

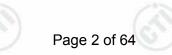
Report No. : EED32K00216701

Page 1 of 64

# **TEST REPORT**

| Product              | : WiFi module               |
|----------------------|-----------------------------|
| Trade mark           | : N/A                       |
| Model/Type reference | ce : ESP-01F                |
| Serial Number        | : N/A                       |
| Report Number        | : EED32K00216701            |
| FCC ID               | : 2AHMR-ESP01F              |
| Date of Issue        | : Oct. 30, 2018             |
| Test Standards       | : 47 CFR Part 15Subpart C   |
| Test result          | : PASS                      |
|                      |                             |
|                      | Prepared for:               |
| Shenzhen Ai-Th       | hinker Technology Co., Ltd. |

Block C2, Huateng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China


Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Compiled by: Tom- chen Tom chen (Test Project) Kevin Ian (Project Engineer) Reviewed by: kelm Approved by иÑ Sheek Luo (Lab supervisor) Kevin yang (Reviewer) Oct. 30, 2018 Date: Check No.: 3320249081 Report Seal







## 2 Version

| 2        | Version No. |   | Date         |   | Descriptio | n |          |
|----------|-------------|---|--------------|---|------------|---|----------|
|          | 00          | 0 | ct. 30, 2018 | C | Original   | 0 |          |
| <u>S</u> |             | S |              |   | Ì          |   | <b>E</b> |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |
|          |             |   |              |   |            |   |          |







## 3 Test Summary

| Test Item                                                               | Test Requirement                                      | Test method      | Result |
|-------------------------------------------------------------------------|-------------------------------------------------------|------------------|--------|
| Antenna Requirement                                                     | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted<br>Emission                                     | 47 CFR Part 15 Subpart C Section<br>15.207            | ANSI C63.10-2013 | PASS   |
| Conducted Peak Output<br>Power                                          | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10-2013 | PASS   |
| 6dB Occupied Bandwidth                                                  | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10-2013 | PASS   |
| Power Spectral Density                                                  | 47 CFR Part 15 Subpart C Section 15.247 (e)           | ANSI C63.10-2013 | PASS   |
| Band-edge for RF<br>Conducted Emissions                                 | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013 | PASS   |
| RF Conducted Spurious<br>Emissions                                      | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013 | PASS   |
| Radiated Spurious<br>Emissions                                          | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013 | PASS   |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013 | PASS   |

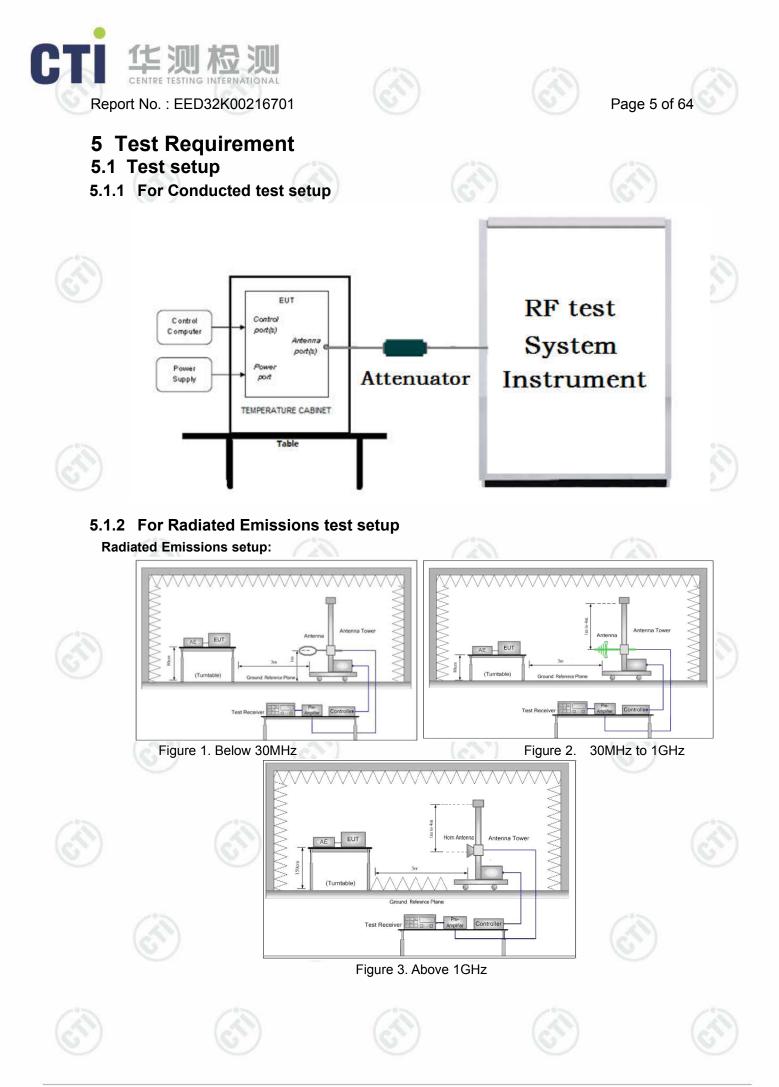
#### Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.






S



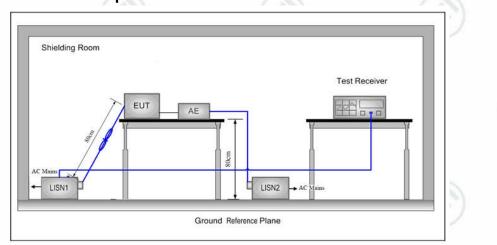
Page 4 of 64

## 4 Content

| 1 COVER PAGE         2 VERSION         3 TEST SUMMARY         4 CONTENT         5 TEST REQUIREMENT         5.1 TEST SETUP         5.1.1 For Conducted test setup         5.1.2 For Radiated Emissions test setup         5.1.3 For Conducted Emissions test setup         5.1.3 For Conducted Emissions test setup         5.2 TEST ENVIRONMENT         5.3 TEST CONDITION         6 GENERAL INFORMATION         6.1 CLIENT INFORMATION         6.2 GENERAL DISCRIPTION OF EUT         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION         6.6 TEST FACILITY         6.7 DEVIATION FROM STANDARD CONDITIONS.         6.8 ORDIFICATION STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION         Appendix B): GBID OCCUPIed Bandwidth.         Appendix B): Conducted Pound Power.         Appendix B): BGIB OCCUPIED BANGWIDT         Appendix B): REQUIREMENTS SPECIFICATION         Appendix B): Reducted Providuate Emissions.         Appendix B): Restricted bands around fundamental frequency (Radiated).                                                                                                             |       |                            |                  |      |   |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|------------------|------|---|--------|
| 3 TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 CO  | VER PAGE                   |                  |      |   | 1      |
| 4 CONTENT.         5 TEST REQUIREMENT.         5.1 TEST SETUP.         5.1.1 For Conducted test setup.         5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.2 TEST ENVIRONMENT.         5.3 TEST CONDITION         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVATION FROM STANDARDS.         6.8 ADNORMALITIES FROM STANDARDS.         6.8 ADNORMALTIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emission.         Appendix G): AC Power Line Conducted Emission.         Appendix D): RF Conducted Spurious Emission.         Appendix D): Restricted Dands aroun                                                                            | 2 VE  | RSION                      |                  |      |   | <br>2  |
| 5 TEST REQUIREMENT.         5.1 TEST SETUP.         5.1.1 For Conducted test setup.         5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.1 ST ENVIRONMENT.         5.3 TEST CONDITION.         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix B): 6dB Occupied Bandwidth.         Appendix D): RF Conducted Spurious Emissions.         Appendix B): ACP Ower Line Conducted Emission.         Appendix B): ACP Ower Line Conducted Emission.         Appendix F): Antenna Requirement.         Appendix F): Restricted bands around fundamental frequency (Radiated).         Appendix I): Restricted bands around fundamental frequency                                                   | 3 TES | ST SUMMARY                 |                  |      |   | <br>3  |
| 5.1 TEST SETUP.         5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.2 TEST Environment.         5.3 TEST CONDITION         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION OF EUT.         6.3 PRODUCT SPECIFICATION OF EUT.         6.3 PRODUCT SPECIFICATION OF SUPPORT UNITS.         6.5 TEST LOCATION         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.         Appendix B): 6dB Occupied Bandwidth.         Appendix F): Antenna Requirement.         Appendix F): Antenna Requirement.         Appendix F): Act Power Line Conducted Emission.         Appendix F): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.                                                                                       | 4 CO  | NTENT                      |                  |      |   | <br>4  |
| 5.1 TEST SETUP.         5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.2 TEST Environment.         5.3 TEST CONDITION         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION OF EUT.         6.3 PRODUCT SPECIFICATION OF EUT.         6.3 PRODUCT SPECIFICATION OF SUPPORT UNITS.         6.5 TEST LOCATION         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.         Appendix B): 6dB Occupied Bandwidth.         Appendix F): Antenna Requirement.         Appendix F): Antenna Requirement.         Appendix F): Act Power Line Conducted Emission.         Appendix F): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.                                                                                       | 5 TES |                            |                  |      |   | 1005   |
| 5.1.1 For Conducted test setup.         5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.2 TEST ENVIRONMENT.         5.3 TEST CONDITION.         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Emission.         Appendix D): RF Conducted Emission.         Appendix D): RF Conducted Spurious Emission.         Appendix D): RF Conducted Emission. <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<> |       |                            |                  |      |   |        |
| 5.1.2 For Radiated Emissions test setup.         5.1.3 For Conducted Emissions test setup.         5.2 TEST ENVIRONMENT.         5.3 TEST CONDITION.         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix E): Power Spectral Density.         Appendix F): Antenna Requirement.         Appendix H): Restricted bands around fundamental frequency (Radiated).         Appendix H): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.                                                                            |       |                            |                  |      |   |        |
| 5.1.3 For Conducted Emissions test setup.         5.2 TEST ENVIRONMENT         5.3 TEST CONDITION         6 GENERAL INFORMATION.         6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                            |                  |      |   |        |
| 5.2 TEST ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                            | •                |      |   |        |
| 5.3 TEST CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                            |                  |      |   |        |
| 6 GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                            |                  |      |   |        |
| 6.1 CLIENT INFORMATION.         6.2 GENERAL DESCRIPTION OF EUT.         6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION.         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST.         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION.         Appendix A): Conducted Peak Output Power.         Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emissions.         Appendix B): Acte Power Line Conducted Emission.         Appendix G): AC Power Line Conducted Emission.         Appendix G): AC Power Line Conducted Emission.         Appendix G): AC Power Line Conducted Emission.         Appendix H): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.         Appendix I): Radiated Spurious Emissions.                                                                                                                                                              |       |                            |                  |      |   |        |
| 6.2 GENERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                            |                  |      |   |        |
| 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.         6.4 DESCRIPTION OF SUPPORT UNITS.         6.5 TEST LOCATION         6.6 TEST FACILITY.         6.7 DEVIATION FROM STANDARDS.         6.8 ABNORMALITIES FROM STANDARD CONDITIONS.         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).         7 EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                            |                  |      |   |        |
| 6.4 DESCRIPTION OF SUPPORT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |                  |      |   |        |
| 6.5 TEST LOCATION         6.6 TEST FACILITY         6.7 DEVIATION FROM STANDARDS         6.8 ABNORMALITIES FROM STANDARD CONDITIONS         6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER         6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)         7 EQUIPMENT LIST         8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION         Appendix A): Conducted Peak Output Power         Appendix B): 6dB Occupied Bandwidth         Appendix C): Band-edge for RF Conducted Emissions         Appendix D): RF Conducted Spurious Emissions         Appendix E): Power Spectral Density         Appendix G): AC Power Line Conducted Emission         Appendix G): AC Power Line Conducted Emission         Appendix H): Restricted bands around fundamental frequency (Radiated)         Appendix I): Radiated Spurious Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                            |                  |      |   |        |
| 6.6 TEST FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                            |                  |      |   |        |
| 6.8 ABNORMALITIES FROM STANDARD CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                            |                  |      |   |        |
| 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.<br>6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).<br>7 EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                            |                  |      |   |        |
| 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                            |                  |      |   |        |
| 7 EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |                  |      |   |        |
| 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION       Appendix A): Conducted Peak Output Power.         Appendix A): Conducted Peak Output Power.       Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.       Appendix C): Band-edge for RF Conducted Emissions.         Appendix D): RF Conducted Spurious Emissions.       Appendix E): Power Spectral Density.         Appendix F): Antenna Requirement.       Appendix G): AC Power Line Conducted Emission.         Appendix G): AC Power Line Conducted Emission.       Appendix H): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.       Appendix I): Radiated Spurious Emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                            |                  |      |   |        |
| Appendix A): Conducted Peak Output Power.       Appendix B): 6dB Occupied Bandwidth.         Appendix C): Band-edge for RF Conducted Emissions.       Appendix D): RF Conducted Spurious Emissions.         Appendix D): RF Conducted Spurious Emissions.       Appendix E): Power Spectral Density.         Appendix F): Antenna Requirement.       Appendix G): AC Power Line Conducted Emission.         Appendix G): AC Power Line Conducted Emission.       Appendix H): Restricted bands around fundamental frequency (Radiated).         Appendix I): Radiated Spurious Emissions.       Appendix I): Radiated Spurious Emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 EQ  | UIPMENT LIST               |                  |      |   | <br>10 |
| Appendix B): 6dB Occupied Bandwidth.<br>Appendix C): Band-edge for RF Conducted Emissions.<br>Appendix D): RF Conducted Spurious Emissions.<br>Appendix E): Power Spectral Density.<br>Appendix F): Antenna Requirement.<br>Appendix G): AC Power Line Conducted Emission.<br>Appendix H): Restricted bands around fundamental frequency (Radiated).<br>Appendix I): Radiated Spurious Emissions.<br>PHOTOGRAPHS OF TEST SETUP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 RA  | DIO TECHNICAL REQUIR       | EMENTS SPECIFICA | TION |   | <br>12 |
| Appendix B): 6dB Occupied Bandwidth.<br>Appendix C): Band-edge for RF Conducted Emissions.<br>Appendix D): RF Conducted Spurious Emissions.<br>Appendix E): Power Spectral Density.<br>Appendix F): Antenna Requirement.<br>Appendix G): AC Power Line Conducted Emission.<br>Appendix H): Restricted bands around fundamental frequency (Radiated).<br>Appendix I): Radiated Spurious Emissions.<br>PHOTOGRAPHS OF TEST SETUP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Appendix A): Conducted F   | eak Output Power |      | 1 | <br>   |
| Appendix D): RF Conducted Spurious Emissions.       2         Appendix E): Power Spectral Density.       3         Appendix F): Antenna Requirement.       3         Appendix G): AC Power Line Conducted Emission.       3         Appendix H): Restricted bands around fundamental frequency (Radiated).       3         Appendix I): Radiated Spurious Emissions.       3         PHOTOGRAPHS OF TEST SETUP.       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Appendix B): 6dB Occupie   | d Bandwidth      |      |   | <br>   |
| Appendix E): Power Spectral Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                            |                  |      |   |        |
| Appendix F): Antenna Requirement.<br>Appendix G): AC Power Line Conducted Emission.<br>Appendix H): Restricted bands around fundamental frequency (Radiated).<br>Appendix I): Radiated Spurious Emissions.<br>PHOTOGRAPHS OF TEST SETUP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | ,                          | •                |      |   |        |
| Appendix G): AC Power Line Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | ,                          |                  |      |   |        |
| Appendix H): Restricted bands around fundamental frequency (Radiated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                            |                  |      |   |        |
| Appendix I): Radiated Spurious Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                            |                  |      |   |        |
| PHOTOGRAPHS OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Appendix I): Restricted ba | rious Emissions  |      |   | <br>   |
| PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                            |                  |      |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                            |                  |      |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a     |                            | (3)              | 8    |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                            |                  |      |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                            |                  |      |   |        |










