.074	10.498	PASS	
11B	MCH	8.075	10.508	PASS	(3)
11B	HCH	8.099	10.482	PASS	6
11G	LCH	16.36	16.582	PASS	
11G	MCH	16.36	16.574	PASS	Peak
11G	HCH	16.35	16.584	PASS	detector
11N20SISO	LCH	17.58	17.800	PASS	
11N20SISO	MCH	17.58	17.795	PASS	
11N20SISO	HCH	17.57	17.791	PASS	

Test Graph





Report No.: EED32J00186201 Page 19 of 64

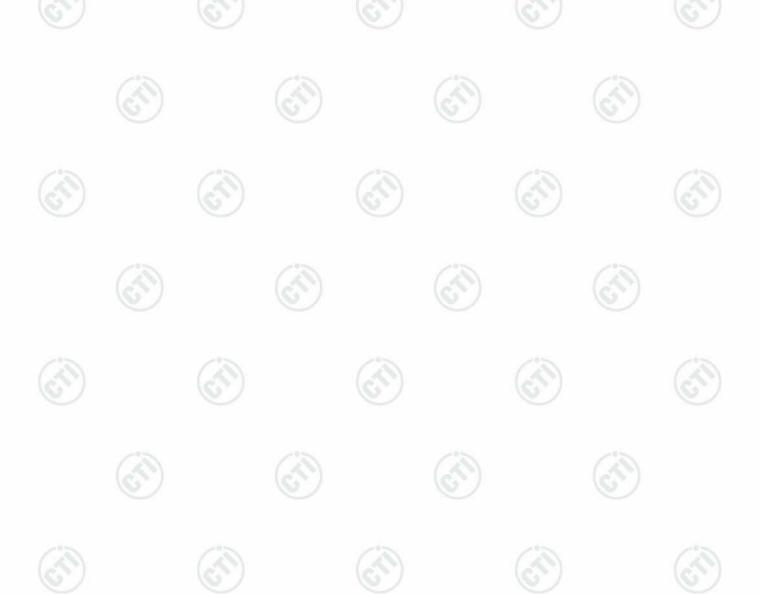
Appendix C): Band-edge for RF Conducted Emissions

Result Table

0.70	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	11B	LCH	1.350	-50.977	-18.65	PASS
	11B	НСН	-0.752	-50.835	-20.75	PASS
	11G	LCH	-3.161	-48.670	-23.16	PASS
	11G	HCH	-2.783	-47.088	-22.78	PASS
	11N20SISO	LCH	-3.079	-48.711	-23.08	PASS
	11N20SISO	НСН	-5.018	-49.292	-25.02	PASS

Test Graph

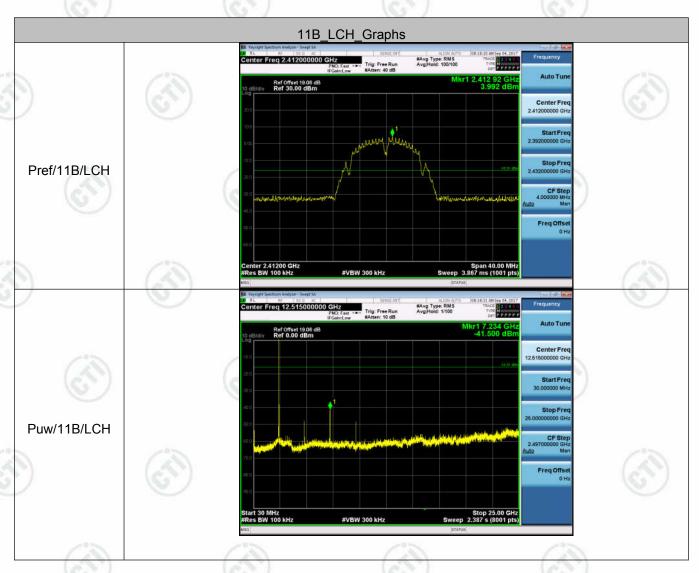


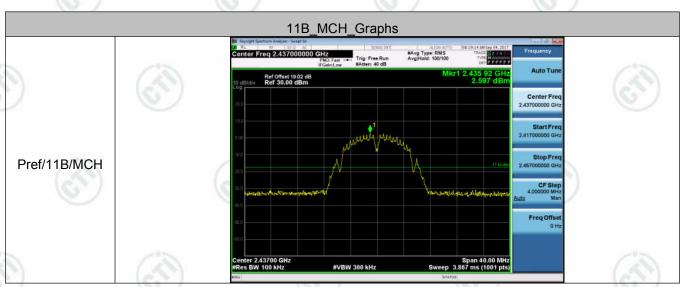


Report No.: EED32J00186201 Page 22 of 64

Appendix D): RF Conducted Spurious Emissions

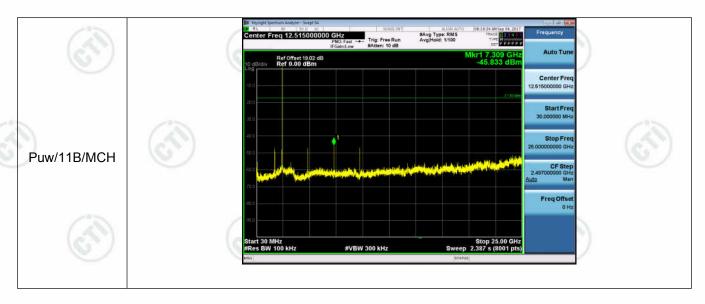
Result Table

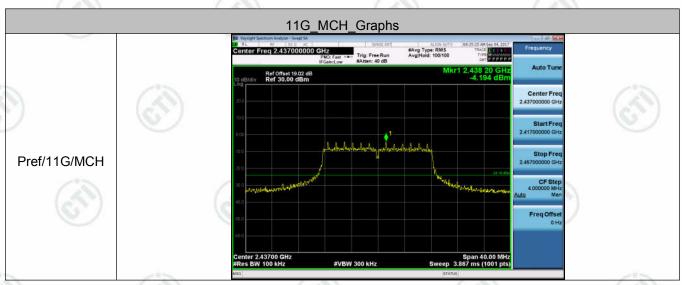

5.500			1000	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	3.992	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	2.597	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	1.332	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.788	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-4.194	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	-5.196	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-2.583	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-4.142	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-5.145	<limit< td=""><td>PASS</td></limit<>	PASS



