

Report No.: EED32J00203501 Page 1 of 64

TEST REPORT

Product ESP-01M

Trade mark N/A

Model/Type reference : ESP-01M

Serial Number N/A

Report Number EED32J00203501 FCC ID 2AHMR-ESP01M

Date of Issue Sep. 28, 2017

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Shenzhen Ai-Thinker Technology Co., LTD 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

TOM- (

Tom chen (Test Project)

Compiled by:

Approved by

Report Seal

Kevin Ian (Project Engineer)

Reviewed by:

Date:

Kevin yang (Reviewer)

Sep. 28, 2017

Sheek Luo (Lab supervisor)

Check No.:3043801961

2 Version

Version No.	Date	(6)	Description	9
00	Sep. 28, 2017		Original	
		100	75	/25
((35)	(6,72)	(63)	(6,1)

Report No. : EED32J00203501 Page 3 of 64

3 Test Summary

o rest outilitiary	/ 3/1/		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 KDB 558074 D01v04	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No.: EED32J00203501 Page 4 of 64

4 Content

1 C	OVER PAGE			•••••		1
2 V	ERSION	•••••	•••••	•••••	•••••	2
3 T	EST SUMMARY	•••••	•••••	•••••	•••••	3
4 C	ONTENT				•••••	4
5 T	EST REQUIREMENT				•••••	5
5	5.1 Test setup					5
	5.1.1 For Conducted test se	•				
	5.1.2 For Radiated Emission					
	5.1.3 For Conducted Emiss					
	5.2 TEST ENVIRONMENT5.3 TEST CONDITION					
	SENERAL INFORMATION					
	6.1 CLIENT INFORMATION					
	6.2 GENERAL DESCRIPTION OF I					
	3.3 PRODUCT SPECIFICATION SU 3.4 DESCRIPTION OF SUPPORT I					
	6.5 TEST LOCATION					
	6.6 DEVIATION FROM STANDARD					
	6.7 ABNORMALITIES FROM STAN					
	6.8 OTHER INFORMATION REQU					
6	3.9 Measurement Uncertain	TY (95% CONFIDENCE L	EVELS, K=2)			9
7 E	QUIPMENT LIST			•••••	•••••	10
B R	ADIO TECHNICAL REQUIRE	EMENTS SPECIFICAT	ΓΙΟΝ	•••••	•••••	13
	Appendix A): Conducted Pe	eak Output Power		13		14
	Appendix B): 6dB Occupied	I Bandwidth				15
	Appendix C): Band-edge for					
	Appendix D): RF Conducted					
	Appendix E): Power Spectra					
	Appendix F): Antenna Requ					
	Appendix G): AC Power Lin Appendix H): Restricted bar					
	Appendix I): Radiated Spuri					
рμ	OTOGRAPHS OF TEST SET					
	OTOGRAPHS OF EUT CONS					
7 17	UIUGKAPNO UF EUI CUN	SIRUCIIUNAL DETA	∐	••••••	•••••	51

Report No.: EED32J00203501 Page 5 of 64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

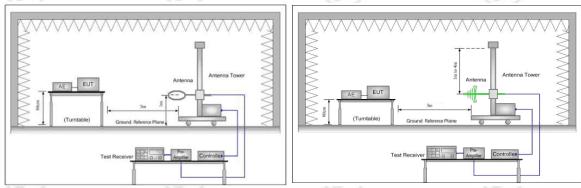


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

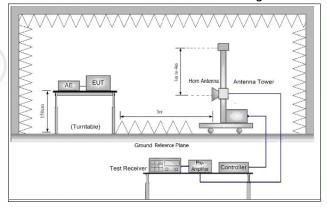
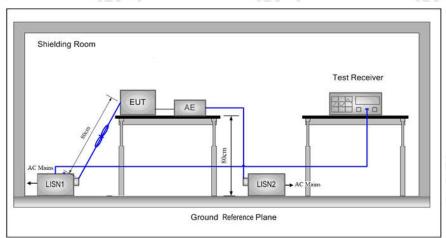


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		10
Temperature:	25.1 °C	
Humidity:	60 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	1X/KX	Low(L) Middle(M)	Middle(M)	High(H)	
902 11b/a/p/UT20\	2412MU= - 2462 MU=	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT in transmit data rate.	E EUT in transmitting mode with all kind of mode.		and all kind of	

(A)

Report No.: EED32J00203501

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		8	302.11b					
Data Rate	1Mb _l	os 2Mbp	s 5.5Mbp	s 11Mbps	5			
Power(dBm)	16.7	2 16.8	1 16.89	16.99		-100		
Mode	(10)		(4	802	2.11g	(43)		(4
Data Rate	6Mb	ps 9Mb _l	os 12Mbps	18Mbps	24Mbps	36Mbps	s 48Mbps	54Mbps
Power(dBm) 15.8	6 15.7	8 15.71	15.62	15.55	15.47	15.41	15.33
Mode				802.11n	(HT20)	·		
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	15.87	15.80	15.71	15.64	15.52	15.44	15.37	15.22

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Report No. : EED32J00203501 Page 8 of 64

6 General Information

6.1 Client Information

	Applicant:	Shenzhen Ai-Thinker Technology Co., LTD		
	Address of Applicant:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China		
١	Manufacturer:	Shenzhen Ai-Thinker Technology Co., LTD		
1	Address of Manufacturer:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China		
	Factory:	Shenzhen Ai-Thinker Technology Co., LTD		
	Address of Factory:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China		

6.2 General Description of EUT

_		
Product Name:	ESP-01M	
Model No.(EUT):	ESP-01M	
Trade Mark:	N/A	
EUT Supports Radios application:	Wi-Fi: 802.11 b/g/n(20M) , 2412MHz-2462MHz	6.
Power Supply:	DC 3.3V	
Sample Received Date:	Sep. 12, 2017	15
Sample tested Date:	Sep. 12, 2017 to Sep. 28, 2017	(25)

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)
Test Power Grade:	N/A
Test Software of EUT:	ESP Series Modules FCC & CE Test Tool V2.2.3.exe (manufacturer declare)
Antenna Type and Gain:	Type: PCB Antenna; Gain: 3dBi
Test Voltage:	DC 3.3V and AC 120V/60Hz

Operation	Operation Frequency each of channel(802.11b/g/n HT20)									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz			
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz			
3	2422MHz	6	2437MHz	9	2452MHz	6.	/			

6.4 Description of Support Units

The EUT has been tested independently

Report No.: EED32J00203501 Page 9 of 64

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
(8)	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Churique emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
1 133	7 230	7 J73

7 Equipment List

Equipmen	it List		V 201		307
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Communication test set	Agilent	N4010A	MY51400230	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	0	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018

Report No. : EED32J00203501 Page 11 of 64

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2017	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2016	07-28-2018
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112		01-11-2017	01-10-2018
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(0,)	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	(47)	01-11-2017	01-10-2018

50	
Cal. date	Cal. Due date
m-dd-yyyy)	(mm-dd-yyyy)
6-14-2017	06-13-2018
5-08-2017	05-07-2018

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018	
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018	
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018	
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018	
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018	
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018	
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018	

8 Radio Technical Requirements Specification

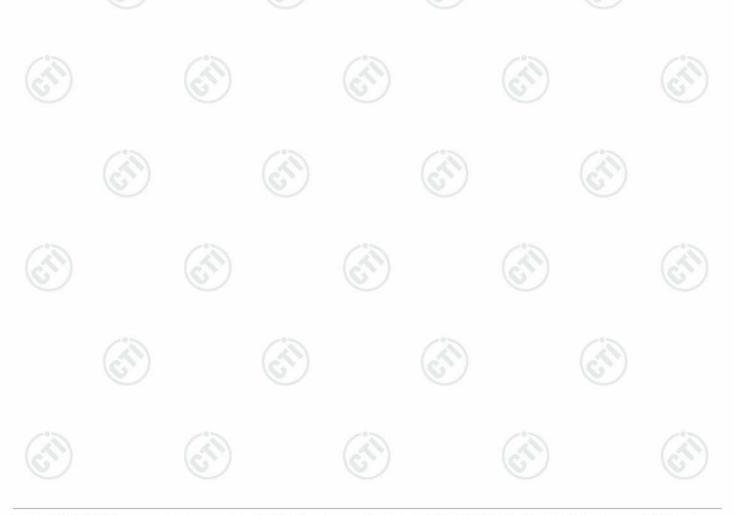
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32J00203501 Page 14 of 64