Page 6 of 64

#### 5.1.3 For Conducted Emissions test setup

#### **Conducted Emissions setup**



## 5.2 Test Environment

| <b>Operating Environment:</b> |          |      |  |
|-------------------------------|----------|------|--|
| Temperature:                  | 23.6°C   |      |  |
| Humidity:                     | 63% RH   |      |  |
| Atmospheric Pressure:         | 1010mbar | 1845 |  |
| <b>Test Condition</b>         |          |      |  |

#### **Test channel:**

| Test Mode          | Tx/Rx                      |                        | RF Channel           |           |
|--------------------|----------------------------|------------------------|----------------------|-----------|
| Test Mode          | I X/KX                     | Low(L)                 | Middle(M)            | High(H)   |
| 000 44b/c/c/UT20)  |                            | Channel 1              | Channel 6            | Channel11 |
| 802.11D/g/II(H120) | 2412MHz ~2462 MHz          | 2412MHz                | 2437MHz              | 2462MHz   |
| Transmitting mode: | The EUT transmitted the co | ntinuous signal at the | specific channel(s). |           |

#### Test mode:

#### Pre-scan under all rate at lowest channel 1

| Mode       |        |     | 8     | 02.11b   |          |        |          | C        |        |
|------------|--------|-----|-------|----------|----------|--------|----------|----------|--------|
| Data Rate  | 1M     | bps | 2Mbp  | s 5.5Mbp | s 11Mbps | s      | >        | <        |        |
| Power(dBm) | 15     | .13 | 15.19 | ) 15.21  | 15.44    |        |          |          |        |
| Mode       | 23     |     |       | 21       | 80       | 2.11g  | 205      |          |        |
| Data Rate  | 6M     | bps | 9Mbp  | s 12Mbps | a 18Mbps | 24Mbp  | s 36Mbps | 48Mbps   | 54Mbps |
| Power(dBm) | ) 14   | .64 | 14.58 | 5 14.23  | 14.41    | 14.18  | 14.52    | 14.14    | 14.12  |
| Mode       |        |     | ·     |          | 802.11n  | (HT20) |          |          |        |
| Data Rate  | 6.5Mbp | s 1 | 3Mbps | 19.5Mbps | 26Mbps   | 39Mbps | 52Mbps   | 58.5Mbps | 65Mbps |
| Power(dBm) | 14.05  |     | 14.00 | 13.85    | 13.62    | 13.62  | 13.74    | 13.57    | 13.85  |

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).





## 6 General Information

## 6.1 Client Information

| Applicant:               | Shenzhen Ai-Thinker Technology Co., Ltd.                                                |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Address of Applicant:    | 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China |  |  |  |
| Manufacturer:            | Shenzhen Ai-Thinker Technology Co., Ltd.                                                |  |  |  |
| Address of Manufacturer: | 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China |  |  |  |
| Factory:                 | Shenzhen Ai-Thinker Technology Co., Ltd.                                                |  |  |  |
| Address of Factory:      | 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China |  |  |  |

## 6.2 General Description of EUT

| Product Name:                    | WiFi module                                | (U) |   |
|----------------------------------|--------------------------------------------|-----|---|
| Model No.(EUT):                  | ESP-01F                                    |     |   |
| Trade Mark:                      | N/A                                        |     |   |
| EUT Supports Radios application: | WiFi 802.11b/g/n(HT20): 2412MHz to 2462MHz |     | 6 |
| Power Supply:                    | DC 3.3V                                    |     | U |
| Sample Received Date:            | Aug. 09, 2018                              |     |   |
| Sample tested Date:              | Aug. 09, 2018 to Oct. 30, 2018             | 25  |   |
|                                  |                                            |     |   |

## 6.3 Product Specification subjective to this standard

| Operation Frequency:  | IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz                                                                                                     |   |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Channel Numbers:      | IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels                                                                                                 |   |
| Channel Separation:   | 5MHz                                                                                                                                           |   |
| Type of Modulation:   | IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)<br>IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK<br>IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK |   |
| Test Power Grade:     | N/A                                                                                                                                            |   |
| Test Software of EUT: | ESP Series Modules FCC & CE Test Tool V2.2.3.exe (manufacturer declare)                                                                        |   |
| Antenna Type:         | Spring antenna                                                                                                                                 | 5 |
| Antenna Gain:         | 2.78dBi                                                                                                                                        |   |
| Test Voltage:         | DC 3.3V                                                                                                                                        |   |
|                       |                                                                                                                                                |   |

| )[ | Operation | Frequency ea | ch of channe | el(802.11b/g/n l | HT20)   | (S)       |         | (S)       |
|----|-----------|--------------|--------------|------------------|---------|-----------|---------|-----------|
|    | Channel   | Frequency    | Channel      | Frequency        | Channel | Frequency | Channel | Frequency |
|    | 1         | 2412MHz      | 4            | 2427MHz          | 7       | 2442MHz   | 10      | 2457MHz   |
|    | 2         | 2417MHz      | 5            | 2432MHz          | 8       | 2447MHz   | 11      | 2462MHz   |
|    | 3         | 2422MHz      | 6            | 2437MHz          | 9       | 2452MHz   |         | )         |

## 6.4 Description of Support Units

The EUT has been tested independently.





## 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, ChinaTelephone: +86 (0) 755 33683668Fax:+86 (0) 755 33683385No tests were sub-contracted.Fax:+86 (0) 755 33683385

FCC Designation No.: CN1164

## 6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..



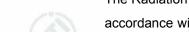
Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.: CN1164

#### IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.


#### IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

#### NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

# The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.









Page 9 of 64

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

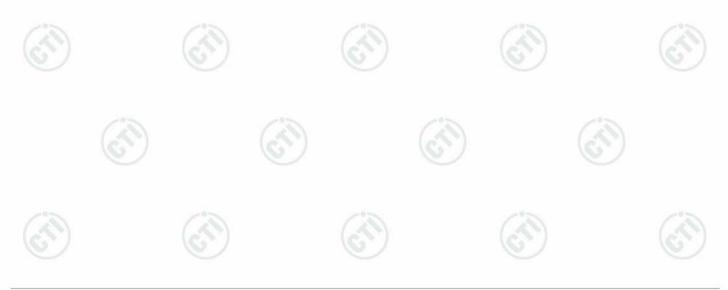
Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

## 6.7 Deviation from Standards

None.

## 6.8 Abnormalities from Standard Conditions


None.

## 6.9 Other Information Requested by the Customer

None.

## 6.10 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |  |  |  |
|-----|---------------------------------|-------------------------|--|--|--|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |  |  |  |
| 2   | DE nower, conducted             | 0.46dB (30MHz-1GHz)     |  |  |  |
| 2   | RF power, conducted             | 0.55dB (1GHz-18GHz)     |  |  |  |
| _   | Dedicted Sourious omission test | 4.3dB (30MHz-1GHz)      |  |  |  |
| 3   | Radiated Spurious emission test | 4.5dB (1GHz-12.75GHz)   |  |  |  |
| 4   | Conduction omission             | 3.5dB (9kHz to 150kHz)  |  |  |  |
| 4   | Conduction emission             | 3.1dB (150kHz to 30MHz) |  |  |  |
| 5   | Temperature test                | 0.64°C                  |  |  |  |
| 6   | Humidity test                   | 3.8%                    |  |  |  |
| 7   | DC power voltages               | 0.026%                  |  |  |  |







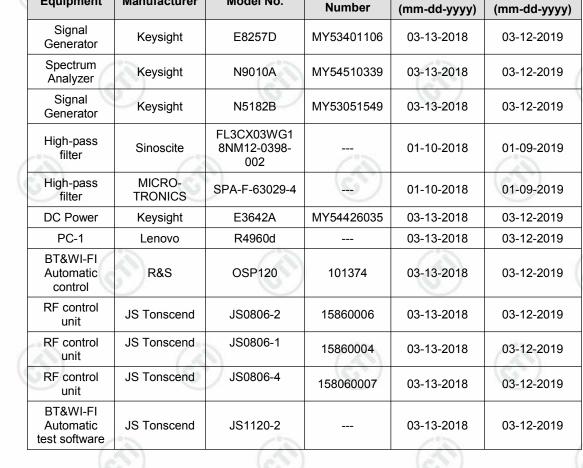
Model No.