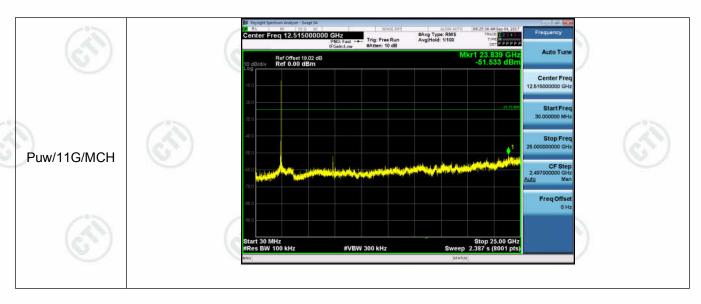
Report No. : EED32J00186201 Page 23 of 64

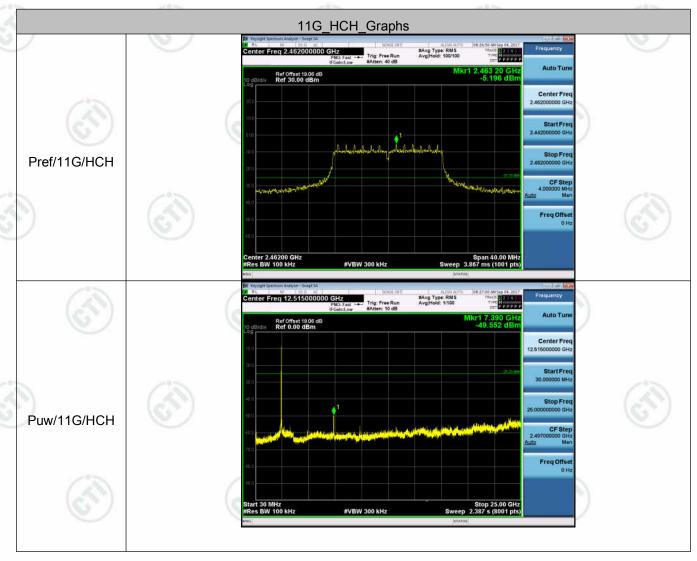
Test Graph

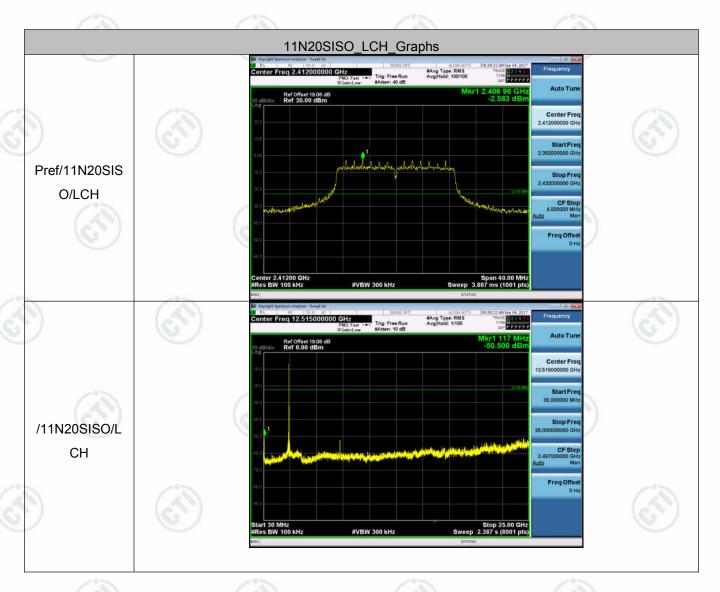


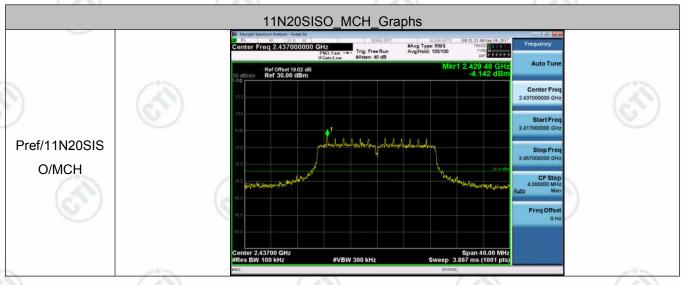


Report No. : EED32J00186201 Page 25 of 64

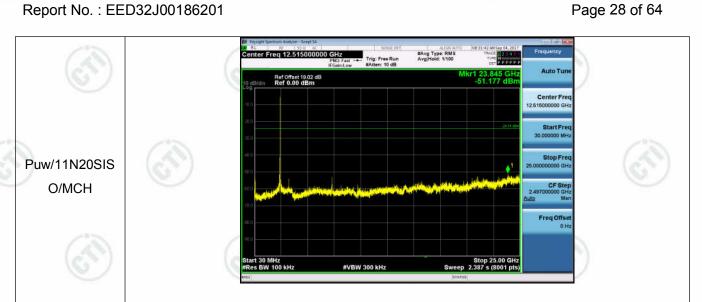


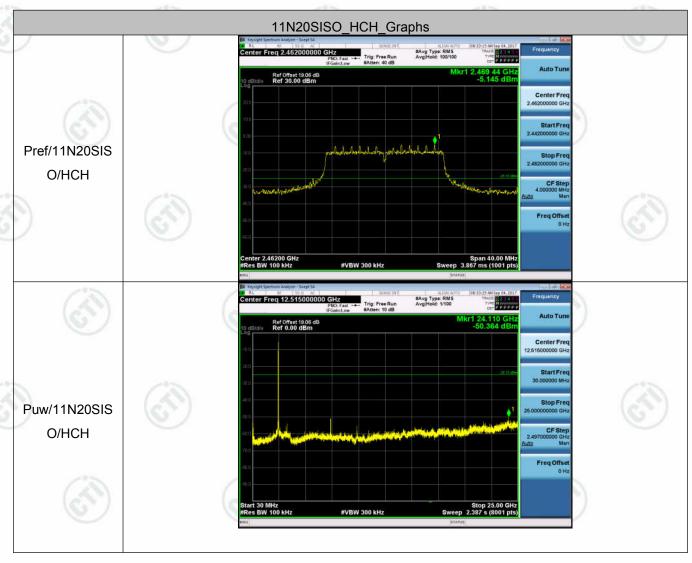






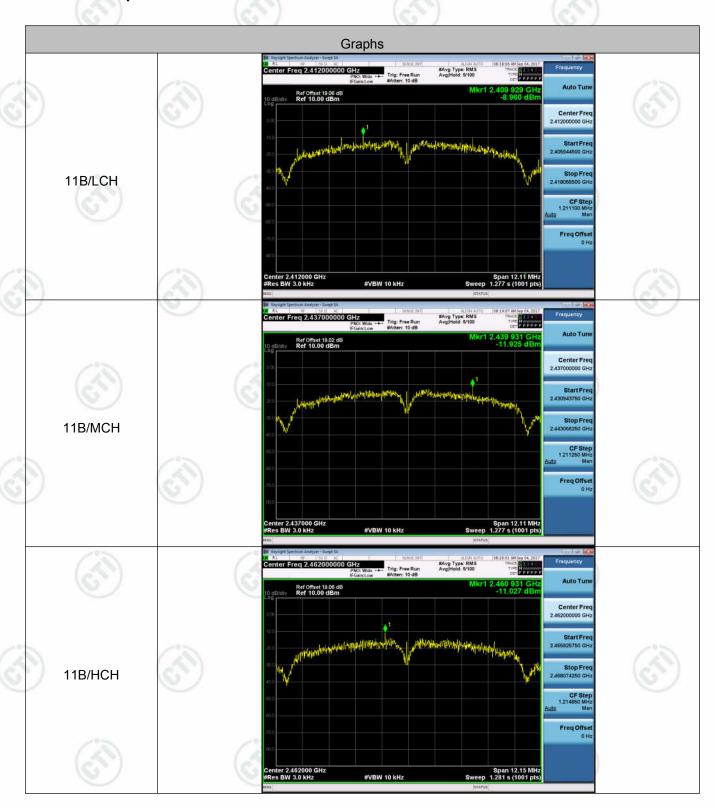
Report No. : EED32J00186201 Page 27 of 64





Appendix E): Power Spectral Density

Result Table


Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict	
11B	LCH	-8.960	8	PASS	
11B	MCH	-11.925	8	PASS	
11B	НСН	-11.027	8	PASS	
11G	LCH	-17.518	8	PASS	
11G	MCH	-18.719	8	PASS	
11G	НСН	-18.830	8	PASS	
11N20SISO	LCH	-16.825	8	PASS	
11N20SISO	MCH	-18.703	8	PASS	
11N20SISO	НСН	-19.440	8	PASS	

Test Graph


11G/LCH

11G/MCH

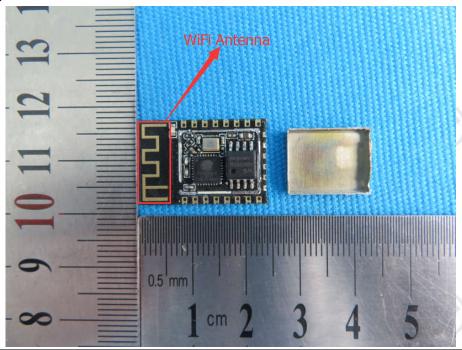
Report No.: EED32J00186201

11G/HCH

Report No.: EED32J00186201 Page 33 of 64

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: EED32J00186201 Page 34 of 64

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not
	exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1
	was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

of the EUT and associated equipment was at least 0.8 m from the LISN 2.

Limit:

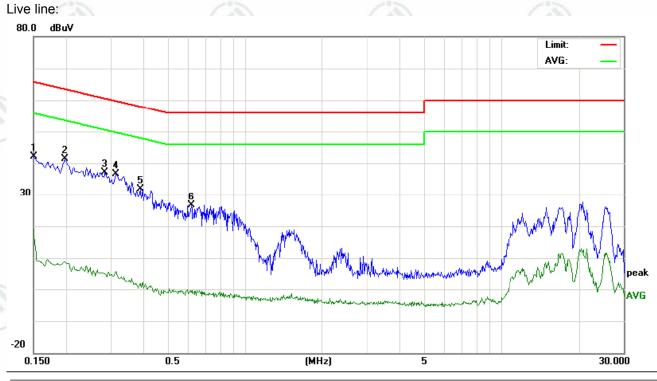