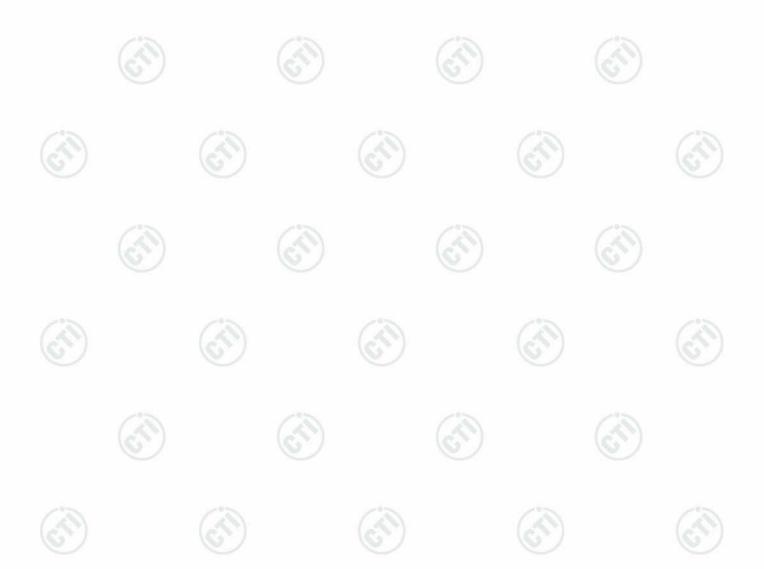

Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	16.99	PASS
11B	MCH	15.95	PASS
11B	HCH	14.92	PASS
11G	LCH	15.86	PASS
11G	MCH	15.00	PASS
11G	HCH	13.99	PASS
11N20SISO	LCH	15.87	PASS
11N20SISO	MCH	14.99	PASS
11N20SISO	НСН	13.99	PASS



Report No.: EED32J00203501 Page 15 of 64

Appendix B): 6dB Occupied Bandwidth

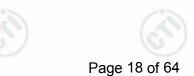
Result Table

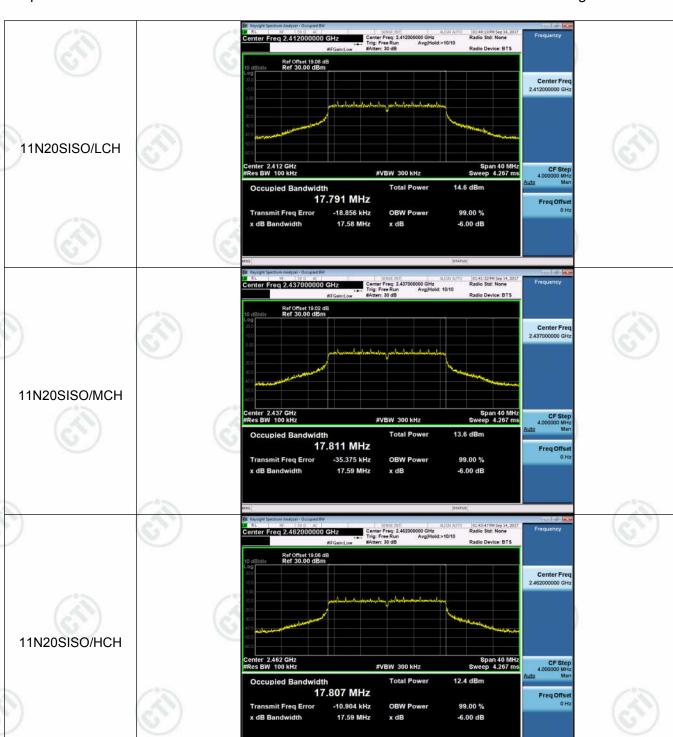
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.076	10.447	PASS	(3)
11B	мсн	8.543	10.474	PASS	
11B	нсн	8.090	10.432	PASS	
11G	LCH	16.35	16.595	PASS	Deal
11G	MCH	16.35	16.599	PASS	Peak
11G	НСН	16.35	16.604	PASS	detector
11N20SISO	LCH	17.58	17.791	PASS	
11N20SISO	MCH	17.59	17.811	PASS	
11N20SISO	нсн	17.59	17.807	PASS	

Test Graph



Page 17 of 64





Report No.: EED32J00203501 Page 19 of 64

Appendix C): Band-edge for RF Conducted Emissions

Result Table

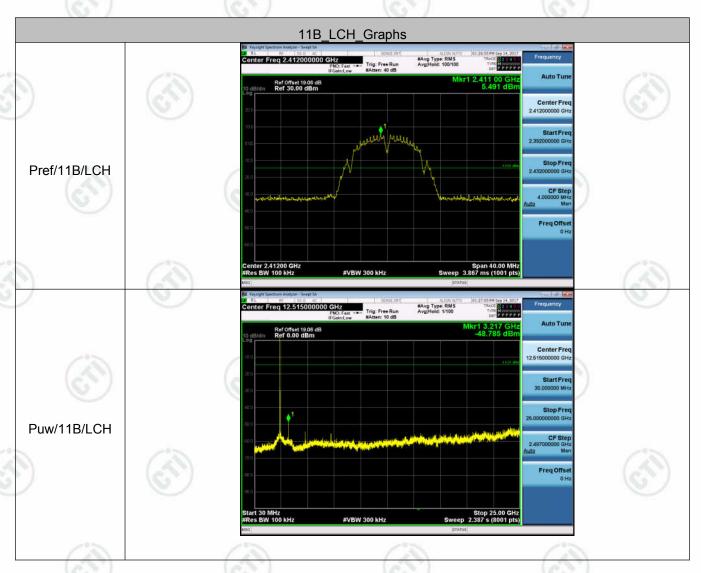
2.5	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	11B	LCH	1.511	-50.809	-18.49	PASS
	11B	НСН	-0.858	-49.898	-20.86	PASS
	11G	LCH	-2.578	-48.622	-22.58	PASS
	11G	HCH	-4.378	-48.722	-24.38	PASS
	11N20SISO	LCH	-3.416	-48.462	-23.42	PASS
	11N20SISO	HCH	-5.641	-48.628	-25.64	PASS