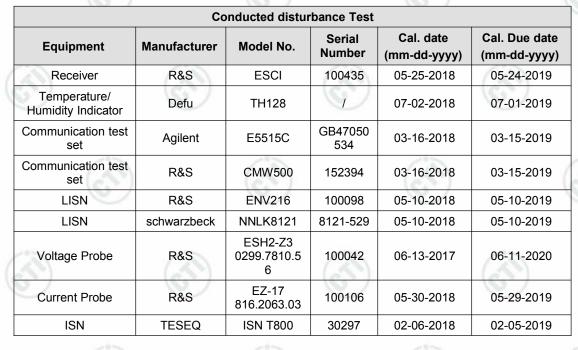
**RF test system** 

Serial



Cal. Date


Cal. Due date


#### **Equipment List** 7

Equipment

Manufacturer















| Equipment                                   | Manufacturer      | Model No.                        | Serial<br>Number              | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
|---------------------------------------------|-------------------|----------------------------------|-------------------------------|---------------------------|-------------------------------|
| 3M Chamber &<br>Accessory                   | ТДК               | SAC-3                            | 0                             | 06-04-2016                | 06-03-2019                    |
| Equipment<br>TRILOG<br>Broadband<br>Antenna | Schwarzbeck       | VULB9163                         | 9163-401                      | 04-26-2018                | 04-25-2019                    |
| TRILOG<br>Broadband<br>Antenna              | Schwarzbeck       | VULB9163                         | 9163-618                      | 07-30-2018                | 07-29-2019                    |
| Microwave<br>Preamplifier                   | Agilent           | 8449B                            | 3008A024<br>25                | 08-22-2017                | 08-21-2018                    |
| Microwave<br>Preamplifier                   | Agilent           | 8449B                            | 3008A024<br>25                | 08-21-2018                | 08-20-2019                    |
| Microwave<br>Preamplifier                   | Tonscend          | EMC051845<br>SE                  | 980380                        | 01-19-2018                | 01-18-2019                    |
| Horn Antenna                                | Schwarzbeck       | BBHA 9120D                       | 9120D-<br>1869                | 04-25-2018                | 04-23-2021                    |
| Double ridge horn<br>antenna                | A.H.SYSTEM<br>S   | SAS-574                          | 6042                          | 06-05-2018                | 06-04-2021                    |
| Pre-amplifier                               | A.H.SYSTEM<br>S   | PAP-1840-60                      | 6041                          | 06-05-2018                | 06-04-2021                    |
| Loop Antenna                                | ETS               | 6502                             | 00071730                      | 06-22-2017                | 06-21-2019                    |
| Spectrum<br>Analyzer                        | R&S               | FSP40                            | 100416                        | 05-11-2018                | 05-10-2019                    |
| Receiver                                    | R&S               | ESCI                             | 100435                        | 05-25-2018                | 05-24-2019                    |
| Multi device<br>Controller                  | maturo            | NCD/070/107<br>11112             |                               | 01-10-2018                | 01-09-2019                    |
| LISN                                        | schwarzbeck       | NNBM8125                         | 81251547                      | 05-11-2018                | 05-10-2019                    |
| LISN                                        | schwarzbeck       | NNBM8125                         | 81251548                      | 05-11-2018                | 05-10-2019                    |
| Signal Generator                            | Agilent           | E4438C                           | MY45095<br>744                | 03-13-2018                | 03-12-2019                    |
| Signal Generator                            | Keysight          | E8257D                           | MY53401<br>106                | 03-13-2018                | 03-12-2019                    |
| Temperature/<br>Humidity Indicator          | TAYLOR            | 1451                             | 1905                          | 05-02-2018                | 05-01-2019                    |
| Communication test set                      | Agilent           | E5515C                           | GB47050<br>534                | 03-16-2018                | 03-15-2019                    |
| Cable line                                  | Fulai(7M)         | SF106                            | 5219/6A                       | 01-10-2018                | 01-09-2019                    |
| Cable line                                  | Fulai(6M)         | SF106                            | 5220/6A                       | 01-10-2018                | 01-09-2019                    |
| Cable line                                  | Fulai(3M)         | SF106                            | 5216/6A                       | 01-10-2018                | 01-09-2019                    |
| Cable line                                  | Fulai(3M)         | SF106                            | 5217/6A                       | 01-10-2018                | 01-09-2019                    |
| Communication<br>test set                   | R&S               | CMW500                           | 104466                        | 02-05-2018                | 02-04-2019                    |
| High-pass filter                            | Sinoscite         | FL3CX03WG<br>18NM12-<br>0398-002 |                               | 01-10-2018                | 01-09-2019                    |
| High-pass filter                            | MICRO-<br>TRONICS | SPA-F-<br>63029-4                |                               | 01-10-2018                | 01-09-2019                    |
| band rejection<br>filter                    | Sinoscite         | FL5CX01CA0<br>9CL12-0395-<br>001 |                               | 01-10-2018                | 01-09-2019                    |
| band rejection<br>filter                    | Sinoscite         | FL5CX01CA0<br>8CL12-0393-<br>001 | $\langle \mathcal{A} \rangle$ | 01-10-2018                | 01-09-2019                    |
| band rejection filter                       | Sinoscite         | FL5CX02CA0<br>4CL12-0396-<br>002 |                               | 01-10-2018                | 01-09-2019                    |
| band rejection<br>filter                    | Sinoscite         | FL5CX02CA0<br>3CL12-0394-<br>001 |                               | 01-10-2018                | 01-09-2019                    |















## 8 Radio Technical Requirements Specification

### Reference documents for testing:

| No. | Identity         | Document Title                                                     |
|-----|------------------|--------------------------------------------------------------------|
| 1   | FCC Part15C      | Subpart C-Intentional Radiators                                    |
| 2   | ANSI C63.10-2013 | American National Standard for Testing Unlicensed Wireless Devices |

#### Test Results List:

| St Results List:                     |             |                                                                         |         |             |
|--------------------------------------|-------------|-------------------------------------------------------------------------|---------|-------------|
| Test Requirement                     | Test method | Test item                                                               | Verdict | Note        |
| Part15C Section<br>15.247 (b)(3)     | ANSI C63.10 | Conducted Peak Output<br>Power                                          | PASS    | Appendix A  |
| Part15C Section<br>15.247 (a)(2)     | ANSI C63.10 | 6dB Occupied Bandwidth                                                  | PASS    | Appendix B  |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | Band-edge for RF<br>Conducted Emissions                                 | PASS    | Appendix C  |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | RF Conducted Spurious<br>Emissions                                      | PASS    | Appendix D  |
| Part15C Section<br>15.247 (e)        | ANSI C63.10 | Power Spectral Density                                                  | PASS    | Appendix E  |
| Part15C Section<br>15.203/15.247 (c) | ANSI C63.10 | Antenna Requirement                                                     | PASS    | Appendix F  |
| Part15C Section<br>15.207            | ANSI C63.10 | AC Power Line Conducted<br>Emission                                     | PASS    | Appendix G  |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | PASS    | Appendix H  |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Radiated Spurious<br>Emissions                                          | PASS    | Appendix I) |



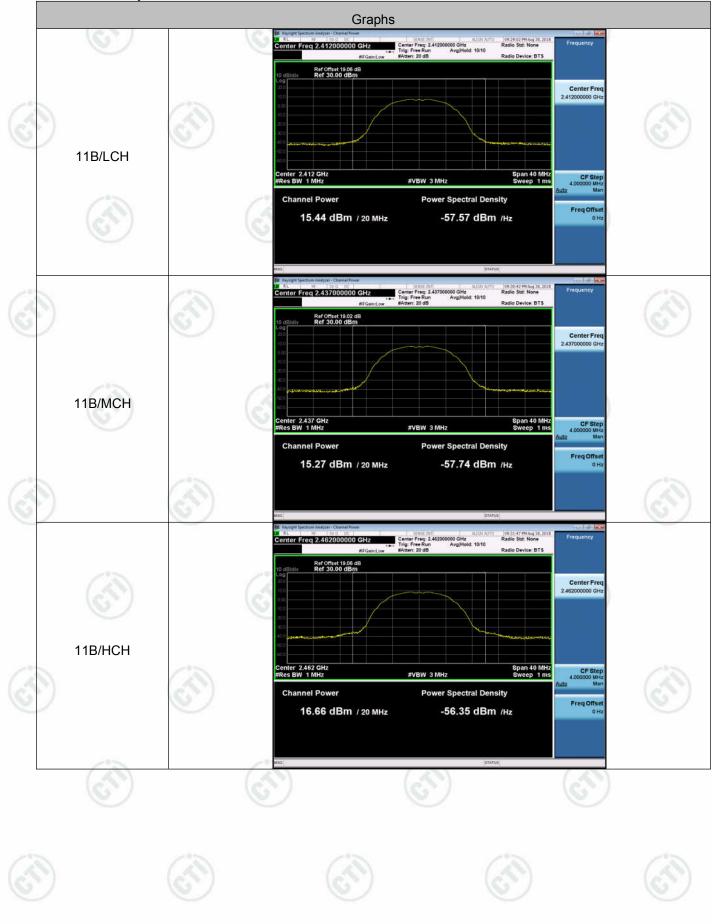




Page 13 of 64

## Appendix A): Conducted Peak Output Power

| Result Table | (a)     |                                   |         |
|--------------|---------|-----------------------------------|---------|
| Mode         | Channel | Conducted Peak Output Power [dBm] | Verdict |
| 11B          | LCH     | 15.44                             | PASS    |
| 11B          | MCH     | 15.27                             | PASS    |
| 11B          | НСН     | 16.66                             | PASS    |
| 11G          | LCH     | 14.64                             | PASS    |
| 11G          | MCH     | 14.92                             | PASS    |
| 11G          | HCH     | 14.99                             | PASS    |
| 11N20SISO    | LCH     | 14.05                             | PASS    |
| 11N20SISO    | MCH     | 14.23                             | PASS    |
| 11N20SISO    | HCH     | 14.30                             | PASS    |

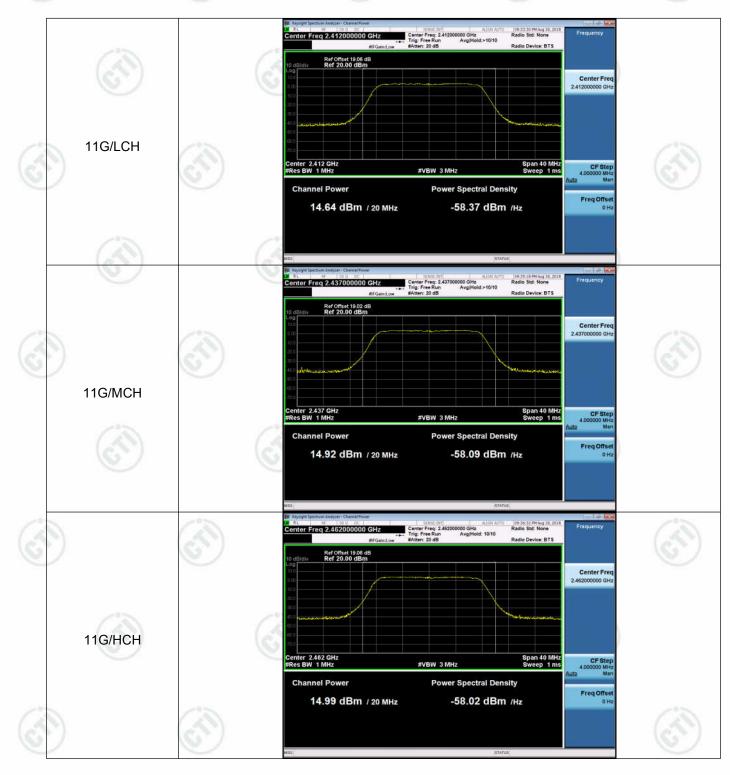


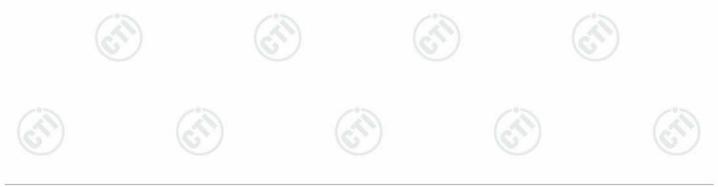







Test Graph






## Pag

#### Page 15 of 64










## Page 16 of 64

#### Center Freq 2.412 Center Freq: 2.41200 Trig: Free Run AvaiHold:>10/10 Radio Device: BTS Ref Offset 19.06 dB Ref 20.00 dBm Center Fre 2.412000000 GH 11N20SISO/LCH enter 2.412 GHz Res BW 1 MHz Span 40 MH Sweep 1 m CF St #VBW 3 MHz **Channel Power** Power Spectral Density 14.05 dBm / 20 MHz -58.96 dBm /Hz Radio Std: None Center Freq 2.437000000 GHz Center Freq: 2.437000000 GHz Trig: Free Run Avg|Hold: 10/10 Radio Device: BTS Ref Offset 19.02 dB Ref 20.00 dBm Center Free 2.4370000 11N20SISO/MCH enter 2.437 GHz Res BW 1 MHz Span 40 MH Sweep 1 ms CFS #VBW 3 MHz **Channel Power** Power Spectral Density -58.78 dBm /Hz 14.23 dBm / 20 MHz Radio Std: None Frequent Center Freq 2,462000000 GHz 00 GHz Avg|Hold: 10/10 Radio Device: BTS Ref Offset 19.06 dE Ref 20.00 dBm Center Free 11N20SISO/HCH enter 2.462 GHz Res BW 1 MHz Span 40 MHz Sweep 1 ms CFS #VBW 3 MHz **Channel Power Power Spectral Density** -58.71 dBm /Hz 14.30 dBm / 20 MHz









## Appendix B): 6dB Occupied Bandwidth

| Result Ta | ble     |                     |               |         |
|-----------|---------|---------------------|---------------|---------|
| Mode      | Channel | 6dB Bandwidth [MHz] | 99% OBW [MHz] | Verdict |
| 11B       | LCH     | 8.109               | 10.444        | PASS    |
| 11B       | МСН     | 8.082               | 10.429        | PASS    |
| 11B       | НСН     | 8.091               | 10.481        | PASS    |
| 11G       | LCH     | 15.67               | 16.186        | PASS    |
| 11G       | МСН     | 15.69               | 16.200        | PASS    |
| 11G       | НСН     | 15.50               | 16.203        | PASS    |
| 11N20SISO | LCH     | 15.40               | 17.027        | PASS    |
| 11N20SISO | МСН     | 15.39               | 17.024        | PASS    |
| 11N20SISO | нсн     | 15.39               | 17.028        | PASS    |