Fraguency range (MUz)	Limit (dBμV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

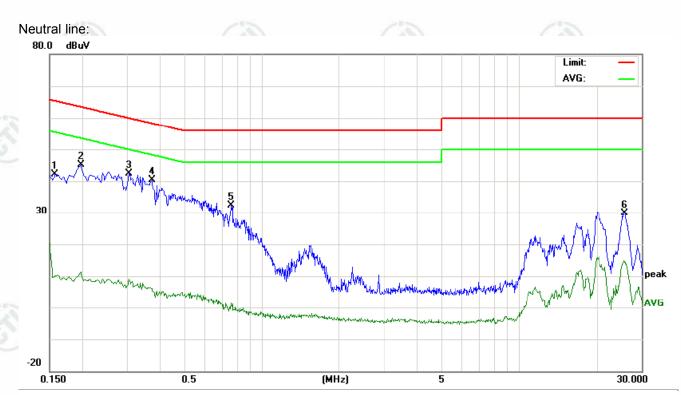
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


NOTE: The lower limit is applicable at the transition frequency

Page 35 of 64



No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	Measurement (dBuV)				rgin dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	32.31		9.44	9.77	42.08		19.21	65.99	55.99	-23.91	-36.78	Р	
2	0.1980	31.73		-0.76	9.71	41.44		8.95	63.69	53.69	-22.25	-44.74	Р	
3	0.2860	27.35		-4.61	9.77	37.12		5.16	60.64	50.64	-23.52	-45.48	Р	
4	0.3140	26.92		-3.84	9.78	36.70		5.94	59.86	49.86	-23.16	-43.92	Р	
5	0.3899	22.18		-7.92	9.75	31.93		1.83	58.06	48.06	-26.13	-46.23	Р	
6	0.6180	16.97		-10.6	9.75	26.72		-0.86	56.00	46.00	-29.28	-46.86	Р	

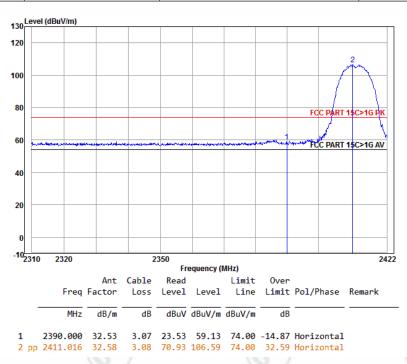
	No.	Reading_Level Freq. (dBuV)			vel	Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1580	32.34		0.36	9.76	42.10		10.12	65.56	55.56	-23.46	-45.44	Р	
-	2	0.1980	35.31		1.62	9.71	45.02		11.33	63.69	53.69	-18.67	-42.36	Р	
1	3	0.3060	32.67		-0.63	9.78	42.45		9.15	60.08	50.08	-17.63	-40.93	Р	
	4	0.3740	30.49		-3.76	9.76	40.25		6.00	58.41	48.41	-18.16	-42.41	Р	
	5	0.7620	22.60		-8.46	9.74	32.34		1.28	56.00	46.00	-23.66	-44.72	Р	
	6	25.7660	19.69		4.49	10.20	29.89		14.69	60.00	50.00	-30.11	-35.31	Р	