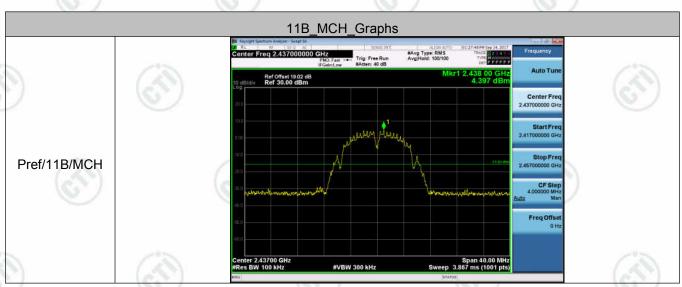
Test Graph

Report No. : EED32J00203501 Page 22 of 64

Appendix D): RF Conducted Spurious Emissions

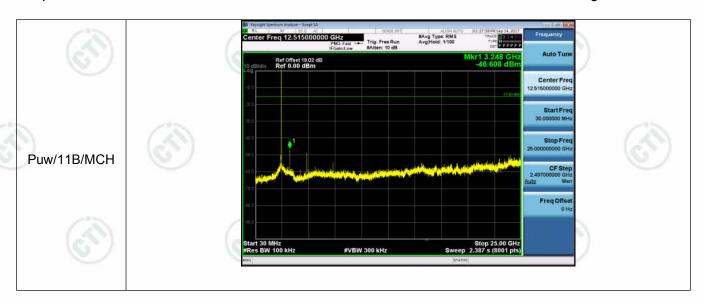
Result Table

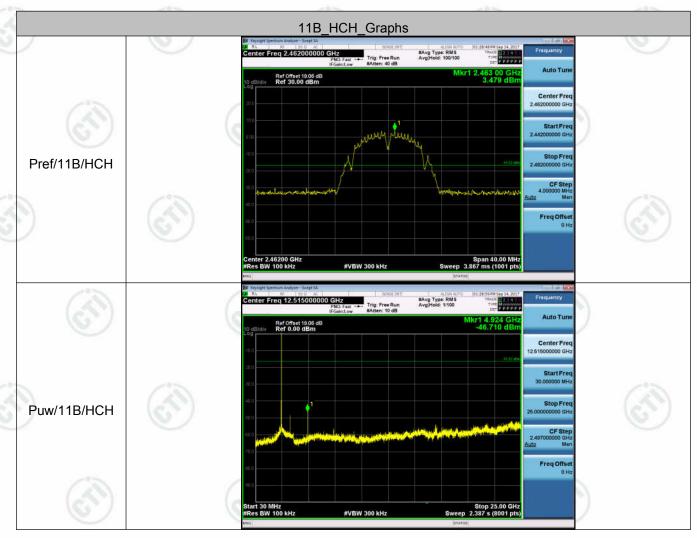

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	5.491	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.397	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	3.479	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.965	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-3.667	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-5.123	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-2.875	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.737	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-5.083	<limit< td=""><td>PASS</td></limit<>	PASS



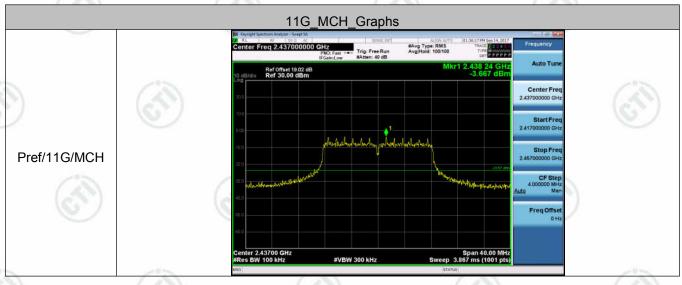
Report No. : EED32J00203501 Page 23 of 64

Test Graph

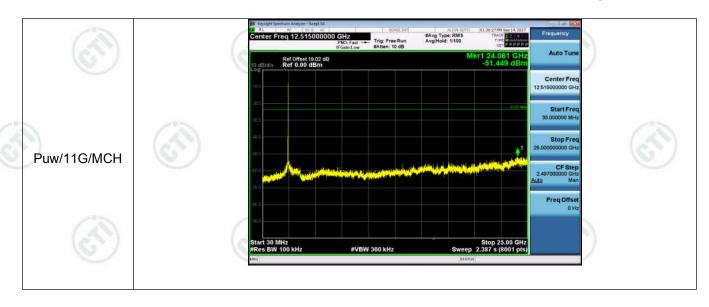


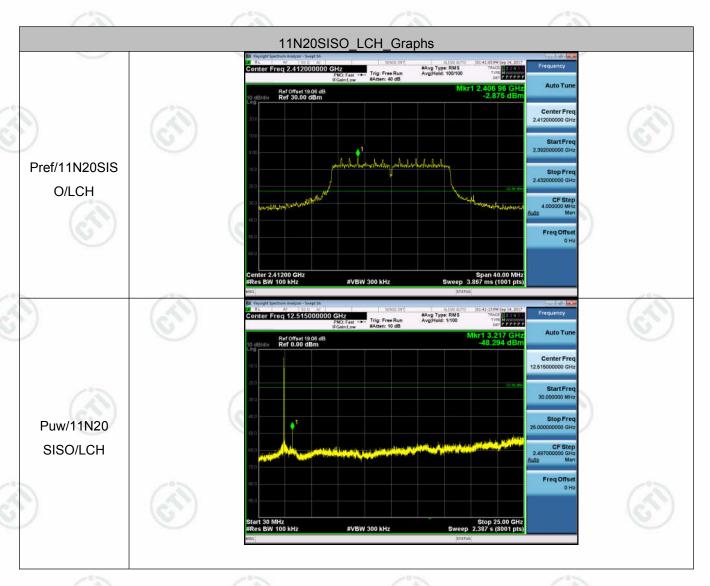


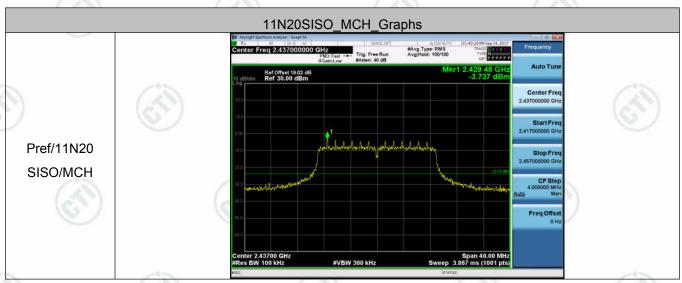




Report No. : EED32J00203501 Page 25 of 64

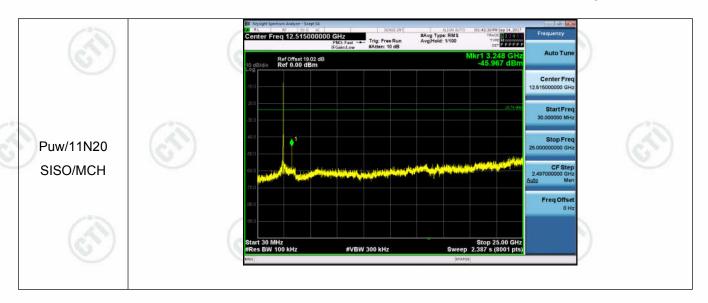


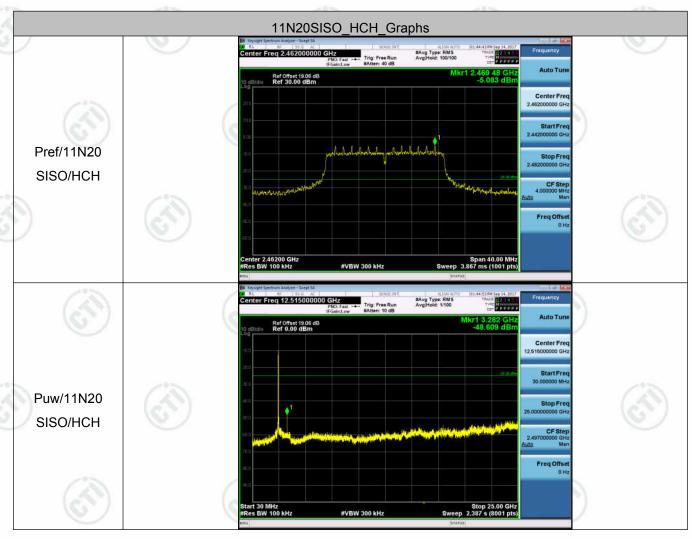


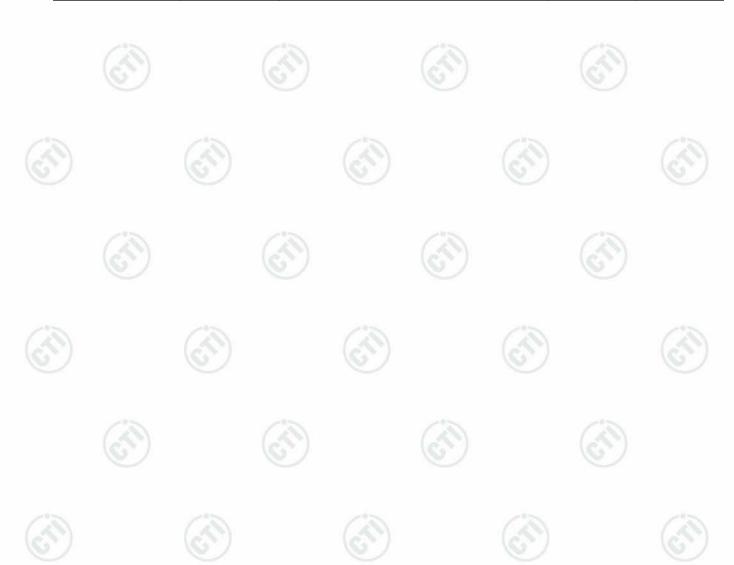




Report No. : EED32J00203501 Page 27 of 64







Appendix E): Power Spectral Density

Result Table


Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-8.435	8	PASS
11B	MCH	-7.844	8	PASS
11B	НСН	-9.056	8	PASS
11G	LCH	-17.602	8	PASS
11G	MCH	-18.206	8	PASS
11G	HCH	-19.109	8	PASS
11N20SISO	LCH	-17.062	8	PASS
11N20SISO	MCH	-17.462	8	PASS
11N20SISO	нсн	-20.106	8	PASS