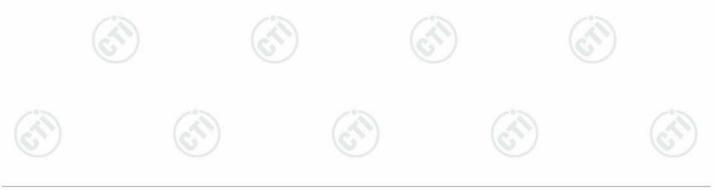






Test Graph



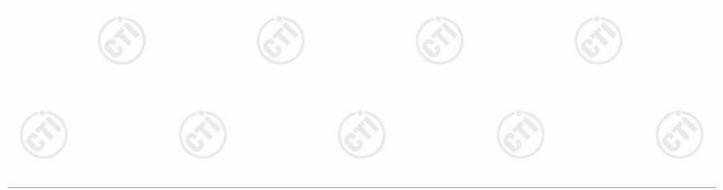





## Pa Pa

#### Page 19 of 64





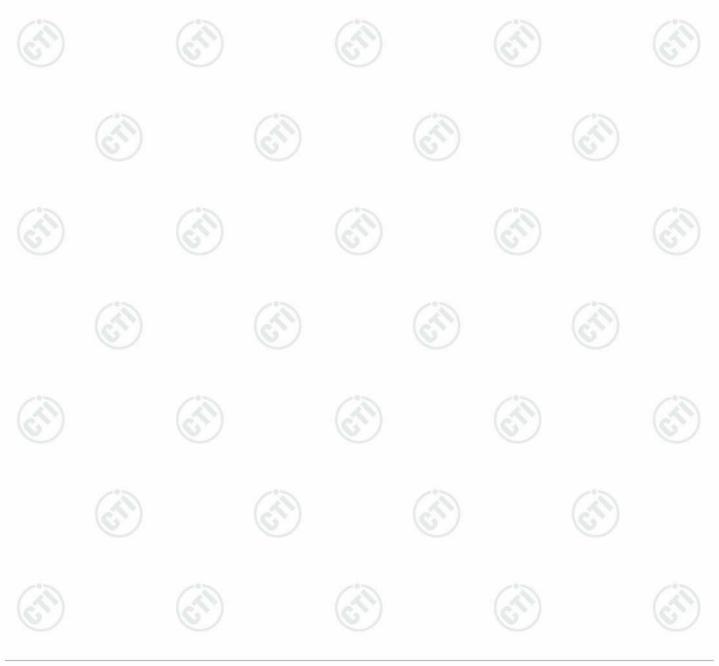





### Page 20 of 64












## Appendix C): Band-edge for RF Conducted Emissions

| Result    | Table   |                    |                             |             |         |
|-----------|---------|--------------------|-----------------------------|-------------|---------|
| Mode      | Channel | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
| 11B       | LCH     | 3.972              | -50.025                     | -26.03      | PASS    |
| 11B       | нсн     | 5.344              | -49.356                     | -24.66      | PASS    |
| 11G       | LCH     | -3.844             | -50.715                     | -33.84      | PASS    |
| 11G       | нсн     | -3.887             | -50.024                     | -33.89      | PASS    |
| 11N20SISO | LCH     | -4.333             | -50.272                     | -34.33      | PASS    |
| 11N20SISO | НСН     | -4.180             | -50.662                     | -34.18      | PASS    |
|           |         |                    |                             |             |         |









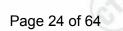
Test Graph







## (F)


### Page 23 of 64







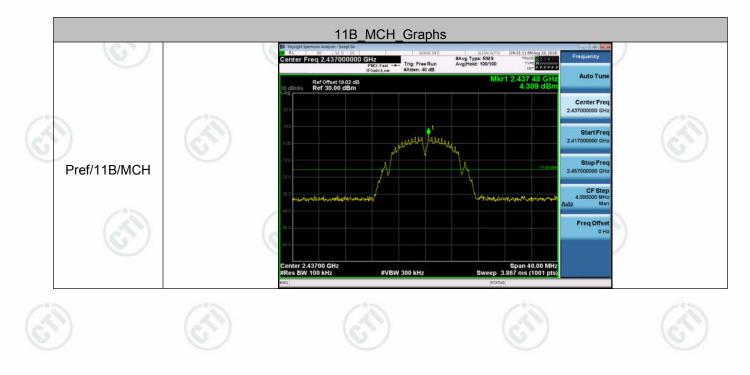




## Appendix D): RF Conducted Spurious Emissions

| Result Tabl | e 🔼     |            | (3                                   | \       |
|-------------|---------|------------|--------------------------------------|---------|
| Mode        | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
| 11B         | LCH     | 4.337      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B         | МСН     | 4.309      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B         | НСН     | 5.488      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G         | LCH     | -3.82      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G         | МСН     | -3.535     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G         | НСН     | -3.677     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO   | LCH     | -4.219     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO   | МСН     | -3.99      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO   | НСН     | -4.345     | <limit< td=""><td>PASS</td></limit<> | PASS    |



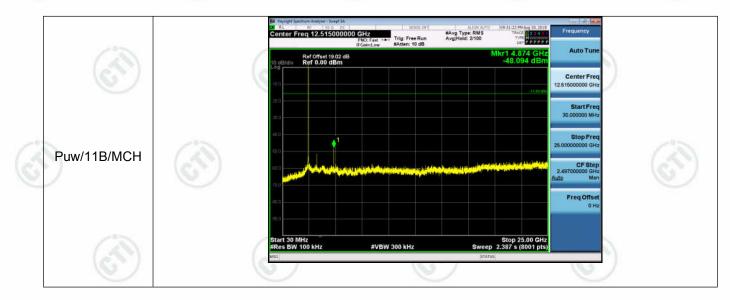







### Test Graph





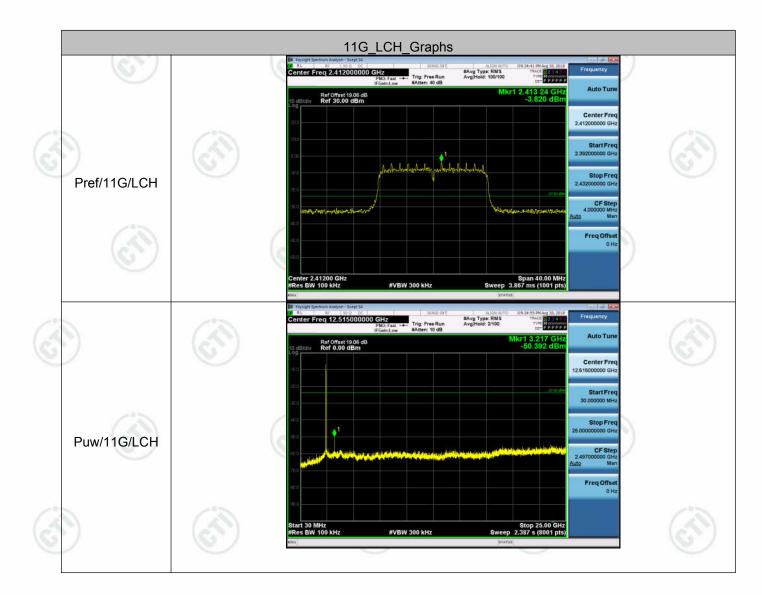


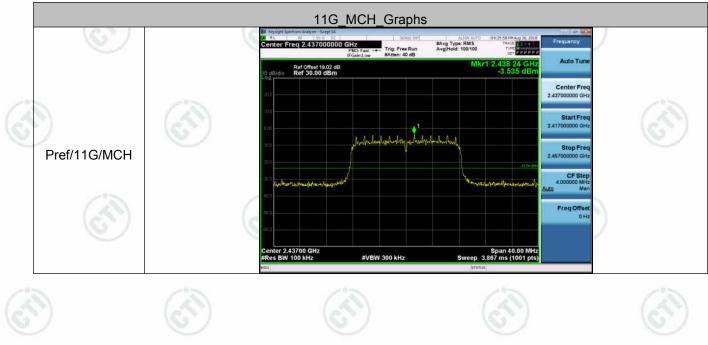



## Pag

### Page 26 of 64



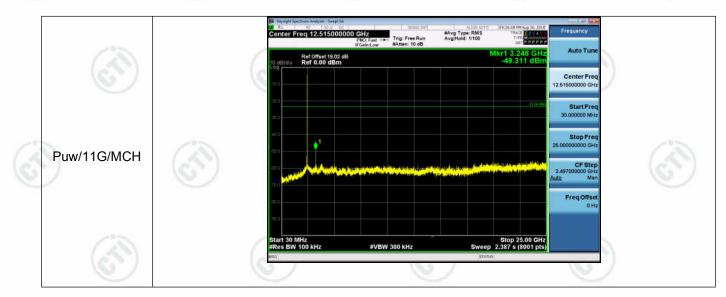










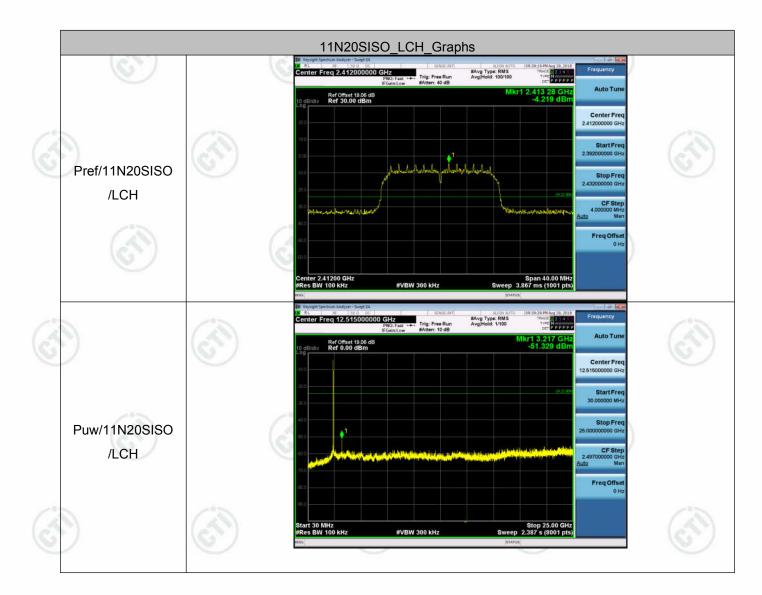


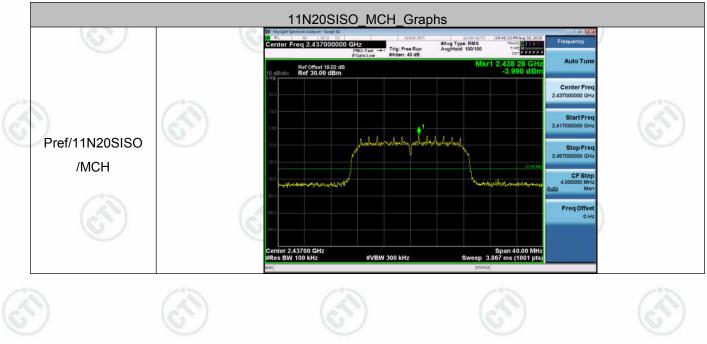




### Page 28 of 64



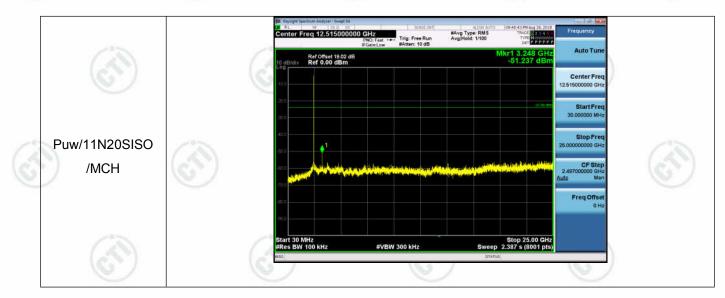


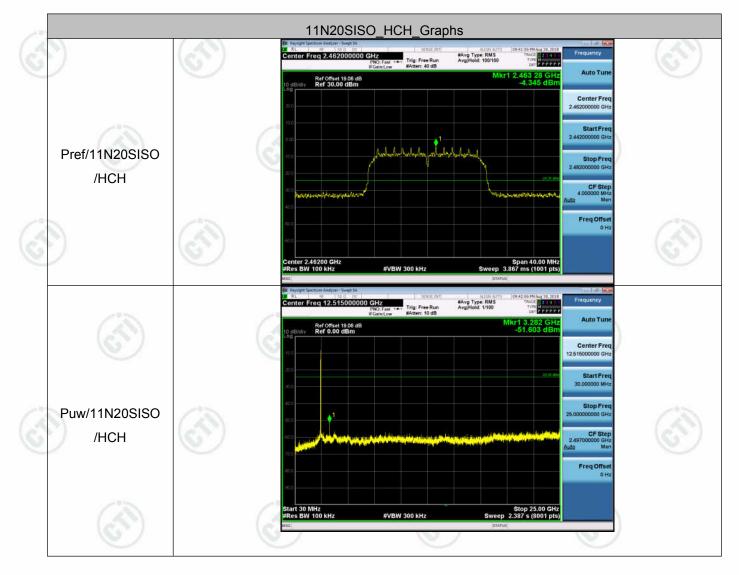














### Page 30 of 64













## Appendix E): Power Spectral Density

| <b>Result Table</b> | (i) |
|---------------------|-----|
|                     |     |

| Mode      | Channel | Power Spectral Density [dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|-----------|---------|-----------------------------------|-----------------|---------|
| 11B       | LCH     | -10.181                           | 8               | PASS    |
| 11B       | МСН     | -10.463                           | 8               | PASS    |
| 11B       | НСН     | -8.503                            | 8               | PASS    |
| 11G       | LCH     | -18.273                           | 8               | PASS    |
| 11G       | MCH     | -17.962                           | 8               | PASS    |
| 11G       | НСН     | -18.177                           | 8               | PASS    |
| 11N20SISO | LCH     | -19.118                           | 8               | PASS    |
| 11N20SISO | МСН     | -19.170                           | 8               | PASS    |
| 11N20SISO | НСН     | -18.838                           | 8               | PASS    |