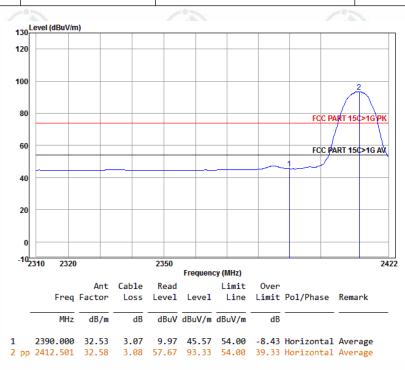
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6,	(6.7)		1	Co. T. J.	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 4011	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(65)
Test Procedure:	Below 1GHz test procedure. a. The EUT was placed of at a 3 meter semi-aneous determine the position. b. The EUT was set 3 mes was mounted on the toto. c. The antenna height is a determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver systems.	re as below: In the top of a rota choic camber. The of the highest race eters away from the p of a variable-he varied from one n m value of the fiel enna are set to m nission, the EUT to heights from 1 rees to 360 degree m was set to Pea	ating table to table was diation. The interference of the interfer	0.8 meters rotated 3 ence-receina tower. ur meters a Both hor neasurement of the meters at the maxim	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotation and the rotation and the rotation and reading.	to a, whice round to vertical and the able
	f. Place a marker at the effrequency to show com	end of the restrictenpliance. Also me	asure any	emissions	s in the restri	
	f. Place a marker at the	end of the restricted pliance. Also me rum analyzer plot channel were as below: We is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis	change from table 0.8 re is 1.5 me e Highest on the med in X, Ne positionir	emissions or each poor om Semi-meter to 1 eter). channel Y, Z axis png which it	Anechoic Ch .5 meter(Ab	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedures. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and	end of the restricted pliance. Also me rum analyzer plot channel were as below: We is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	emissions or each poor each poor semi-meter to 1 eter). channel Y, Z axis pong which it asured wa	Anechoic Ch .5 meter(Ab	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedure.	end of the restricted pliance. Also me rum analyzer plot channel were as below: The is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axistres until all frequents.	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	om Semi- meter to 1 eter). channel Y, Z axis p ng which it asured wa	Anechoic Ch.5 meter(Ab	dulation nambe ove
imit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest. Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the EUT in the low in the radiation measure. Transmitting mode, and in the procedure. Frequency	end of the restricted pliance. Also me rum analyzer plot channel we as below: we is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequents (dBµV/n).	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	om Semi- meter to 1 eter). channel Y, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Cr.5 meter(Ab	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammand 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedured. Frequency 30MHz-88MHz	end of the restricted pliance. Also me rum analyzer plot channel we as below: If it is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequents (dBµV/n 40.0)	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	emissions or each poor eac	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete.	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the distance is how the full for the full for the full form of the full	end of the restricted pliance. Also me rum analyzer plot channel we as below: The as below: The as below: The is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequents and the control of	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	om Semi- meter to 1 eter). channel Y, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	dulation nambe ove
_imit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammand 18GHz the distance is heard the EUT in the low in the radiation measure that Transmitting mode, and in the procedure in the second second	end of the restricted pliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table west channel, the ments are perforred found the X axis res until all frequents and table west channel, the ments are perforred found the X axis res until all frequents and table west channel, the ments are perforred found the X axis res until all frequents and table was a significant to the control of t	change from table 0.8 release 1.5 mee Highest of the med in X, is positioning encies mea	emissions or each poor eac	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulation nambe ove

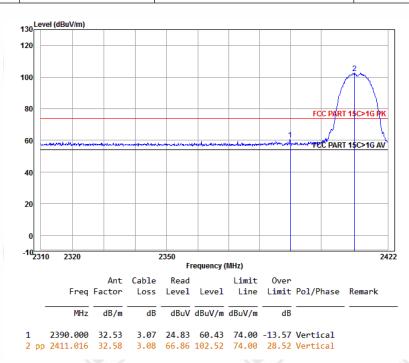



Test plot as follows:


Report No.: EED32J00186201

Worse case mode:	802.11b (11Mbps)	(20)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

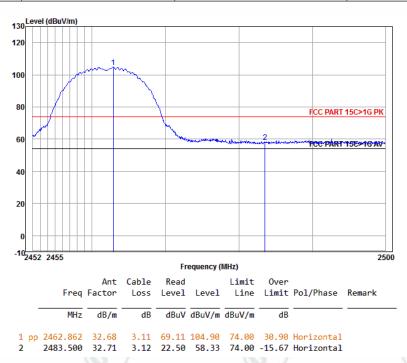
Worse case mode:	802.11b (11Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest Polarization: Horizontal	Remark: Average