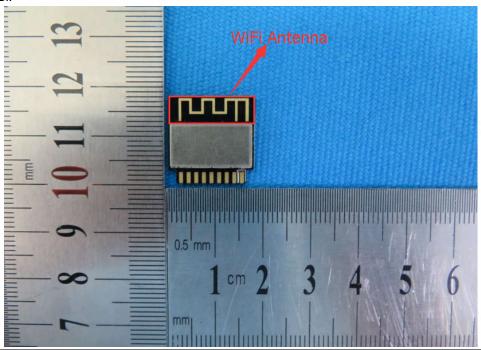
Test Graph



Report No. : EED32J00203501 Page 33 of 64

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No.: EED32J00203501 Page 34 of 64

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not
	exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1
	was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	700	
Fraguency range (MUT)	Limit (dBμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

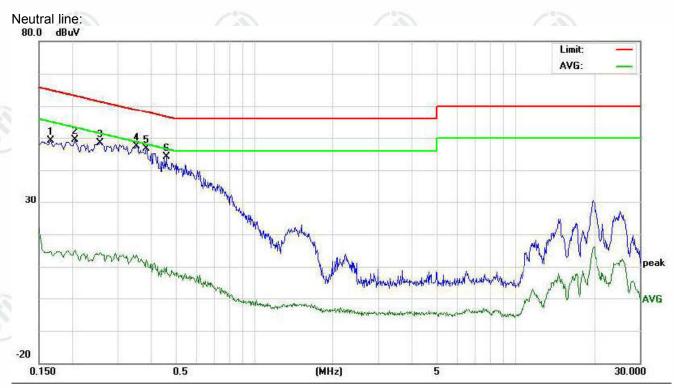
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

Page 35 of 64

No	Freq.	Reading_Level			Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
110.	•	(dBuV)												
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1499	38.33	36.78	12.31	9.77	48.10	46.55	22.08	66.00	56.00	-19.45	-33.92	Р	
2	0.1693	37.77	35.87	4.52	9.74	47.51	45.61	14.26	64.99	54.99	-19.38	-40.73	Ρ	
3	0.2048	37.34	35.14	3.79	9.71	47.05	44.85	13.50	63.41	53.41	-18.56	-39.91	Р	
4	0.3017	37.08	35.42	2.51	9.78	46.86	45.20	12.29	60.19	50.19	-14.99	-37.90	Р	
5	0.4561	27.89	25.91	-5.59	9.73	37.62	35.64	4.14	56.76	46.76	-21.12	-42.62	Р	
6	0.7586	21.23	19.37	-8.59	9.74	30.97	29.11	1.15	56.00	46.00	-26.89	-44.85	Р	



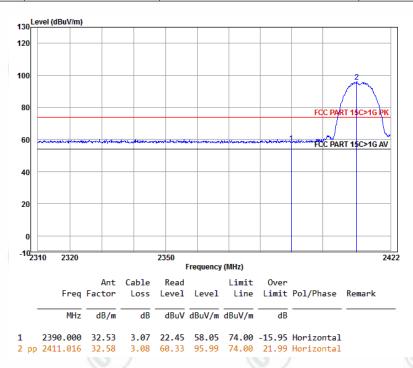
No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1658	39.30	37.91	4.95	9.75	49.05	47.66	14.70	65.16	55.16	-17.50	-40.46	Р	
2	0.2048	39.55	37.15	5.45	9.71	49.26	46.86	15.16	63.41	53.41	-16.55	-38.25	Р	
3	0.2574	38.54	36.34	4.56	9.75	48.29	46.09	14.31	61.51	51.51	-15.42	-37.20	Р	
4	0.3537	37.72	35.61	3.86	9.76	47.48	45.37	13.62	58.87	48.87	-13.50	-35.25	Р	
5	0.3850	36.88	35.25	2.37	9.75	46.63	45.00	12.12	58.17	48.17	-13.17	-36.05	Р	
6	0.4610	34.41	32.54	0.18	9.73	44.14	42.27	9.91	56.67	46.67	-14.40	-36.76	Р	

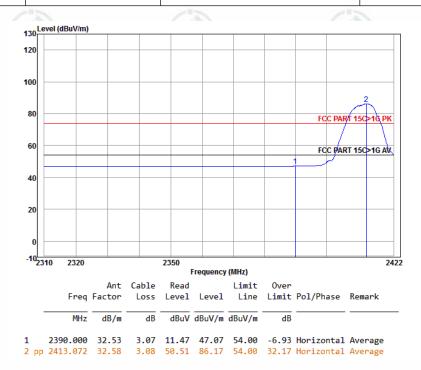
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 40U	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	(3
Test Procedure:	a. The EUT was placed of at a 3 meter semi-anect determine the position of the EUT was set 3 meters was mounted on the total c. The antenna height is a determine the maximum polarizations of the antenna was turned was turned from 0 degrete. The test-receiver systems at the and the sum of the sum of the systems and width with Maximum of the EUT was placed on the antenna was turned from 0 degrete.	n the top of a rota hoic camber. The of the highest raditers away from the p of a variable-heigaried from one man value of the field enna are set to manission, the EUT was to heights from 1 fees to 360 degreem was set to Peal	e table was iation. e interfere ight antenieter to fou d strength. ake the me was arrang meter to 4 es to find t	nce-receina tower. Ir meters and Both horeasuremented to its was meters and the maxim	oving antennate above the gray and and vent. Worst case along the rotate and the rotate and the reading.	to a, whice ound from vertica and the able
	f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	end of the restricte pliance. Also mea um analyzer plot.	asure any	emissions	s in the restri	
	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the following of the followin	end of the restricted pliance. Also measum analyzer plot. In the channel where as below: The is the test site, of the change form the change form the channel, the ments are performed found the X axis	change fro table 0.8 n is 1.5 met Highest ched in X, Y positionin	emissions or each po om Semi- neter to 1. ter). ter). channel c, Z axis p g which it	Anechoic Ch.5 meter(Aboositioning for	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectre for lowest and highest of the following for fully the distance is the first the EUT in the lower in the rediation measurer that the first frequency is the first frequency for the first frequency frequency frequency for the first frequency	end of the restricted pliance. Also measum analyzer plot. In the channel we are the test site, of the change form the change form the change form the change form the channel of the chann	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each poor semi- neter to 1. ter). channel /, Z axis poor g which it	Anechoic Ch.5 meter(Aboositioning for	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the following of the followin	end of the restricted pliance. Also measum analyzer plot. In the channel where as below: The is the test site, of the change form the change form the channel, the ments are performed found the X axis	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each po om Semi- neter to 1 ter). channel ', Z axis p g which it asured wa	Anechoic Ch.5 meter(Aberositioning for tis worse cars complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chaman 18GHz the distance is the first the EUT in the lowest lowe	end of the restricted pliance. Also measum analyzer plot. In channel we as below: The is the test site, of the property of the	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each po om Semi- neter to 1. ter). channel /, Z axis p g which it asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the following of the followin	end of the restricted pliance. Also measum analyzer plot. In the channel we as below: The as below: The is the test site, of the change form the change form the channel, the ments are performed found the X axis the channel all frequeses until all frequeses. Limit (dBµV/m 40.0)	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each po om Semi- neter to 1. ter). channel ', Z axis p g which it asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Abeositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chaman 18GHz the distance is the first the EUT in the lowest lowe	end of the restricter pliance. Also measum analyzer plot. In channel we as below: The ine is the test site, of the ber change form the same performed found the X axis res until all freque Limit (dBµV/m 40.0 43.5	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each po om Semi- neter to 1 ter). channel /, Z axis p g which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Above sitioning for tis worse cases complete. mark eak Value eak Value	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the following of the followin	end of the restricter pliance. Also mean um analyzer plot. Inchannel we as below: The as below: The is the test site, of the ber change form the set of the test channel, the ments are performed found the X axis the suntil all freques the set until all	change fro table 0.8 m is 1.5 met e Highest ched in X, Y s positionin	emissions or each poor each poor semi- neter to 1. ter). channel /, Z axis p g which it asured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abeositioning for tis worse cases complete.	dulation nambe ove