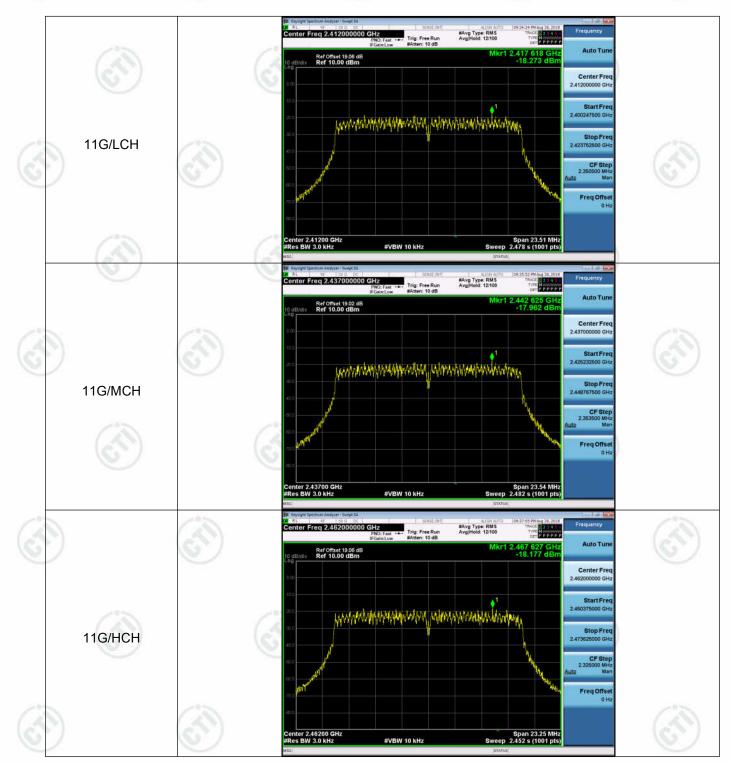











Test Graph







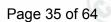
## Page 33 of 64










### Page 34 of 64





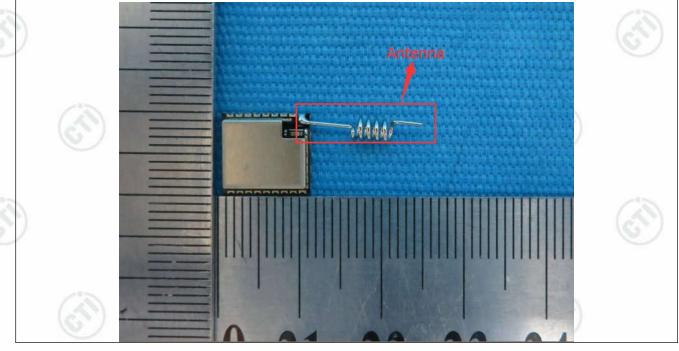


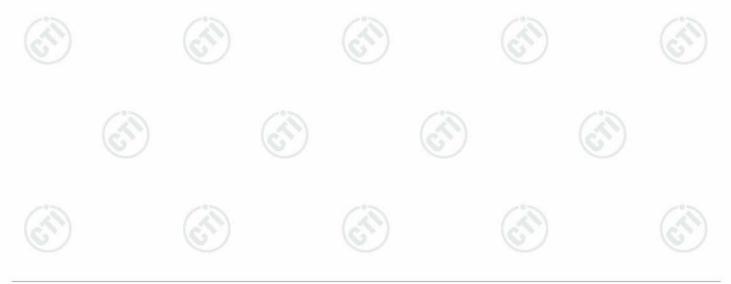




## Appendix F): Antenna Requirement

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is Spring antenna and no consideration of replacement. The best case gain of the antenna is 2.78dBi.









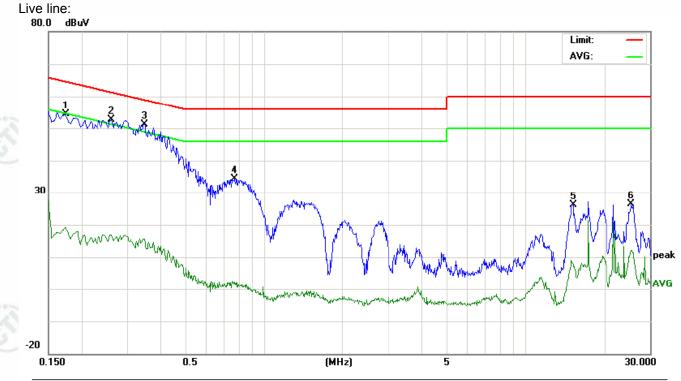
Page 36 of 64

## Appendix G): AC Power Line Conducted Emission

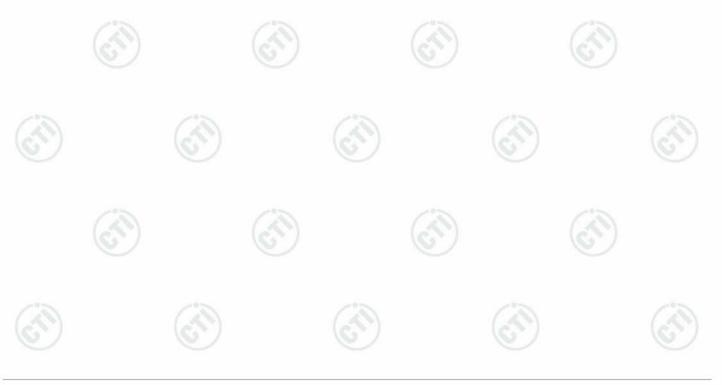
| Test Procedure: | Test frequency range :150KHz-                                                                                                                                                                                                                        | -30MHz                                                                                                                                                               |                                                                                                                                                                         |                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                 | <ol> <li>The mains terminal disturbance</li> <li>The EUT was connected to<br/>Stabilization Network) whice<br/>power cables of all other universe which was bonded to the growthe unit being measured. A<br/>power cables to a single LIS</li> </ol> | AC power source f<br>ch provides a 50Ω/5<br>units of the EUT we<br>ound reference plane<br>multiple socket outle                                                     | through a LISN 1 (Line<br>i0 $\mu$ H + 5 $\Omega$ linear imp<br>re connected to a sec<br>e in the same way as the<br>t strip was used to cor                            | e Impedance<br>edance. The<br>cond LISN 2<br>he LISN 1 fo                 |
|                 | exceeded.<br>3)The tabletop EUT was place<br>reference plane. And for flo<br>horizontal ground reference                                                                                                                                             | oor-standing arrange                                                                                                                                                 |                                                                                                                                                                         | -                                                                         |
| (S)             | 4) The test was performed with<br>shall be 0.4 m from the<br>reference plane was bonder                                                                                                                                                              | vertical ground refe                                                                                                                                                 | erence plane. The ve                                                                                                                                                    | rtical groun                                                              |
|                 | <ul> <li>was placed 0.8 m from the line was placed 0.8 m from the line reference plane for LISNs distance was between the coof the EUT and associated e</li> <li>5) In order to find the maximun of the interface cables mus measurement.</li> </ul> | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat                                                  | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>st 0.8 m from the LISN<br>ive positions of equip                                              | d to a ground<br>plane. This<br>All other units<br>I 2.<br>pment and al   |
| Limit:          | <ul> <li>was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated e</li> <li>5) In order to find the maximum of the interface cables mus</li> </ul>                                                   | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat                                                  | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>st 0.8 m from the LISN<br>ive positions of equip                                              | d to a ground<br>plane. This<br>All other units<br>I 2.<br>pment and al   |
| Limit:          | <ul> <li>was placed 0.8 m from the reference plane for LISNs distance was between the control of the EUT and associated et and associated et and the interface cables must measurement.</li> </ul>                                                   | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat                                                  | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>list 0.8 m from the LISN<br>ive positions of equip<br>ding to ANSI C63.10 c                   | d to a ground<br>e plane. This<br>All other units<br>I 2.<br>pment and al |
| Limit:          | <ul> <li>was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated e</li> <li>5) In order to find the maximum of the interface cables mus</li> </ul>                                                   | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat<br>to be changed accord                          | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>list 0.8 m from the LISN<br>ive positions of equip<br>ding to ANSI C63.10 c                   | d to a ground<br>plane. This<br>All other units<br>I 2.<br>pment and a    |
| Limit:          | <ul> <li>was placed 0.8 m from the reference plane for LISNs distance was between the control of the EUT and associated et and associated et and the interface cables mus measurement.</li> </ul>                                                    | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat<br>to be changed accord<br>Limit (               | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>st 0.8 m from the LISN<br>ive positions of equip<br>ding to ANSI C63.10 d                     | d to a ground<br>plane. This<br>All other unit<br>2.<br>Diment and a      |
| Limit:          | <ul> <li>was placed 0.8 m from the reference plane for LISNs distance was between the coof the EUT and associated es</li> <li>5) In order to find the maximum of the interface cables mus measurement.</li> </ul>                                    | boundary of the unit<br>mounted on top of<br>closest points of the<br>equipment was at lea<br>n emission, the relat<br>to be changed accord<br>Limit (<br>Quasi-peak | under test and bonded<br>the ground reference<br>LISN 1 and the EUT. A<br>st 0.8 m from the LISN<br>ive positions of equip<br>ding to ANSI C63.10 d<br>dBµV)<br>Average | d to a ground<br>e plane. This<br>All other units<br>I 2.<br>oment and a  |

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

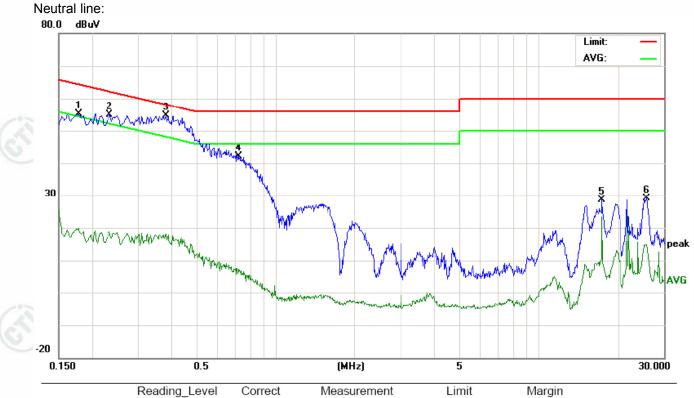












| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | Ν     | leasuren<br>(dBu∀) |       | Lin<br>(dB |       |        | rgin<br>IB) |       |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-------|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F ( | Comment |
| 1   | 0.1740  | 44.54 | 38.62            | 9.50  | 9.74              | 54.28 | 48.36              | 19.24 | 64.76      | 54.76 | -16.40 | -35.52      | Ρ     |         |
| 2   | 0.2620  | 42.79 | 35.46            | 7.13  | 9.75              | 52.54 | 45.21              | 16.88 | 61.36      | 51.36 | -16.15 | -34.48      | Ρ     |         |
| 3   | 0.3500  | 41.43 | 34.33            | 5.88  | 9.76              | 51.19 | 44.09              | 15.64 | 58.96      | 48.96 | -14.87 | -33.32      | Ρ     |         |
| 4   | 0.7740  | 24.55 | 17.85            | -7.59 | 9.74              | 34.29 | 27.59              | 2.15  | 56.00      | 46.00 | -28.41 | -43.85      | Ρ     |         |
| 5   | 15.2580 | 16.11 | 9.87             | -2.19 | 10.01             | 26.12 | 19.88              | 7.82  | 60.00      | 50.00 | -40.12 | -42.18      | Ρ     |         |
| 6   | 25.5780 | 16.23 | 10.12            | 1.94  | 10.19             | 26.42 | 20.31              | 12.13 | 60.00      | 50.00 | -39.69 | -37.87      | Ρ     |         |











| Na  | <b>Fra</b> <i>a</i> |       | ling_Le | vel   | Correct | Μ     | leasuren |       | Lin   |       |        | rgin   |     |         |
|-----|---------------------|-------|---------|-------|---------|-------|----------|-------|-------|-------|--------|--------|-----|---------|
| NO. | Freq.               | ()    | dBuV)   |       | Factor  |       | (dBuV)   |       | (dBi  | ı∨)   | (C     | iB)    |     |         |
|     | MHz                 | Peak  | QP      | AVG   | dB      | peak  | QP       | AVG   | QP    | AVG   | QP     | AVG    | P/F | Comment |
| 1   | 0.1780              | 45.28 | 38.74   | 10.04 | 9.73    | 55.01 | 48.47    | 19.77 | 64.57 | 54.57 | -16.10 | -34.80 | Ρ   |         |
| 2   | 0.2340              | 45.25 | 38.45   | 9.03  | 9.73    | 54.98 | 48.18    | 18.76 | 62.30 | 52.30 | -14.12 | -33.54 | Ρ   |         |
| 3   | 0.3820              | 44.93 | 37.63   | 8.39  | 9.76    | 54.69 | 47.39    | 18.15 | 58.23 | 48.23 | -10.84 | -30.08 | Ρ   |         |
| 4   | 0.7220              | 32.26 | 25.41   | -2.48 | 9.75    | 42.01 | 35.16    | 7.27  | 56.00 | 46.00 | -20.84 | -38.73 | Ρ   |         |
| 5   | 17.4180             | 18.69 | 12.47   | 13.28 | 10.03   | 28.72 | 22.50    | 23.31 | 60.00 | 50.00 | -37.50 | -26.69 | Ρ   |         |
| 6   | 25.7540             | 19.04 | 12.89   | 4.75  | 10.20   | 29.24 | 23.09    | 14.95 | 60.00 | 50.00 | -36.91 | -35.05 | Ρ   |         |