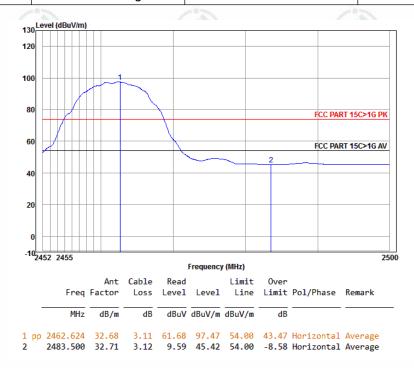




Report No.: EED32J00186201 Page 39 of 64

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

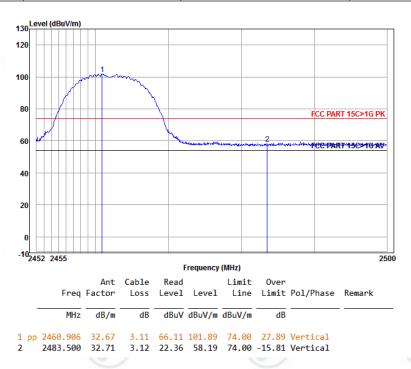

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

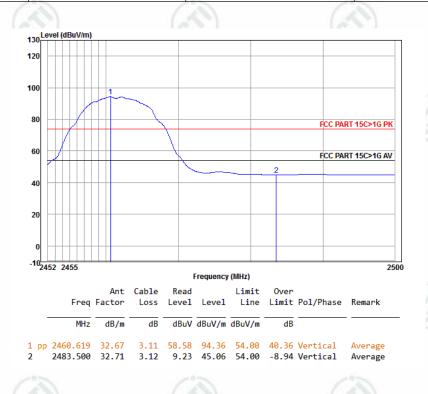


Report No.: EED32J00186201 Page 40 of 64

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

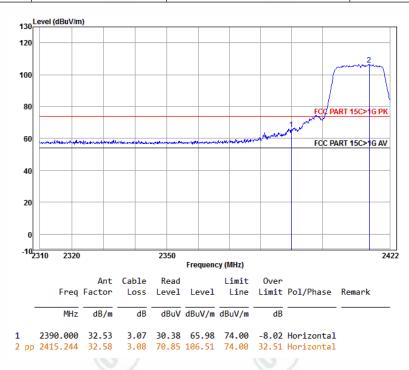




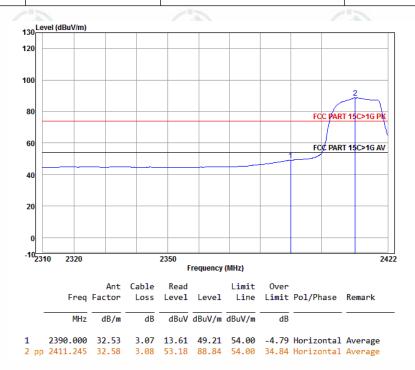
Report No.: EED32J00186201 Page 41 of 64

Worse case mode:	802.11b (11Mbps)	(5,5)	(25)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

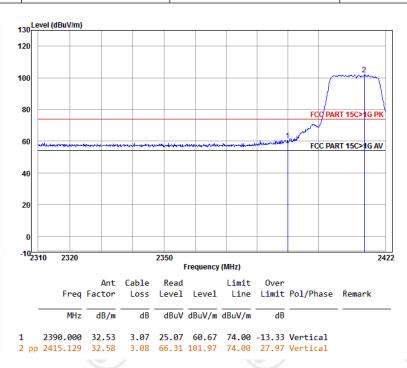


Cil



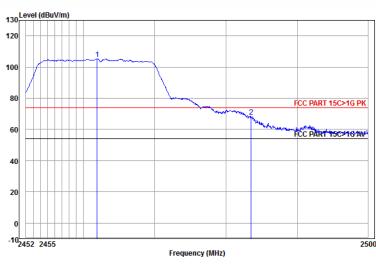
Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

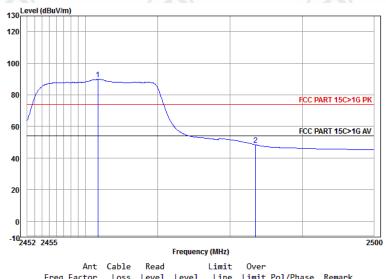
Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Page 43 of 64

Worse case mode:	802.11g (6Mbps)	(5.5)	(57)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average



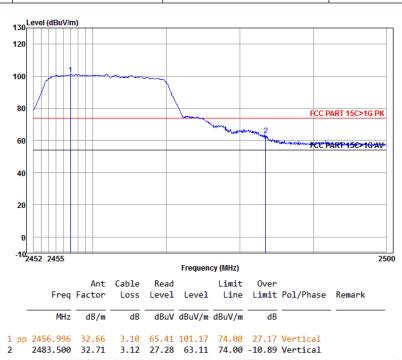
Worse case mode:	802.11g (6Mbps)	(272)	(652)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

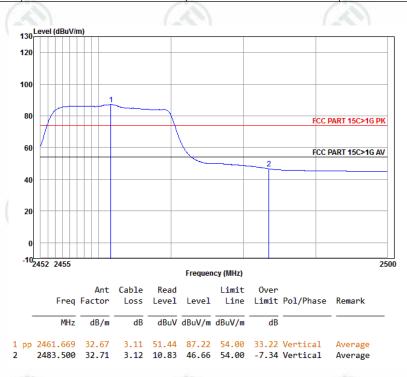


Freq		Cable Loss					Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
 2461.907							Horizontal		

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

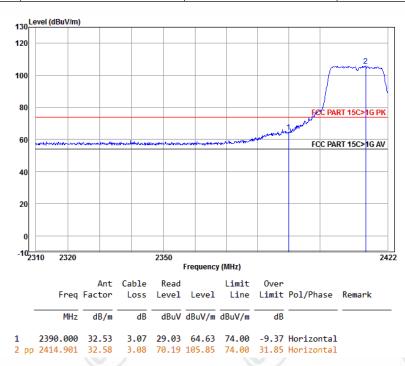
	Frequency (MHz)								
	Freq		Cable Loss			Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
l pp								Horizontal Horizontal	_

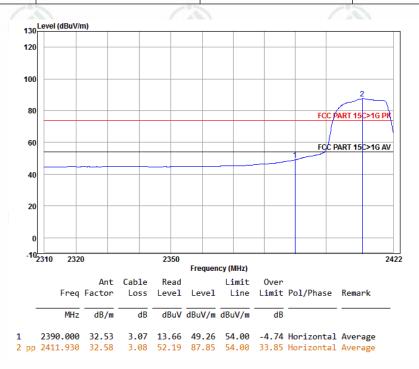




Worse case mode:	802.11g (6Mbps)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average





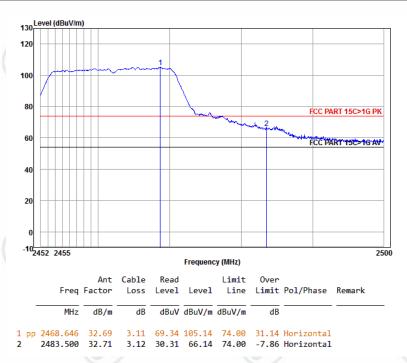
Report No.: EED32J00186201 Page 46 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

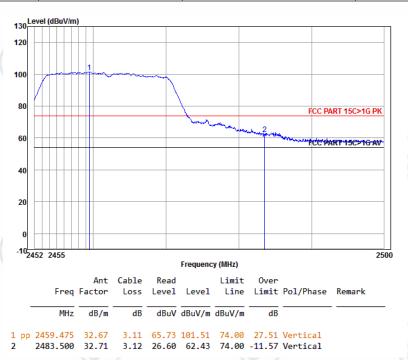


Worse case mode:	802.11n(HT20) (6.5Mbps)	(5,5)	(85)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Report No. : EED32J00186201 Page 48 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark:Average