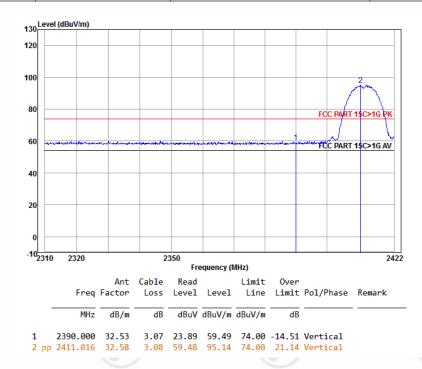

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$


Report No.: EED32J00203501 Page 38 of 64

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

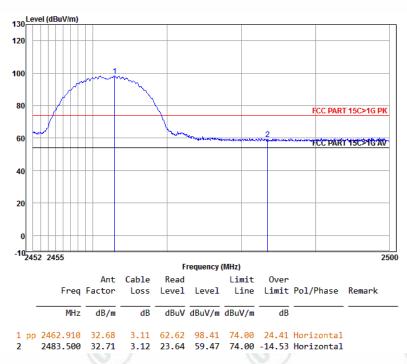
Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Report No. : EED32J00203501 Page 39 of 64

Worse case mode:	802.11b (11Mbps)	(5/2)	(8.52)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

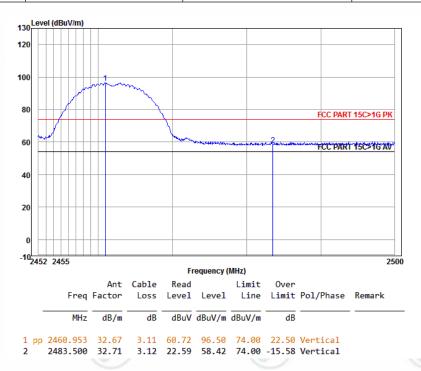


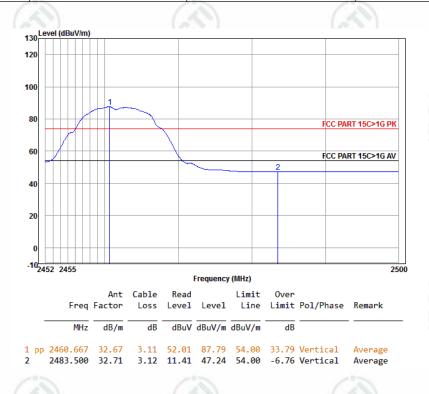


Report No.: EED32J00203501 Page 40 of 64

Worse case mode:	802.11b (11Mbps)		(1)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

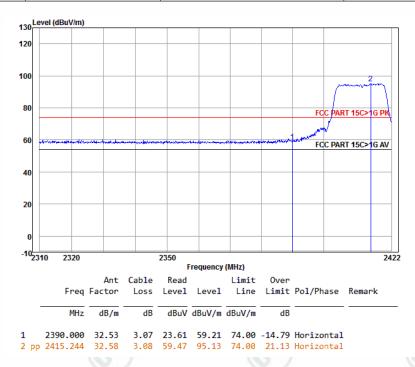
Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

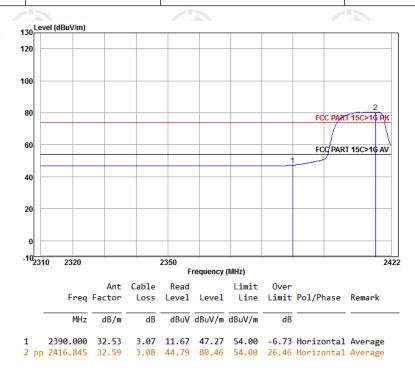




Report No.: EED32J00203501 Page 41 of 64

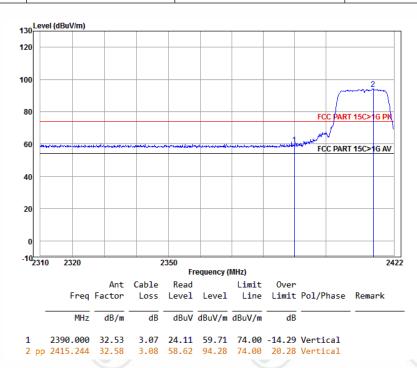
Worse case mode:	802.11b (11Mbps)	(2,73)	(85)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average



Report No. : EED32J00203501 Page 42 of 64

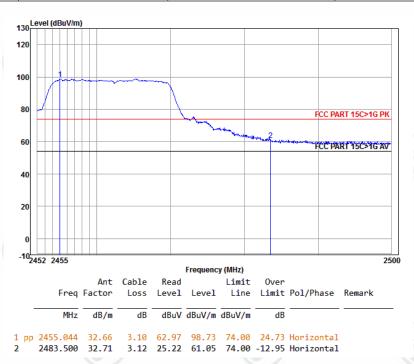
Worse case mode:	802.11g (6Mbps)	(41)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

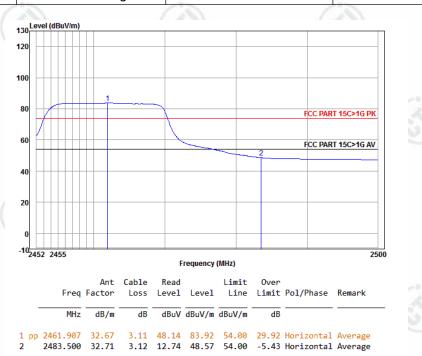

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Worse case mode:	802.11g (6Mbps)	(25)	(25)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

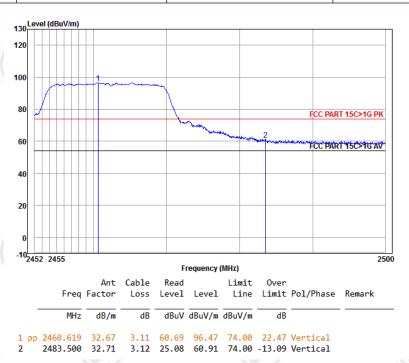




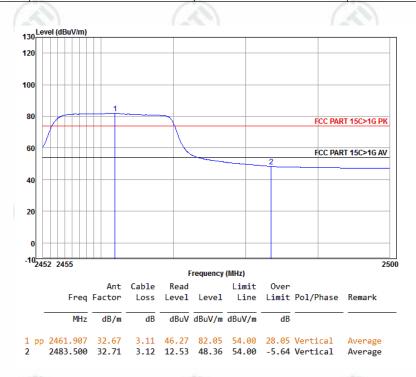
Worse case mode:	802.11g (6Mbps)	(27)	(7)]
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	1

Page 44 of 64

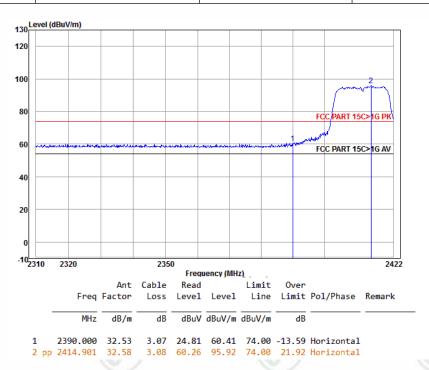
Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