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



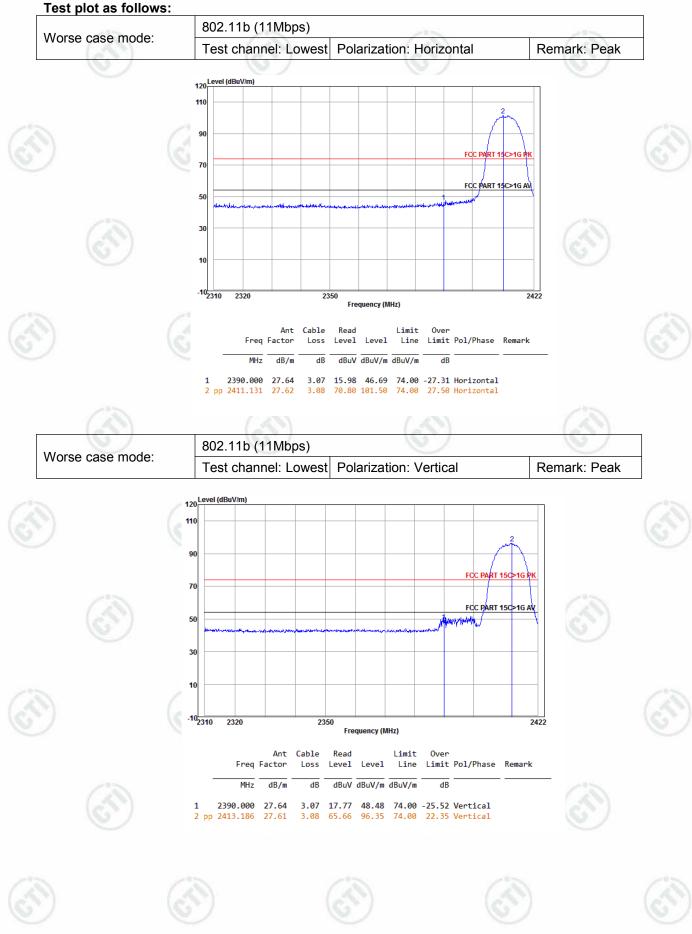


Report No. : EED32K00216701



## Appendix H): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                                                                                                                                                                                                                             | RBW VB'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W Remark                                                                                                                                                                                                                                |                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak 1                                                                                                                                                                                                                                                                                                                                         | 20kHz 300k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz Quasi-peak                                                                                                                                                                                                                           |                                             |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak                                                                                                                                                                                                                                                                                                                                                 | 1MHz 3MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz Peak                                                                                                                                                                                                                                 |                                             |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                                                                                                                                                                                                                                                                 | 1MHz 10H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iz Average                                                                                                                                                                                                                              | 10                                          |
| Test Procedure: | Below 1GHz test procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ure as below:                                                                                                                                                                                                                                                                                                                                        | 67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                         | ć                                           |
|                 | <ul> <li>a. The EUT was placed of at a 3 meter semi-aner determine the position</li> <li>b. The EUT was set 3 me was mounted on the to was mounted on the to c. The antenna height is determine the maximu polarizations of the and</li> <li>d. For each suspected er the antenna was tuned was turned from 0 deg</li> <li>e. The test-receiver system Bandwidth with Maxim</li> <li>f. Place a marker at the frequency to show com bands. Save the spect for lowest and highest</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | choic camber. The f<br>of the highest radia<br>eters away from the<br>op of a variable-heig<br>varied from one me<br>m value of the field<br>tenna are set to ma<br>mission, the EUT wa<br>I to heights from 1 r<br>rees to 360 degree<br>em was set to Peak<br>um Hold Mode.<br>end of the restricted<br>pliance. Also meas<br>rum analyzer plot. F | table was rotation.<br>interference-r<br>ght antenna to<br>eter to four me<br>strength. Both<br>ke the measur<br>as arranged to<br>neter to 4 met<br>s to find the m<br>Detect Function<br>band closest<br>sure any emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted 360 degrees t<br>receiving antenna,<br>wer.<br>ters above the gro<br>horizontal and ver<br>rement.<br>to its worst case an<br>ers and the rotata<br>aximum reading.<br>on and Specified<br>to the transmit<br>sions in the restrict | o<br>, wh<br>punc<br>ertic<br>ad th<br>able |
|                 | <ul> <li>Above 1GHz test procedure</li> <li>g. Different between above to fully Anechoic Chan 18GHz the distance is</li> <li>h. Test the EUT in the location measure</li> <li>The radiation measure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performe                                                                                                                                                                                                                                    | able 0.8 meter<br>s 1.5 meter).<br>Highest chani<br>ed in X, Y, Z a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to 1.5 meter( Abc<br>nel<br>xis positioning for                                                                                                                                                                                         | ove                                         |
| Limit:          | <ul> <li>g. Different between aborto fully Anechoic Chan 18GHz the distance is</li> <li>h. Test the EUT in the logistic fully in the logistic fully and the state of the state</li></ul> | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performe<br>d found the X axis<br>ures until all frequer                                                                                                                                                                                    | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.                                                                                                                                               | ove                                         |
| Limit:          | <ul> <li>g. Different between aborto fully Anechoic Channel 18GHz the distance is</li> <li>h. Test the EUT in the location measure Transmitting mode, and</li> <li>j. Repeat above procedu</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performed<br>d found the X axis p<br>irres until all frequen<br>Limit (dBµV/m                                                                                                                                                               | able 0.8 meter<br>s 1.5 meter).<br>Highest chan<br>ed in X, Y, Z a<br>positioning wh<br>acies measure<br>@3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.<br>Remark                                                                                                                                     | ove                                         |
| Limit:          | <ul> <li>g. Different between abort to fully Anechoic Channel 18GHz the distance is</li> <li>h. Test the EUT in the location measure Transmitting mode, and</li> <li>j. Repeat above procedu</li> <li>Frequency</li> <li>30MHz-88MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performed<br>d found the X axis<br>ires until all frequer<br>Limit (dBµV/m<br>40.0                                                                                                                                                          | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is measure<br>@3m)<br>Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.<br>Remark<br>si-peak Value                                                                                                                    | ove                                         |
| Limit:          | <ul> <li>g. Different between above to fully Anechoic Chance is 18GHz the distance is h. Test the EUT in the loc i. The radiation measure Transmitting mode, an j. Repeat above procedu</li> <li>Frequency</li> <li>30MHz-88MHz</li> <li>88MHz-216MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performed<br>d found the X axis<br>irres until all frequer<br>Limit (dBµV/m<br>40.0<br>43.5                                                                                                                                                 | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is measure<br>@3m)<br>Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br><u>d was complete.</u><br>Remark<br>si-peak Value<br>si-peak Value                                                                                            | ove                                         |
| Limit:          | g. Different between abor<br>to fully Anechoic Chan<br>18GHz the distance is<br>h. Test the EUT in the lo<br>i. The radiation measure<br>Transmitting mode, an<br>j. Repeat above procedu<br>Frequency<br>30MHz-88MHz<br>88MHz-216MHz<br>216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performed<br>d found the X axis p<br>irres until all frequer<br>Limit (dBµV/m<br>40.0<br>43.5<br>46.0                                                                                                                                       | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is measure<br>@3m)<br>Qua<br>Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.<br>Remark<br>si-peak Value<br>si-peak Value<br>si-peak Value                                                                                  | ove                                         |
| Limit:          | <ul> <li>g. Different between above to fully Anechoic Chance is 18GHz the distance is h. Test the EUT in the loc i. The radiation measure Transmitting mode, an j. Repeat above procedu</li> <li>Frequency</li> <li>30MHz-88MHz</li> <li>88MHz-216MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve is the test site, c<br>aber change form ta<br>1 meter and table i<br>bwest channel , the<br>ments are performed<br>d found the X axis<br>ires until all frequer<br>Limit (dBµV/m<br>40.0<br>43.5<br>46.0<br>54.0                                                                                                                                  | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is a second | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.<br>Remark<br>si-peak Value<br>si-peak Value<br>si-peak Value<br>si-peak Value                                                                 | ove                                         |
| Limit:          | g. Different between abor<br>to fully Anechoic Chan<br>18GHz the distance is<br>h. Test the EUT in the lo<br>i. The radiation measure<br>Transmitting mode, an<br>j. Repeat above procedu<br>Frequency<br>30MHz-88MHz<br>88MHz-216MHz<br>216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ve is the test site, c<br>nber change form ta<br>1 meter and table i<br>owest channel , the<br>ments are performed<br>d found the X axis p<br>irres until all frequer<br>Limit (dBµV/m<br>40.0<br>43.5<br>46.0                                                                                                                                       | able 0.8 meter<br>s 1.5 meter).<br>Highest channed in X, Y, Z a<br>positioning what is measure<br>@3m)<br>Qua<br>Qua<br>Qua<br>Qua<br>Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to 1.5 meter( Abo<br>nel<br>xis positioning for<br>ich it is worse cas<br>d was complete.<br>Remark<br>si-peak Value<br>si-peak Value<br>si-peak Value                                                                                  | ove                                         |







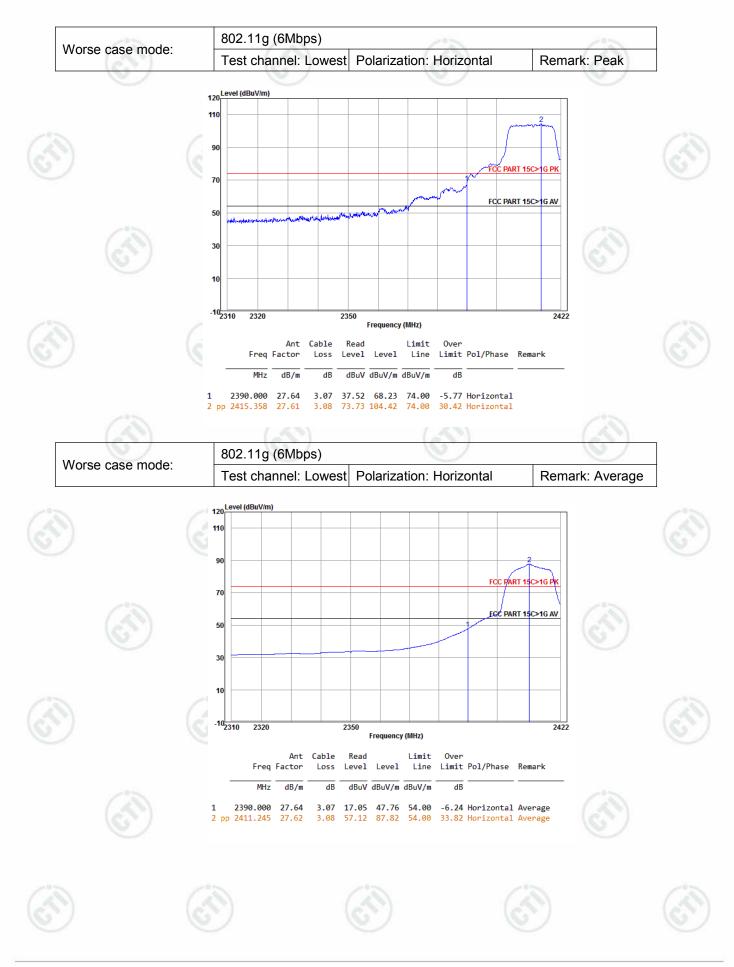















































































1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor







# **Appendix I): Radiated Spurious Emissions**

| Receiver Setup:     |                   | 64         | 10     | 1      |            |
|---------------------|-------------------|------------|--------|--------|------------|
| 0.                  | Frequency         | Detector   | RBW    | VBW    | Remark     |
|                     | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                     | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |
|                     | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
| )                   | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                     | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |
|                     | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
|                     | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |
| (~)                 |                   | Peak       | 1MHz   | 3MHz   | Peak       |
| Ś                   | Above 1GHz        | Peak       | 1MHz   | 10Hz   | Average    |
| To at Due a seluma. | I                 | 1          | 1      | 1      | I]         |

### Test Procedure:

#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
  h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

| Limit: | Frequency         | Field strength (microvolt/meter) | Limit<br>(dBµV/m) | Remark             | Measurement<br>distance (m) |
|--------|-------------------|----------------------------------|-------------------|--------------------|-----------------------------|
|        | 0.009MHz-0.490MHz | 2400/F(kHz)                      | -                 | -                  | 300                         |
|        | 0.490MHz-1.705MHz | 24000/F(kHz)                     | -                 |                    | 30                          |
|        | 1.705MHz-30MHz    | 30                               | -                 | $(\mathbf{G}^{*})$ | 30                          |
|        | 30MHz-88MHz       | 100                              | 40.0              | Quasi-peak         | 3                           |
|        | 88MHz-216MHz      | 150                              | 43.5              | Quasi-peak         | 3                           |
|        | 216MHz-960MHz     | 200                              | 46.0              | Quasi-peak         | 3                           |
|        | 960MHz-1GHz       | 500                              | 54.0              | Quasi-peak         | 3                           |
|        | Above 1GHz        | 500                              | 54.0              | Average            | 3                           |

j. Repeat above procedures until all frequencies measured was complete.