Report No.: EED32J00186201 Page 49 of 64

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	(55)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Page 50 of 64

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, found the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

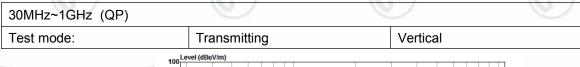
Below 1GHz test procedure as below:

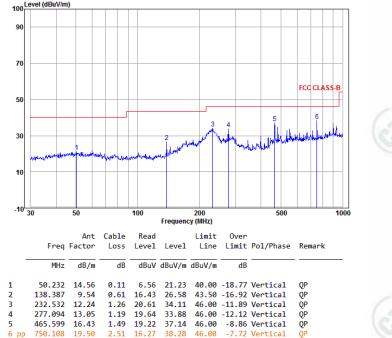
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

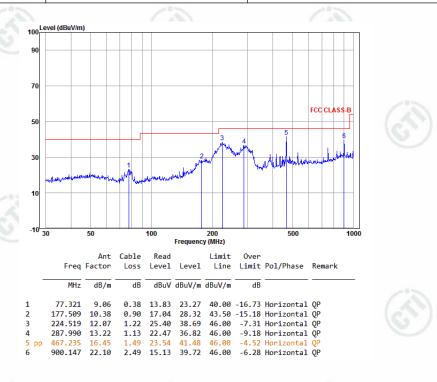
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

im	١ıt


Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Test mode: Transmitting Horizontal

Report No.: EED32J00186201 Page 53 of 64

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1276.818	30.41	1.98	44.28	46.66	34.77	74.00	-39.23	Pass	Horizontal
1889.633	31.54	2.73	43.60	47.44	38.11	74.00	-35.89	Pass	Horizontal
4824.000	34.73	6.02	44.60	44.05	40.20	74.00	-33.80	Pass	Horizontal
5791.646	35.74	7.23	44.52	45.88	44.33	74.00	-29.67	Pass	Horizontal
7236.000	36.42	6.94	44.80	42.44	41.00	74.00	-33.00	Pass	Horizontal
9648.000	37.93	7.01	45.57	40.87	40.24	74.00	-33.76	Pass	Horizontal
1343.505	30.55	2.08	44.19	47.01	35.45	74.00	-38.55	Pass	Vertical
1832.785	31.45	2.67	43.65	46.51	36.98	74.00	-37.02	Pass	Vertical
4824.000	34.73	6.02	44.60	44.06	40.21	74.00	-33.79	Pass	Vertical
6379.864	36.10	7.34	44.54	46.08	44.98	74.00	-29.02	Pass	Vertical
7236.000	36.42	6.94	44.80	46.55	45.11	74.00	-28.89	Pass	Vertical
9648.000	37.93	7.01	45.57	42.00	41.37	74.00	-32.63	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1299.773	30.46	2.01	44.25	46.36	34.58	74.00	-39.42	Pass	Horizontal
1719.783	31.26	2.55	43.76	46.78	36.83	74.00	-37.17	Pass	Horizontal
4874.000	34.84	6.12	44.60	47.81	44.17	74.00	-29.83	Pass	Horizontal
6396.125	36.11	7.34	44.54	44.89	43.80	74.00	-30.20	Pass	Horizontal
7311.000	36.43	6.86	44.86	42.61	41.04	74.00	-32.96	Pass	Horizontal
9748.000	38.03	7.10	45.55	42.66	42.24	74.00	-31.76	Pass	Horizontal
1313.075	30.49	2.03	44.23	46.69	34.98	74.00	-39.02	Pass	Vertical
1889.633	31.54	2.73	43.60	46.14	36.81	74.00	-37.19	Pass	Vertical
4874.000	34.84	6.12	44.60	46.34	42.70	74.00	-31.30	Pass	Vertical
5776.922	35.73	7.22	44.52	45.82	44.25	74.00	-29.75	Pass	Vertical
7311.000	36.43	6.86	44.86	42.51	40.94	74.00	-33.06	Pass	Vertical
9748.000	38.03	7.10	45.55	42.84	42.42	74.00	-31.58	Pass	Vertical

Page 54 of 64

Report No.	:	EED32J00186201
------------	---	----------------

Test mode:	node: 802.11b(11Mbps) Test Frequency: 2462MHz Remark: Peak								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	1.84	44.40	46.61	34.24	74.00	-39.76	Pass	Horizontal
1533.648	30.93	2.33	43.96	46.95	36.25	74.00	-37.75	Pass	Horizontal
4924.000	34.94	6.22	44.60	42.38	38.94	74.00	-35.06	Pass	Horizontal
5865.832	35.80	7.31	44.51	45.29	43.89	74.00	-30.11	Pass	Horizontal
7386.000	36.44	6.78	44.92	42.70	41.00	74.00	-33.00	Pass	Horizontal
9848.000	38.14	7.19	45.53	46.10	45.90	74.00	-28.10	Pass	Horizontal
1420.890	30.71	2.18	44.09	46.35	35.15	74.00	-38.85	Pass	Vertical
3747.656	32.98	4.00	44.62	46.86	39.22	74.00	-34.78	Pass	Vertical
4924.000	34.94	6.22	44.60	52.90	49.46	74.00	-24.54	Pass	Vertical
5821.207	35.77	7.26	44.52	46.05	44.56	74.00	-29.44	Pass	Vertical
7386.000	36.44	6.78	44.92	42.68	40.98	74.00	-33.02	Pass	Vertical
9848.000	38.14	7.19	45.53	42.19	41.99	74.00	-32.01	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1247.899	30.34	1.93	44.32	46.86	34.81	74.00	-39.19	Pass	Horizontal
1638.585	31.12	2.46	43.85	46.62	36.35	74.00	-37.65	Pass	Horizontal
4824.000	34.73	6.02	44.60	53.61	49.76	74.00	-24.24	Pass	Horizontal
5836.044	35.78	7.28	44.52	46.14	44.68	74.00	-29.32	Pass	Horizontal
7236.000	36.42	6.94	44.80	51.54	50.10	74.00	-23.90	Pass	Horizontal
9648.000	37.93	7.01	45.57	44.43	43.80	74.00	-30.20	Pass	Horizontal
1241.562	30.32	1.93	44.33	47.29	35.21	74.00	-38.79	Pass	Vertical
1894.450	31.54	2.74	43.59	46.80	37.49	74.00	-36.51	Pass	Vertical
4824.000	34.73	6.02	44.60	51.10	47.25	74.00	-26.75	Pass	Vertical
5806.408	35.76	7.25	44.52	45.12	43.61	74.00	-30.39	Pass	Vertical
7236.000	36.42	6.94	44.80	50.96	49.52	74.00	-24.48	Pass	Vertical
9648.000	37.93	7.01	45.57	46.59	45.96	74.00	-28.04	Pass	Vertical