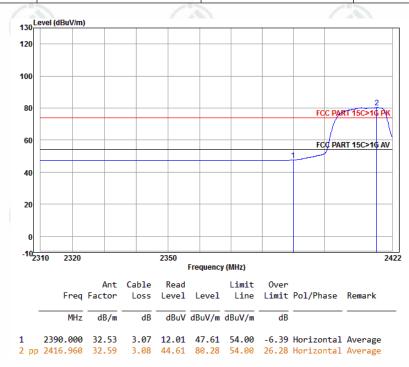


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

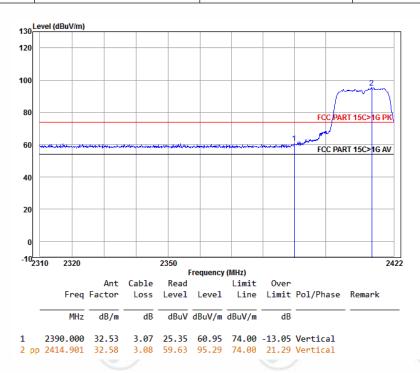


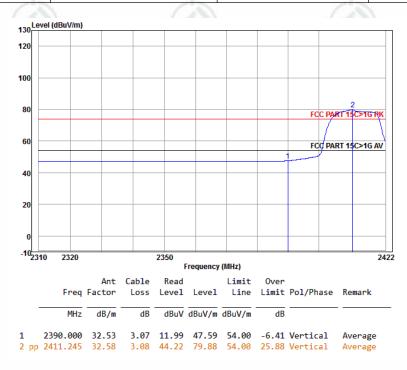
Worse case mode:	ode: 802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average



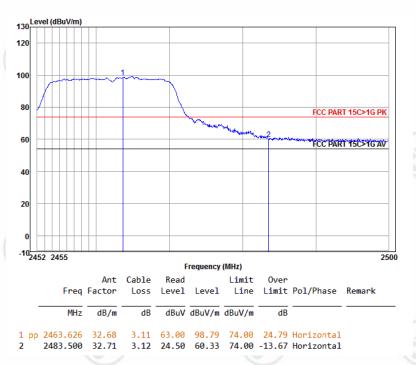
Worse case mode:	802.11n(HT20) (6.5Mbps)		(20)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

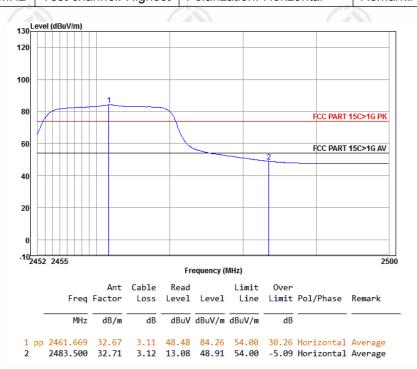

W	orse case mode:	802.11n(HT20) (6.5Mbps)		
Fre	equency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Page	47	of	64

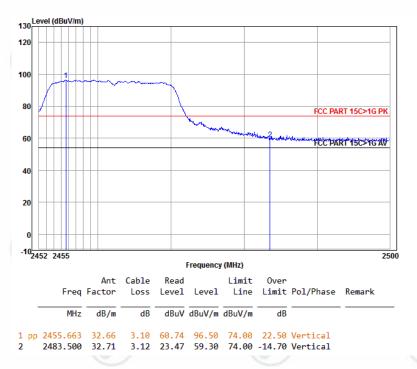
Worse case mode:	802.11n(HT20) (6.5Mbps)	(5.5)	(85)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average


Report No. : EED32J00203501 Page 48 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11n(HT20) (6.5Mbps)


Frequency: 2483.5MHz Test channel: Highest Polarization: Horizontal Remark:Average

Report No.: EED32J00203501 Page 49 of 64

Worse case mode:	mode: 802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode: 802.11n(HT20) (6.5Mbps)						
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average			

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, found the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions Receiver Setup:

Report No.: EED32J00203501

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE TOFIZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

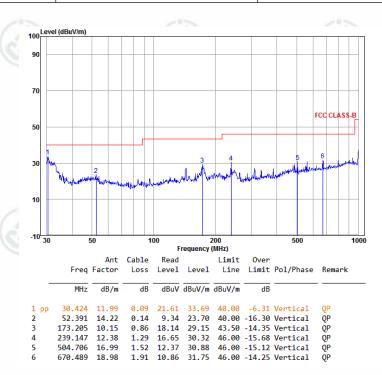
Above 1GHz test procedure as below:

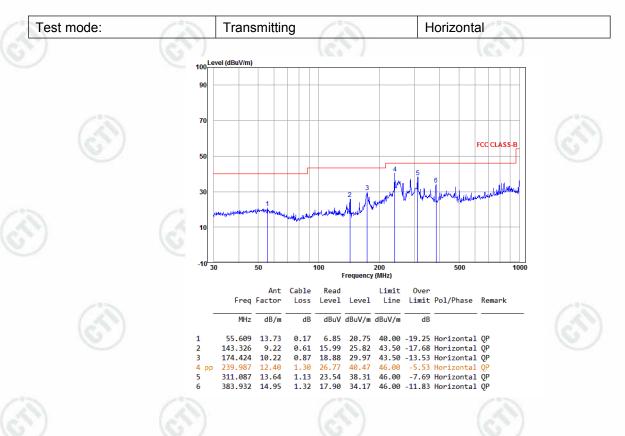
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ı	im	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.





Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

Transmitter Emission above 1GHz

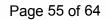
Test mode:	802.11b(11	Mbps)	Test F	requency	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1346.929	30.56	2.08	44.18 47.23 35.69		74.00	-38.31	Pass	Horizontal	
1823.477	31.43	2.66	43.66	47.22	37.65	74.00	-36.35	Pass	Horizontal
4824.000	34.73	6.02	44.60	48.15	44.30	74.00	-29.70	Pass	Horizontal
5940.967	35.86	7.38	44.51	45.72	44.45	74.00	-29.55	Pass	Horizontal
7236.000	36.42	6.94	44.80	43.01	41.57	74.00	-32.43	Pass	Horizontal
9648.000	37.93	7.01	45.57	42.09	41.46	74.00	-32.54	Pass	Horizontal
1182.943	30.18	1.83	44.41	47.47	35.07	74.00	-38.93	Pass	Vertical
1533.648	30.93	2.33	43.96	47.69	36.99	74.00	-37.01	Pass	Vertical
4824.000	34.73	6.02	44.60	46.62	42.77	74.00	-31.23	Pass	Vertical
5940.967	35.86	7.38	44.51	46.12	44.85	74.00	-29.15	Pass	Vertical
7236.000	36.42	6.94	44.80	43.41	41.97	74.00	-32.03	Pass	Vertical
9648.000	37.93	7.01	45.57	41.13	40.50	74.00	-33.50	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1306.407	30.47	2.02	44.24	47.15	35.40	74.00	-38.60	Pass	Horizontal
1809.605	31.41	2.65	43.67	47.11	37.50	74.00	-36.50	Pass	Horizontal
4874.000	34.84	6.12	44.60	48.98	45.34	74.00	-28.66	Pass	Horizontal
6363.645	36.09	7.34	44.54	46.66	45.55	74.00	-28.45	Pass	Horizontal
7311.000	36.43	6.86	44.86	43.58	42.01	74.00	-31.99	Pass	Horizontal
9748.000	38.03	7.10	45.55	42.54	42.12	74.00	-31.88	Pass	Horizontal
1222.743	30.28	1.90	44.35	46.95	34.78	74.00	-39.22	Pass	Vertical
1795.839	31.39	2.63	43.69	46.42	36.75	74.00	-37.25	Pass	Vertical
4874.000	34.84	6.12	44.60	50.58	46.94	74.00	-27.06	Pass	Vertical
6412.427	36.12	7.33	44.54	45.19	44.10	74.00	-29.90	Pass	Vertical
7311.000	36.43	6.86	44.86	43.07	41.50	74.00	-32.50	Pass	Vertical
9748.000	38.03	7.10	45.55	42.06	41.64	74.00	-32.36	Pass	Vertical