Page 51 of 64

### Radiated Spurious Emissions test Data: Radiated Emission below 1GHz Test mode: 802.11 b(11Mbps)Transmitting

|   | Ie | st mode: a     | SU2.11 D              | (TTIMDPS              | ) i ransn             | nitting           |                   |                   |               |        |            |  |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|------------|--|
|   | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity   |  |
|   | 1  | 160.0060       | 7.90                  | 1.47                  | -31.98                | 54.27             | 31.66             | 43.50             | 11.84         | Pass   | Horizontal |  |
| 0 | 2  | 239.9500       | 11.94                 | 1.84                  | -31.90                | 47.29             | 29.17             | 46.00             | 16.83         | Pass   | Horizontal |  |
| 6 | 3  | 320.0880       | 13.64                 | 2.12                  | -31.83                | 46.78             | 30.71             | 46.00             | 15.29         | Pass   | Horizontal |  |
|   | 4  | 432.4365       | 15.92                 | 2.46                  | -31.84                | 44.42             | 30.96             | 46.00             | 15.04         | Pass   | Horizontal |  |
|   | 5  | 479.9760       | 16.68                 | 2.61                  | -31.90                | 43.48             | 30.87             | 46.00             | 15.13         | Pass   | Horizontal |  |
|   | 6  | 640.0580       | 19.32                 | 3.07                  | -32.11                | 36.78             | 27.06             | 46.00             | 18.94         | Pass   | Horizontal |  |
|   | 7  | 43.3887        | 12.91                 | 0.74                  | -32.11                | 41.96             | 23.50             | 40.00             | 16.50         | Pass   | Vertical   |  |
|   | 8  | 52.5085        | 12.80                 | 0.82                  | -32.10                | 40.63             | 22.15             | 40.00             | 17.85         | Pass   | Vertical   |  |
|   | 9  | 196.4853       | 10.57                 | 1.65                  | -31.96                | 41.23             | 21.49             | 43.50             | 22.01         | Pass   | Vertical   |  |
|   | 10 | 208.9038       | 11.13                 | 1.71                  | -31.94                | 41.91             | 22.81             | 43.50             | 20.69         | Pass   | Vertical   |  |
| 1 | 11 | 360.0600       | 14.52                 | 2.27                  | -31.84                | 34.43             | 19.38             | 46.00             | 26.62         | Pass   | Vertical   |  |
| é | 12 | 687.5975       | 19.70                 | 3.14                  | -32.06                | 32.78             | 23.56             | 46.00             | 22.44         | Pass   | Vertical   |  |
|   |    |                |                       |                       |                       |                   |                   |                   |               |        |            |  |

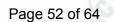
### Test mode: 802.11 g(6Mbps) Transmitting

|   |    | ot modor (     | <u> </u>              | <u>, emspej</u>       | 1 I dilloit           | <u> </u>          |                   |                   |               |        |            |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|------------|
|   | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity   |
|   | 1  | 160.0060       | 7.90                  | 1.47                  | -31.98                | 53.96             | 31.35             | 43.50             | 12.15         | Pass   | Horizontal |
|   | 2  | 239.9500       | 11.94                 | 1.84                  | -31.90                | 47.24             | 29.12             | 46.00             | 16.88         | Pass   | Horizontal |
|   | 3  | 320.0880       | 13.64                 | 2.12                  | -31.83                | 46.54             | 30.47             | 46.00             | 15.53         | Pass   | Horizontal |
| 2 | 4  | 408.1816       | 15.53                 | 2.41                  | -31.82                | 45.58             | 31.70             | 46.00             | 14.30         | Pass   | Horizontal |
|   | 5  | 479.9760       | 16.68                 | 2.61                  | -31.90                | 43.14             | 30.53             | 46.00             | 15.47         | Pass   | Horizontal |
|   | 6  | 640.0580       | 19.32                 | 3.07                  | -32.11                | 36.86             | 27.14             | 46.00             | 18.86         | Pass   | Horizontal |
|   | 7  | 52.1204        | 12.86                 | 0.82                  | -32.11                | 40.60             | 22.17             | 40.00             | 17.83         | Pass   | Vertical   |
|   | 8  | 71.9124        | 8.64                  | 0.97                  | -32.05                | 40.13             | 17.69             | 40.00             | 22.31         | Pass   | Vertical   |
|   | 9  | 120.0340       | 9.19                  | 1.30                  | -32.06                | 39.69             | 18.12             | 43.50             | 25.38         | Pass   | Vertical   |
|   | 10 | 208.9038       | 11.13                 | 1.71                  | -31.94                | 41.77             | 22.67             | 43.50             | 20.83         | Pass   | Vertical   |
|   | 11 | 360.0600       | 14.52                 | 2.27                  | -31.84                | 34.18             | 19.13             | 46.00             | 26.87         | Pass   | Vertical   |
|   | 12 | 687.5975       | 19.70                 | 3.14                  | -32.06                | 33.05             | 23.83             | 46.00             | 22.17         | Pass   | Vertical   |
|   |    |                |                       |                       |                       |                   |                   |                   |               |        |            |




















## Test mode: 802.11 n(HT20)(6.5Mbps)

| 2         239.9500         11.94         1.84         -31.90         47.53         29.41         46.00         16.59         Pass         Hor           3         264.0108         12.48         1.94         -31.88         42.24         24.78         46.00         21.22         Pass         Hor           4         320.0880         13.64         2.12         -31.83         46.88         30.81         46.00         15.19         Pass         Hor           5         479.9760         16.68         2.61         -31.90         43.90         31.29         46.00         14.71         Pass         Hor           6         640.0580         19.32         3.07         -32.11         36.44         26.72         46.00         19.28         Pass         Hor |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3         264.0108         12.48         1.94         -31.88         42.24         24.78         46.00         21.22         Pass         Hor           4         320.0880         13.64         2.12         -31.83         46.88         30.81         46.00         15.19         Pass         Hor           5         479.9760         16.68         2.61         -31.90         43.90         31.29         46.00         14.71         Pass         Hor           6         640.0580         19.32         3.07         -32.11         36.44         26.72         46.00         19.28         Pass         Hor                                                                                                                                                         | zontal |
| 4         320.0880         13.64         2.12         -31.83         46.88         30.81         46.00         15.19         Pass         Hor           5         479.9760         16.68         2.61         -31.90         43.90         31.29         46.00         14.71         Pass         Hor           6         640.0580         19.32         3.07         -32.11         36.44         26.72         46.00         19.28         Pass         Hor                                                                                                                                                                                                                                                                                                                 | zontal |
| 5         479.9760         16.68         2.61         -31.90         43.90         31.29         46.00         14.71         Pass         Hor           6         640.0580         19.32         3.07         -32.11         36.44         26.72         46.00         19.28         Pass         Hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zontal |
| 6 640.0580 19.32 3.07 -32.11 36.44 26.72 46.00 19.28 Pass Hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zontal |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zontal |
| 7         52.7025         12.77         0.82         -32.10         41.76         23.25         40.00         16.75         Pass         Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | zontal |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rtical |
| 8 71.9124 8.64 0.97 -32.05 41.60 19.16 40.00 20.84 Pass Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rtical |
| 9 208.9038 11.13 1.71 -31.94 43.87 24.77 43.50 18.73 Pass Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rtical |
| 10 360.0600 14.52 2.27 -31.84 34.96 19.91 46.00 26.09 Pass Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rtical |
| 11         553.9048         18.08         2.80         -31.97         34.91         23.82         46.00         22.18         Pass         Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rtical |
| 12         687.5975         19.70         3.14         -32.06         34.98         25.76         46.00         20.24         Pass         Vertice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rtical |













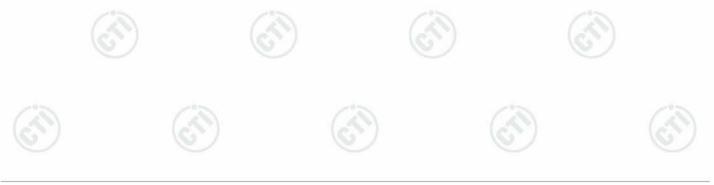















### Transmitter Emission above 1GHz

| Mod | e:             |                       |                       | 802.11b(11Mbps) Transmitting |                   |                   | g Channel: 2412   |               |        |          |         |
|-----|----------------|-----------------------|-----------------------|------------------------------|-------------------|-------------------|-------------------|---------------|--------|----------|---------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB]        | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark  |
| 1   | 2991.9984      | 33.19                 | 4.53                  | -36.73                       | 46.67             | 47.66             | 74.00             | 26.34         | Pass   | Н        | Peak    |
| 2   | 4483.1233      | 34.48                 | 4.70                  | -36.24                       | 45.40             | 48.34             | 74.00             | 25.66         | Pass   | Н        | Peak    |
| 3   | 4824.0000      | 34.50                 | 4.61                  | -36.11                       | 52.23             | 55.23             | 74.00             | 18.77         | Pass   | Н        | Peak    |
| 4   | 4824.0000      | 34.50                 | 4.61                  | -36.11                       | 43.95             | 46.95             | 54.00             | 7.05          | Pass   | Н        | Average |
| 5   | 6464.5215      | 35.89                 | 5.51                  | -36.25                       | 44.90             | 50.05             | 74.00             | 23.95         | Pass   | Н        | Peak    |
| 6   | 7236.0000      | 36.34                 | 5.79                  | -36.44                       | 42.21             | 47.90             | 74.00             | 26.10         | Pass   | Н        | Peak    |
| 7   | 9648.0000      | 37.66                 | 6.72                  | -36.92                       | 43.32             | 50.78             | 74.00             | 23.22         | Pass   | Н        | Peak    |
| 8   | 3025.3525      | 33.21                 | 4.88                  | -36.80                       | 46.60             | 47.89             | 74.00             | 26.11         | Pass   | V        | Peak    |
| 9   | 4166.2166      | 34.03                 | 4.50                  | -36.31                       | 45.00             | 47.22             | 74.00             | 26.78         | Pass   | V        | Peak    |
| 10  | 4824.0000      | 34.50                 | 4.61                  | -36.11                       | 47.20             | 50.20             | 74.00             | 23.80         | Pass   | V        | Peak    |
| 11  | 6357.2607      | 35.87                 | 5.44                  | -36.16                       | 44.84             | 49.99             | 74.00             | 24.01         | Pass   | V        | Peak    |
| 12  | 7236.0000      | 36.34                 | 5.79                  | -36.44                       | 41.78             | 47.47             | 74.00             | 26.53         | Pass   | V        | Peak    |
| 13  | 9648.0000      | 37.66                 | 6.72                  | -36.92                       | 42.76             | 50.22             | 74.00             | 23.78         | Pass   | V        | Peak    |
|     |                | 10                    | 1                     |                              |                   | 1                 | 6                 |               |        | C.       | 1       |