16.3					/ 3		1	1 01	
Test mode:	802.11g(6M	1bps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1424.511	30.72	2.19	44.09	46.56	35.38	74.00	-38.62	Pass	Horizontal
1856.261	31.48	2.70	43.63	46.64	37.19	74.00	-36.81	Pass	Horizontal
4874.000	34.84	6.12	44.60	46.02	42.38	74.00	-31.62	Pass	Horizontal
6001.768	35.90	7.44	44.50	44.86	43.70	74.00	-30.30	Pass	Horizontal
7311.000	36.43	6.86	44.86	42.17	40.60	74.00	-33.40	Pass	Horizontal
9748.000	38.03	7.10	45.55	42.02	41.60	74.00	-32.40	Pass	Horizontal
1313.075	30.49	2.03	44.23	47.02	35.31	74.00	-38.69	Pass	Vertical
1884.829	31.53	2.73	43.60	46.52	37.18	74.00	-36.82	Pass	Vertical
4874.000	34.84	6.12	44.60	51.41	47.77	74.00	-26.23	Pass	Vertical
5850.919	35.79	7.29	44.51	46.24	44.81	74.00	-29.19	Pass	Vertical
7311.000	36.43	6.86	44.86	42.18	40.61	74.00	-33.39	Pass	Vertical
9748.000	38.03	7.10	45.55	46.58	46.16	74.00	-27.84	Pass	Vertical

Test mode: 802.11g(6Mbps)			Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1257.465	30.36	1.95	44.30	46.46	34.47	74.00	-39.53	Pass	Horizontal	
1899.278	31.55	2.74	43.59	46.68	37.38	74.00	-36.62	Pass	Horizontal	
4924.000	34.94	6.22	44.60	48.55	45.11	74.00	-28.89	Pass	Horizontal	
5836.044	35.78	7.28	44.52	45.61	44.15	74.00	-29.85	Pass	Horizontal	
7386.000	36.44	6.78	44.92	42.66	40.96	74.00	-33.04	Pass	Horizontal	
9848.000	38.14	7.19	45.53	43.32	43.12	74.00	-30.88	Pass	Horizontal	
1569.189	31.00	2.37	43.92	47.97	37.42	74.00	-36.58	Pass	Vertical	
3757.208	32.97	4.01	44.62	47.03	39.39	74.00	-34.61	Pass	Vertical	
4924.000	34.94	6.22	44.60	49.15	45.71	74.00	-28.29	Pass	Vertical	
5806.408	35.76	7.25	44.52	45.87	44.36	74.00	-29.64	Pass	Vertical	
7386.000	36.44	6.78	44.92	43.97	42.27	74.00	-31.73	Pass	Vertical	
9848.000	38.14	7.19	45.53	46.05	45.85	74.00	-28.15	Pass	Vertical	

Report No. : EED32J00186201 Page 56 of 64

100					/° 7					
Test mode:	802.11n(HT	720)(6.5Mbps) Test Frequ			iency: 2412MHz Rem			ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1313.075	30.49	2.03	44.23	46.59	34.88	74.00		-39.12	Pass	Horizontal
1884.829	31.53	2.73	43.60	47.47	38.13	74.00		-35.87	Pass	Horizontal
4824.000	34.73	6.02	44.60	53.82	49.97	74.00		-24.03	Pass	Horizontal
5806.408	35.76	7.25	44.52	45.86	44.35	74.	.00	-29.65	Pass	Horizontal
7236.000	36.42	6.94	44.80	50.81	49.37	74.	.00	-24.63	Pass	Horizontal
9648.000	37.93	7.01	45.57	43.12	42.49	74.	.00	-31.51	Pass	Horizontal
1188.980	30.20	1.84	44.40	47.43	35.07	74.	.00	-38.93	Pass	Vertical
1557.252	30.98	2.36	43.93	47.27	36.68	74.	.00	-37.32	Pass	Vertical
4824.000	34.73	6.02	44.60	49.35	45.50	74.00		-28.50	Pass	Vertical
5806.408	35.76	7.25	44.52	45.86	44.35	74.00		-29.65	Pass	Vertical
7236.000	36.42	6.94	44.80	50.92	49.48	74.00		-24.52	Pass	Vertical
9648.000	37.93	7.01	45.57	45.24	44.61	74.00		-29.39	Pass	Vertical

Test mode:	802.11n(HT	720)(6.5N	1bps)	Test Frequency: 2437MHz				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1276.818	30.41	1.98	44.28	46.66	34.77	74.00		-39.23	Pass	Horizontal	
1880.038	31.52	2.72	43.61	47.45	38.08	74.	00	-35.92	Pass	Horizontal	
4874.000	34.84	6.12	44.60	42.98	39.34	74.00		-34.66	Pass	Horizontal	
5762.235	35.72	7.20	44.52	46.44	44.84	74.00		-29.16	Pass	Horizontal	
7311.000	36.43	6.86	44.86	43.76	42.19	74.00		-31.81	Pass	Horizontal	
9748.000	38.03	7.10	45.55	44.77	44.35	74.00		-29.65	Pass	Horizontal	
1207.279	30.24	1.87	44.37	46.64	34.38	74.	00	-39.62	Pass	Vertical	
1870.490	31.51	2.71	43.62	46.50	37.10	74.	00	-36.90	Pass	Vertical	
4874.000	34.84	6.12	44.60	52.95	49.31	74.00		-24.69	Pass	Vertical	
5836.044	35.78	7.28	44.52	45.46	44.00	74.00		-30.00	Pass	Vertical	
7311.000	36.43	6.86	44.86	43.68	42.11	74.00		-31.89	Pass	Vertical	
9748.000	38.03	7.10	45.55	42.31	41.89	74.	00	-32.11	Pass	Vertical	