Page 54 of 64

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1280.072	30.41	1.98	44.27	47.47	35.59	74.00	-38.41	Pass	Horizontal
1786.719	31.37	2.62	43.70	46.94	37.23	74.00	-36.77	Pass	Horizontal
4924.000	34.94	6.22	44.60	53.31	49.87	74.00	-24.13	Pass	Horizontal
6396.125	36.11	7.34	44.54	45.54	44.45	74.00	-29.55	Pass	Horizontal
7386.000	36.44	6.78	44.92	43.81	42.11	74.00	-31.89	Pass	Horizontal
9848.000	38.14	7.19	45.53	41.81	41.61	74.00	-32.39	Pass	Horizontal
1329.894	30.52	2.06	44.21	46.68	35.05	74.00	-38.95	Pass	Vertical
1958.189	31.64	2.80	43.54	46.09	36.99	74.00	-37.01	Pass	Vertical
4924.000	34.94	6.22	44.60	51.85	48.41	74.00	-25.59	Pass	Vertical
6428.771	36.12	7.33	44.54	45.50	44.41	74.00	-29.59	Pass	Vertical
7386.000	36.44	6.78	44.92	44.22	42.52	74.00	-31.48	Pass	Vertical
9848.000	38.14	7.19	45.53	42.17	41.97	74.00	-32.03	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1247.899	30.34	1.93	44.32	47.15	35.10	74.00	-38.90	Pass	Horizontal
1764.123	31.34	2.60	43.72	47.24	37.46	74.00	-36.54	Pass	Horizontal
4824.000	34.73	6.02	44.60	43.67	39.82	74.00	-34.18	Pass	Horizontal
6412.427	36.12	7.33	44.54	45.68	44.59	74.00	-29.41	Pass	Horizontal
7236.000	36.42	6.94	44.80	42.77	41.33	74.00	-32.67	Pass	Horizontal
9648.000	37.93	7.01	45.57	41.44	40.81	74.00	-33.19	Pass	Horizontal
1303.086	30.46	2.02	44.24	45.76	34.00	74.00	-40.00	Pass	Vertical
1791.273	31.38	2.63	43.69	45.76	36.08	74.00	-37.92	Pass	Vertical
4824.000	34.73	6.02	44.60	40.26	36.41	74.00	-37.59	Pass	Vertical
6396.125	36.11	7.34	44.54	45.73	44.64	74.00	-29.36	Pass	Vertical
7236.000	36.42	6.94	44.80	42.45	41.01	74.00	-32.99	Pass	Vertical
9648.000	37.93	7.01	45.57	40.70	40.07	74.00	-33.93	Pass	Vertical



Test mode:	802.11g(6N	lbps)	Test Fred	quency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1303.086	30.46	2.02	44.24	47.19	35.43	74.00	-38.57	Pass	Horizontal
1805.005	31.40	2.64	43.68	46.78	37.14	74.00	-36.86	Pass	Horizontal
4874.000	34.84	6.12	44.60	43.38	39.74	74.00	-34.26	Pass	Horizontal
6379.864	36.10	7.34	44.54	45.99	44.89	74.00	-29.11	Pass	Horizontal
7319.964	36.43	6.85	44.87	44.15	42.56	74.00	-31.44	Pass	Horizontal
9748.000	38.03	7.10	45.55	41.41	40.99	74.00	-33.01	Pass	Horizontal
1216.534	30.27	1.89	44.36	46.53	34.33	74.00	-39.67	Pass	Vertical
1818.842	31.43	2.66	43.66	46.70	37.13	74.00	-36.87	Pass	Vertical
4874.000	34.84	6.12	44.60	43.91	40.27	74.00	-33.73	Pass	Vertical
6396.125	36.11	7.34	44.54	45.51	44.42	74.00	-29.58	Pass	Vertical
7311.000	36.43	6.86	44.86	44.23	42.66	74.00	-31.34	Pass	Vertical
9748.000	38.03	7.10	45.55	42.22	41.80	74.00	-32.20	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1254.268	30.35	1.94	44.31	46.81	34.79	74.00	-39.21	Pass	Horizontal
1795.839	31.39	2.63	43.69	47.05	37.38	74.00	-36.62	Pass	Horizontal
4924.000	34.94	6.22	44.60	43.28	39.84	74.00	-34.16	Pass	Horizontal
5791.646	35.74	7.23	44.52	45.49	43.94	74.00	-30.06	Pass	Horizontal
7386.000	36.44	6.78	44.92	43.14	41.44	74.00	-32.56	Pass	Horizontal
9848.000	38.14	7.19	45.53	41.93	41.73	74.00	-32.27	Pass	Horizontal
1329.894	30.52	2.06	44.21	47.07	35.44	74.00	-38.56	Pass	Vertical
1809.605	31.41	2.65	43.67	46.62	37.01	74.00	-36.99	Pass	Vertical
4924.000	34.94	6.22	44.60	42.61	39.17	74.00	-34.83	Pass	Vertical
6412.427	36.12	7.33	44.54	45.19	44.10	74.00	-29.90	Pass	Vertical
7386.000	36.44	6.78	44.92	43.57	41.87	74.00	-32.13	Pass	Vertical
9848.000	38.14	7.19	45.53	41.21	41.01	74.00	-32.99	Pass	Vertical

			Z**							
Test mode:	802.11n(HT	T20)(6.5N	(lbps)	Test Frequ	ency: 2412M	lHz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1286.606	30.43	1.99	44.26	46.70	34.86	74.	.00	-39.14	Pass	Horizontal
1786.719	31.37	2.62	43.70	46.76	37.05	74.	.00	-36.95	Pass	Horizontal
4824.000	34.73	6.02	44.60	44.41	40.56	74.	.00	-33.44	Pass	Horizontal
5986.509	35.89	7.43	44.50	45.28	44.10	74.	.00	-29.90	Pass	Horizontal
7236.000	36.42	6.94	44.80	43.48	42.04	74.	.00	-31.96	Pass	Horizontal
9648.000	37.93	7.01	45.57	42.00	41.37	74.	.00	-32.63	Pass	Horizontal
1353.804	30.57	2.09	44.18	46.68	35.16	74.	.00	-38.84	Pass	Vertical
1782.177	31.37	2.62	43.70	47.16	37.45	74.	.00	-36.55	Pass	Vertical
4824.000	34.73	6.02	44.60	43.68	39.83	74.	.00	-34.17	Pass	Vertical
6363.645	36.09	7.34	44.54	44.72	43.61	74.	.00	-30.39	Pass	Vertical
7236.000	36.42	6.94	44.80	43.10	41.66	74.	.00	-32.34	Pass	Vertical
9648.000	37.93	7.01	45.57	42.05	41.42	74	.00	-32.58	Pass	Vertical

Test mode:	802.11n(HT	720)(6.5N	(lbps)	Test Frequency: 2437MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/	Limit	Result	Antenna Polaxis	
1251.079	30.35	1.94	44.31	46.63	34.61	74.00	-39.39	Pass	Horizontal	
1809.605	31.41	2.65	43.67	46.78	37.17	74.00	-36.83	B Pass	Horizontal	
4874.000	34.84	6.12	44.60	44.42	40.78	74.00	-33.22	2 Pass	Horizontal	
5806.408	35.76	7.25	44.52	45.62	44.11	74.00	-29.89	Pass	Horizontal	
7311.000	36.43	6.86	44.86	43.14	41.57	74.00	-32.43	B Pass	Horizontal	
9748.000	38.03	7.10	45.55	41.72	41.30	74.00	-32.70	Pass	Horizontal	
1346.929	30.56	2.08	44.18	47.63	36.09	74.00	-37.91	Pass	Vertical	
1791.273	31.38	2.63	43.69	47.67	37.99	74.00	-36.01	Pass	Vertical	
4874.000	34.84	6.12	44.60	43.75	40.11	74.00	-33.89	Pass	Vertical	
6412.427	36.12	7.33	44.54	46.43	45.34	74.00	-28.66	Pass	Vertical	
7311.000	36.43	6.86	44.86	43.34	41.77	74.00	-32.23	B Pass	Vertical	
9748.000	38.03	7.10	45.55	41.75	41.33	74.00	-32.67	7 Pass	Vertical	