Report No.: EED32J00186201 Page 57 of 64

					/**					
Test mode:	802.11n(H7	T20)(6.5Mbps) Test Frequ			ency: 2462MHz Rema			ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	1.86	44.39	47.39	35.08	74.00		-38.92	Pass	Horizontal
1899.278	31.55	2.74	43.59	46.38	37.08	74.00		-36.92	Pass	Horizontal
4924.000	34.94	6.22	44.60	43.27	39.83	74.00		-34.17	Pass	Horizontal
5791.646	35.74	7.23	44.52	45.86	44.31	74	.00	-29.69	Pass	Horizontal
7386.000	36.44	6.78	44.92	43.68	41.98	74	.00	-32.02	Pass	Horizontal
9848.000	38.14	7.19	45.53	43.31	43.11	74	.00	-30.89	Pass	Horizontal
1241.562	30.32	1.93	44.33	48.25	36.17	74	.00	-37.83	Pass	Vertical
1561.221	30.99	2.36	43.93	47.30	36.72	74	.00	-37.28	Pass	Vertical
4924.000	34.94	6.22	44.60	42.40	38.96	74.00		-35.04	Pass	Vertical
6412.427	36.12	7.33	44.54	45.14	44.05	74.00		-29.95	Pass	Vertical
7386.000	36.44	6.78	44.92	44.88	43.18	74.00		-30.82	Pass	Vertical
9848.000	38.14	7.19	45.53	46.23	46.03	74.00		-27.97	Pass	Vertical

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate,

found the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: ESP-12F

Radiated spurious emission Test Setup-1(30MHz-1GHz)

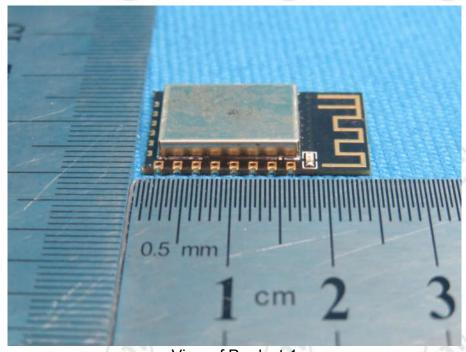
Radiated spurious emission Test Setup-2(Above 1GHz)



Report No. : EED32J00186201 Page 59 of 64

Radiated spurious emission Test Setup-2(Below 30MHz)

Radiated spurious emission Test Setup for close-up



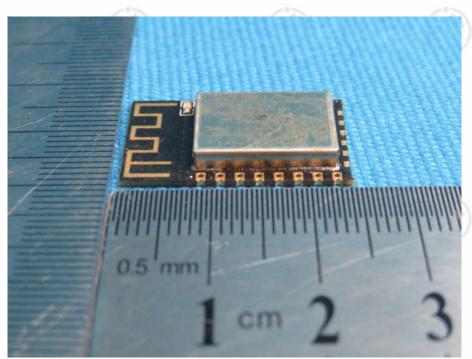
Report No.: EED32J00186201 Page 61 of 64

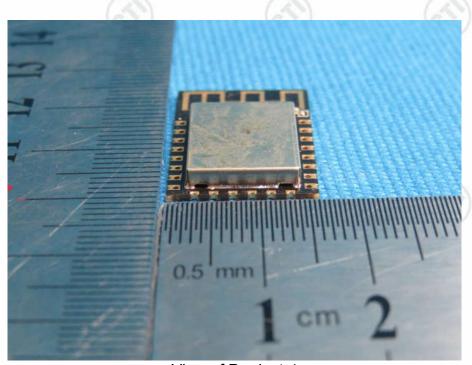
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: ESP-12F

View of Product-1

View of Product-2

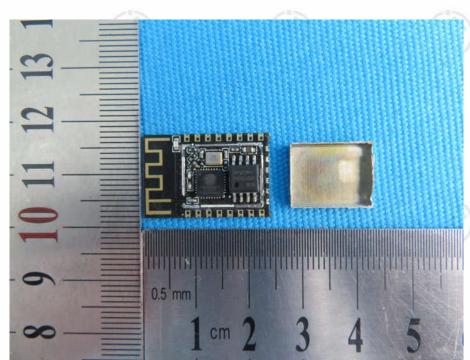


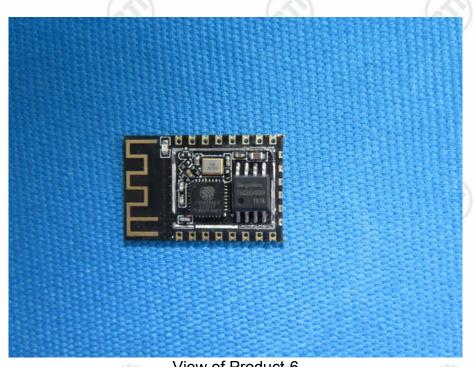


Report No. : EED32J00186201 Page 62 of 64

View of Product-3

View of Product-4

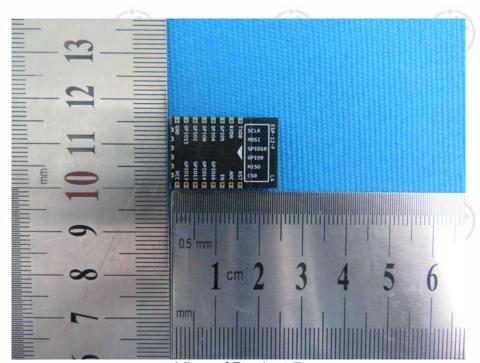


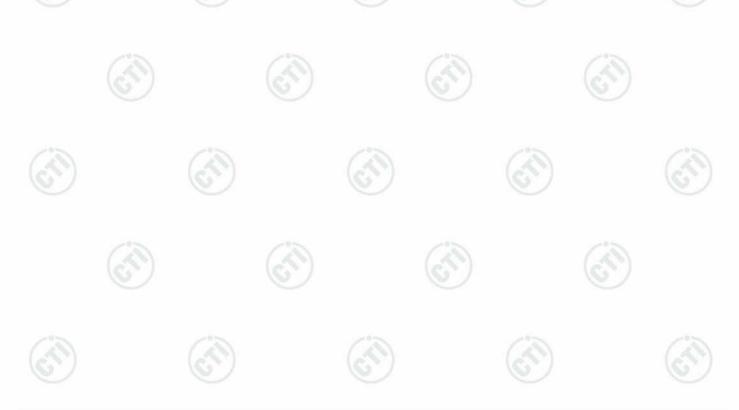


Page 63 of 64 Report No.: EED32J00186201

View of Product-5

View of Product-6





Page 64 of 64

View of Product-7

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