Page 56 of 64

Report No.: EED32J00203501 Page 57 of 64

					100					
Test mode:	802.11n(HT	T20)(6.5N	(lbps)	Test Frequency: 2462MHz			Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1329.894	30.52	2.06	44.21	46.81	35.18	74.00		-38.82	Pass	Horizontal
1795.839	31.39	2.63	43.69	46.64	36.97	74.00		-37.03	Pass	Horizontal
4924.000	34.94	6.22	44.60	43.65	40.21	74.00		-33.79	Pass	Horizontal
6396.125	36.11	7.34	44.54	45.52	44.43	74.00		-29.57	Pass	Horizontal
7386.000	36.44	6.78	44.92	44.86	43.16	74.00		-30.84	Pass	Horizontal
9848.000	38.14	7.19	45.53	43.21	43.01	74.00		-30.99	Pass	Horizontal
1251.079	30.35	1.94	44.31	47.16	35.14	74.00		-38.86	Pass	Vertical
1875.258	31.51	2.72	43.61	46.83	37.45	74.00		-36.55	Pass	Vertical
4924.000	34.94	6.22	44.60	42.80	39.36	74.00		-34.64	Pass	Vertical
6594.518	36.21	7.29	44.56	45.16	44.10	74.00		-29.90	Pass	Vertical
7386.000	36.44	6.78	44.92	44.36	42.66	74.00		-31.34	Pass	Vertical
9848.000	38.14	7.19	45.53	42.65	42.45	74.00		-31.55	Pass	Vertical

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate,

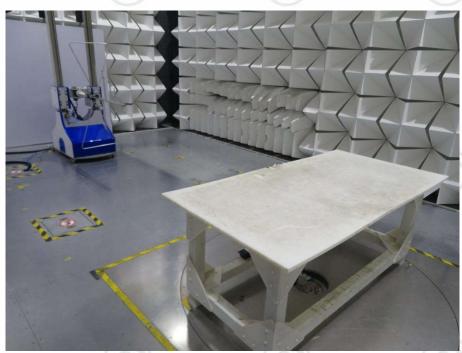
found the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

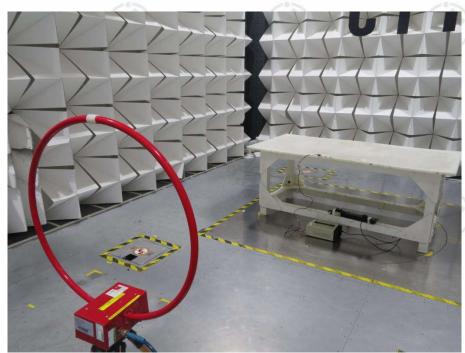


PHOTOGRAPHS OF TEST SETUP

Test Model No.: ESP-01M

Radiated spurious emission Test Setup-1(30MHz-1GHz)

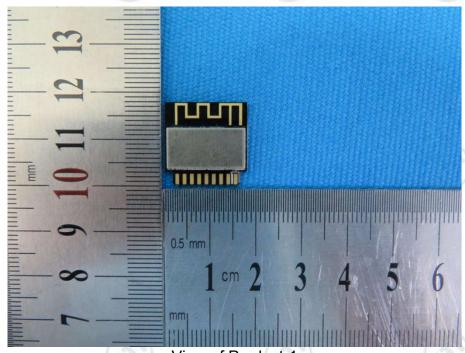
Radiated spurious emission Test Setup-2(Above 1GHz)

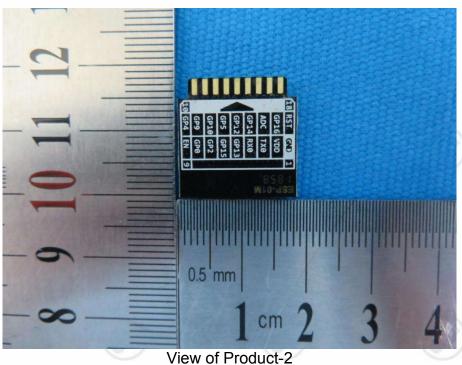


Report No. : EED32J00203501 Page 59 of 64

Radiated spurious emission Test Setup-2(Below 30MHz)

Radiated spurious emission Test Setup for close-up

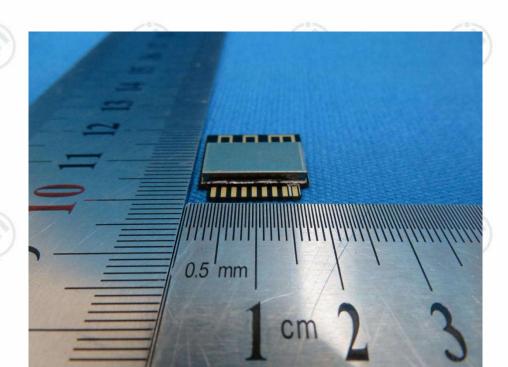


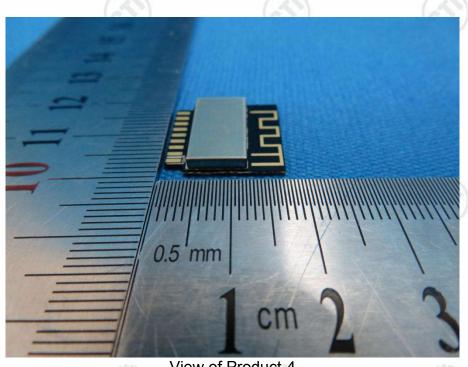


PHOTOGRAPHS OF EUT Constructional Details

Test model No.: ESP-01M

View of Product-1

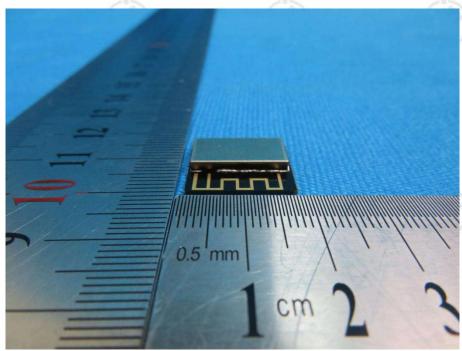


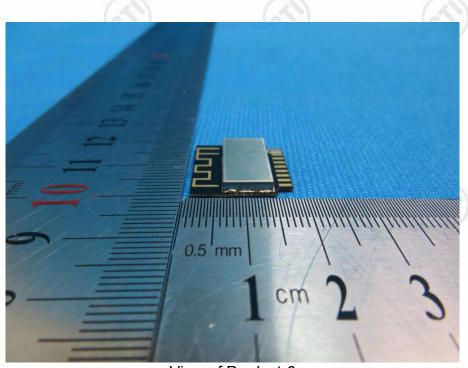


View of Product-3

View of Product-4

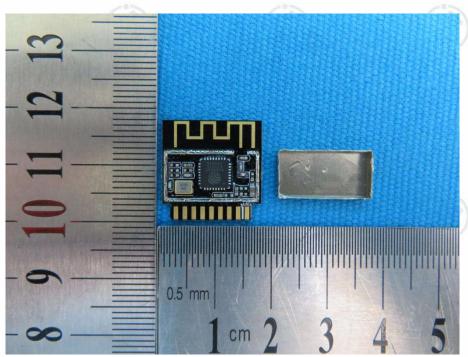
Page 62 of 64

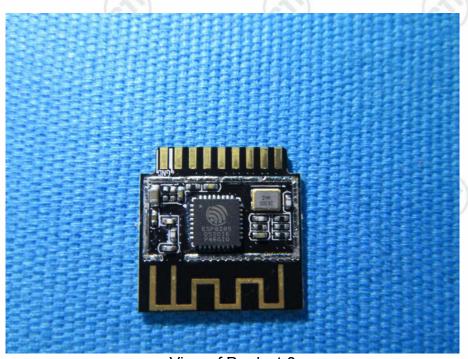




View of Product-5

View of Product-6





Report No. : EED32J00203501 Page 64 of 64

View of Product-7

View of Product-8
*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.