| de:            |                                                                                                                                                                                             |                                                                                                                                                                                                      | 802.11b(                                                                                                                                                                                                                                                                           | 11Mbps) Ir                                                                                                                                                                                                                                                                                                                                                                                                                                            | ransmitting                                            | ng Channel: 2437                                        |                                                         |                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq.<br>[MHz] | Ant<br>Factor<br>[dB]                                                                                                                                                                       | Cable<br>loss<br>[dB]                                                                                                                                                                                | Pream<br>gain<br>[dB]                                                                                                                                                                                                                                                              | Reading<br>[dBµV]                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level<br>[dBµV/m]                                      | Limit<br>[dBµV/m]                                       | Magin<br>[dB]                                           | Result                                                  | Polarity                                                | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1796.5593      | 30.36                                                                                                                                                                                       | 3.31                                                                                                                                                                                                 | -36.81                                                                                                                                                                                                                                                                             | 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47.86                                                  | 74.00                                                   | 26.14                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3218.4218      | 33.29                                                                                                                                                                                       | 4.58                                                                                                                                                                                                 | -36.74                                                                                                                                                                                                                                                                             | 47.05                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.18                                                  | 74.00                                                   | 25.82                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4874.0000      | 34.50                                                                                                                                                                                       | 4.78                                                                                                                                                                                                 | -36.09                                                                                                                                                                                                                                                                             | 51.41                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.60                                                  | 74.00                                                   | 19.40                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4874.0000      | 34.50                                                                                                                                                                                       | 4.78                                                                                                                                                                                                 | -36.09                                                                                                                                                                                                                                                                             | 42.99                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.18                                                  | 54.00                                                   | 7.82                                                    | Pass                                                    | Н                                                       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6959.8710      | 36.08                                                                                                                                                                                       | 5.78                                                                                                                                                                                                 | -36.24                                                                                                                                                                                                                                                                             | 44.56                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.18                                                  | 74.00                                                   | 23.82                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7311.0000      | 36.41                                                                                                                                                                                       | 5.85                                                                                                                                                                                                 | -36.31                                                                                                                                                                                                                                                                             | 42.17                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.12                                                  | 74.00                                                   | 25.88                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9748.0000      | 37.70                                                                                                                                                                                       | 6.77                                                                                                                                                                                                 | -36.79                                                                                                                                                                                                                                                                             | 45.24                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52.92                                                  | 74.00                                                   | 21.08                                                   | Pass                                                    | Н                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9748.0000      | 37.70                                                                                                                                                                                       | 6.77                                                                                                                                                                                                 | -36.80                                                                                                                                                                                                                                                                             | 31.44                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.11                                                  | 54.00                                                   | 14.89                                                   | Pass                                                    | Н                                                       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3473.8974      | 33.39                                                                                                                                                                                       | 4.46                                                                                                                                                                                                 | -36.58                                                                                                                                                                                                                                                                             | 45.55                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.82                                                  | 74.00                                                   | 27.18                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4874.0000      | 34.50                                                                                                                                                                                       | 4.78                                                                                                                                                                                                 | -36.09                                                                                                                                                                                                                                                                             | 45.82                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.01                                                  | 74.00                                                   | 24.99                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5760.5011      | 35.42                                                                                                                                                                                       | 4.95                                                                                                                                                                                                 | -36.11                                                                                                                                                                                                                                                                             | 44.96                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.22                                                  | 74.00                                                   | 24.78                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6564.9565      | 35.93                                                                                                                                                                                       | 5.40                                                                                                                                                                                                 | -36.17                                                                                                                                                                                                                                                                             | 44.44                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.60                                                  | 74.00                                                   | 24.40                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7311.0000      | 36.41                                                                                                                                                                                       | 5.85                                                                                                                                                                                                 | -36.31                                                                                                                                                                                                                                                                             | 41.97                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47.92                                                  | 74.00                                                   | 26.08                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9748.0000      | 37.70                                                                                                                                                                                       | 6.77                                                                                                                                                                                                 | -36.79                                                                                                                                                                                                                                                                             | 43.13                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.81                                                  | 74.00                                                   | 23.19                                                   | Pass                                                    | V                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | [MHz]<br>1796.5593<br>3218.4218<br>4874.0000<br>4874.0000<br>6959.8710<br>7311.0000<br>9748.0000<br>9748.0000<br>9748.0000<br>3473.8974<br>4874.0000<br>5760.5011<br>6564.9565<br>7311.0000 | Freq.<br>[MHz]Factor<br>[dB]1796.559330.363218.421833.294874.000034.504874.000034.506959.871036.087311.000037.709748.000037.703473.897433.394874.000034.505760.501135.426564.956535.937311.000036.41 | Freq.<br>[MHz]Factor<br>[dB]loss<br>[dB]1796.559330.363.313218.421833.294.584874.000034.504.784874.000034.504.786959.871036.085.787311.000036.415.859748.000037.706.779748.000037.706.773473.897433.394.464874.000034.504.785760.501135.424.956564.956535.935.407311.000036.415.85 | Freq.<br>[MHz]Ant<br>Factor<br>[dB]Cable<br>loss<br>[dB]Pream<br>gain<br>[dB]1796.559330.363.31-36.813218.421833.294.58-36.744874.000034.504.78-36.094874.000034.504.78-36.096959.871036.085.78-36.247311.000037.706.77-36.799748.000037.706.77-36.803473.897433.394.46-36.584874.000034.504.78-36.099748.000037.706.77-36.803473.897433.394.46-36.584874.000034.504.78-36.095760.501135.424.95-36.116564.956535.935.40-36.177311.000036.415.85-36.31 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Freq.<br>[MHz]Ant<br>Factor<br>[dB]Cable<br>loss<br>[dB]Pream<br>gain<br>[dB]Reading<br>[dBµV]Level<br>[dBµV/m]Limit<br>[dBµV/m]Magin<br>[dB]ResultPolarity1796.559330.363.31-36.8151.0047.8674.0026.14PassH3218.421833.294.58-36.7447.0548.1874.0025.82PassH4874.000034.504.78-36.0951.4154.6074.0019.40PassH4874.000034.504.78-36.0942.9946.1854.007.82PassH6959.871036.085.78-36.2444.5650.1874.0023.82PassH7311.000036.415.85-36.3142.1748.1274.0025.88PassH9748.000037.706.77-36.8031.4439.1154.0014.89PassH3473.897433.394.46-36.5845.5546.8274.0024.78PassV4874.000034.504.78-36.1144.9649.2274.0024.78PassV5760.501135.424.95-36.1144.9649.2274.0024.40PassV6564.956535.935.40-36.1744.4449.6074.0024.40PassV7311.000036.415.85-36.3141.9747.9274.0026.08PassV |









| Mod | e:             |                       |                       | 802.11b               | (11Mbps) T        | ransmitting       | Channel: 2        | 462           |        |          |         |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|---------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark  |
| 1   | 3000.9751      | 33.20                 | 4.93                  | -36.71                | 46.90             | 48.32             | 74.00             | 25.68         | Pass   | Н        | Peak    |
| 2   | 3547.0297      | 33.44                 | 4.44                  | -36.45                | 45.34             | 46.77             | 74.00             | 27.23         | Pass   | Н        | Peak    |
| 3   | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 48.76             | 51.94             | 74.00             | 22.06         | Pass   | Н        | Peak    |
| 4   | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 44.10             | 47.28             | 54.00             | 6.72          | Pass   | Н        | Average |
| 5   | 6206.1206      | 35.84                 | 5.24                  | -36.34                | 44.77             | 49.51             | 74.00             | 24.49         | Pass   | Н        | Peak    |
| 6   | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 42.88             | 48.88             | 74.00             | 25.12         | Pass   | Н        | Peak    |
| 7   | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 44.13             | 51.77             | 74.00             | 22.23         | Pass   | Н        | Peak    |
| 8   | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 31.02             | 38.66             | 54.00             | 15.34         | Pass   | Н        | Average |
| 9   | 2592.3185      | 32.55                 | 4.10                  | -36.63                | 48.71             | 48.73             | 74.00             | 25.27         | Pass   | V        | Peak    |
| 10  | 2977.5955      | 33.16                 | 4.48                  | -36.75                | 47.22             | 48.11             | 74.00             | 25.89         | Pass   | V        | Peak    |
| 11  | 4924.0000      | 34.50                 | 4.85                  | -36.17                | 43.50             | 46.68             | 74.00             | 27.32         | Pass   | V        | Peak    |
| 12  | 5825.8326      | 35.52                 | 5.03                  | -36.01                | 44.71             | 49.25             | 74.00             | 24.75         | Pass   | V        | Peak    |
| 13  | 7386.0000      | 36.49                 | 5.85                  | -36.34                | 42.90             | 48.90             | 74.00             | 25.10         | Pass   | V        | Peak    |
| 14  | 9848.0000      | 37.74                 | 6.83                  | -36.93                | 42.53             | 50.17             | 74.00             | 23.83         | Pass   | V        | Peak    |

| Mod | le:            |                       |                       | 802.11 ç              | g(6Mbps) Tr       | ansmitting        | ng Channel: 2412  |               |        |          |         |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|---------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark  |
| 1   | 3060.4560      | 33.22                 | 4.81                  | -36.86                | 47.03             | 48.20             | 74.00             | 25.80         | Pass   | Н        | Peak    |
| 2   | 4466.5467      | 34.45                 | 4.76                  | -36.22                | 44.97             | 47.96             | 74.00             | 26.04         | Pass   | Н        | Peak    |
| 3   | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 49.58             | 52.58             | 74.00             | 21.42         | Pass   | Н        | Peak    |
| 4   | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 30.00             | 33.00             | 54.00             | 21.00         | Pass   | Н        | Average |
| 5   | 6370.9121      | 35.87                 | 5.40                  | -36.22                | 44.80             | 49.85             | 74.00             | 24.15         | Pass   | Н        | Peak    |
| 6   | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 42.38             | 48.07             | 74.00             | 25.93         | Pass   | Н        | Peak    |
| 7   | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 44.70             | 52.16             | 74.00             | 21.84         | Pass   | Н        | Peak    |
| 8   | 9648.0000      | 37.66                 | 6.72                  | -36.91                | 30.72             | 38.19             | 54.00             | 15.81         | Pass   | Н        | Average |
| 9   | 2588.7177      | 32.54                 | 4.10                  | -36.62                | 48.77             | 48.79             | 74.00             | 25.21         | Pass   | V        | Peak    |
| 10  | 4824.0000      | 34.50                 | 4.61                  | -36.11                | 43.43             | 46.43             | 74.00             | 27.57         | Pass   | V        | Peak    |
| 11  | 5433.8434      | 34.93                 | 4.90                  | -36.06                | 44.15             | 47.92             | 74.00             | 26.08         | Pass   | V        | Peak    |
| 12  | 5995.4996      | 35.79                 | 5.34                  | -36.30                | 44.42             | 49.25             | 74.00             | 24.75         | Pass   | V        | Peak    |
| 13  | 7236.0000      | 36.34                 | 5.79                  | -36.44                | 42.71             | 48.40             | 74.00             | 25.60         | Pass   | V        | Peak    |
| 14  | 9648.0000      | 37.66                 | 6.72                  | -36.92                | 44.74             | 52.20             | 74.00             | 21.80         | Pass   | V        | Peak    |
| 15  | 9648.0000      | 37.66                 | 6.72                  | -36.91                | 30.83             | 38.30             | 54.00             | 15.70         | Pass   | V        | Average |







| Γ | Mode  | e:             |                       |                       | 802.11 g                                   | g(6Mbps) Ti       | ansmitting        | Channel: 24       | 437           |        |          |         |
|---|-------|----------------|-----------------------|-----------------------|--------------------------------------------|-------------------|-------------------|-------------------|---------------|--------|----------|---------|
|   | NO    | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB]                      | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark  |
|   | 1     | 1998.1996      | 31.69                 | 3.47                  | -36.74                                     | 49.33             | 47.75             | 74.00             | 26.25         | Pass   | Н        | Peak    |
|   | 2     | 3320.8071      | 33.33                 | 4.56                  | -36.76                                     | 46.32             | 47.45             | 74.00             | 26.55         | Pass   | Н        | Peak    |
| 1 | 3     | 4874.0000      | 34.50                 | 4.78                  | -36.09                                     | 49.60             | 52.79             | 74.00             | 21.21         | Pass   | Н        | Peak    |
|   | 4     | 4874.0000      | 34.50                 | 4.78                  | -36.09                                     | 36.57             | 39.76             | 54.00             | 14.24         | Pass   | Н        | Average |
|   | 5     | 6887.7138      | 36.06                 | 5.78                  | -36.31                                     | 44.11             | 49.64             | 74.00             | 24.36         | Pass   | Н        | Peak    |
|   | 6     | 7311.0000      | 36.41                 | 5.85                  | -36.31                                     | 40.81             | 46.76             | 74.00             | 27.24         | Pass   | Н        | Peak    |
|   | 7     | 9748.0000      | 37.70                 | 6.77                  | -36.79                                     | 43.17             | 50.85             | 74.00             | 23.15         | Pass   | Н        | Peak    |
|   | 8     | 2119.4239      | 31.87                 | 3.61                  | -36.52                                     | 49.01             | 47.97             | 74.00             | 26.03         | Pass   | V        | Peak    |
|   | 9     | 3028.2778      | 33.21                 | 4.87                  | -36.80                                     | 45.86             | 47.14             | 74.00             | 26.86         | Pass   | V        | Peak    |
|   | 10    | 4874.0000      | 34.50                 | 4.78                  | -36.09                                     | 44.03             | 47.22             | 74.00             | 26.78         | Pass   | V        | Peak    |
|   | 11    | 6340.6841      | 35.87                 | 5.46                  | -36.15                                     | 44.29             | 49.47             | 74.00             | 24.53         | Pass   | V        | Peak    |
|   | 12    | 7311.0000      | 36.41                 | 5.85                  | -36.31                                     | 41.25             | 47.20             | 74.00             | 26.80         | Pass   | V        | Peak    |
| 6 | 13    | 9748.0000      | 37.70                 | 6.77                  | -36.79                                     | 43.16             | 50.84             | 74.00             | 23.16         | Pass   | V        | Peak    |
|   |       |                |                       |                       |                                            |                   |                   |                   |               |        |          |         |
|   | Mode: |                |                       |                       | 802.11 g(6Mbps) Transmitting Channel: 2462 |                   |                   |                   |               |        |          |         |
|   | NO    | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB]                      | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark  |
|   | 1     | 1795.7592      | 30.35                 | 3.31                  | -36.80                                     | 53.41             | 50.27             | 74.00             | 23.73         | Pass   | Н        | Peak    |
|   | 2     | 3352.9853      | 33.34                 | 4.52                  | -36.70                                     | 46.01             | 47.17             | 74.00             | 26.83         | Pass   | Н        | Peak    |
|   | 3     | 4924.0000      | 34.50                 | 4.85                  | -36.17                                     | 46.55             | 49.73             | 74.00             | 24.27         | Pass   | Н        | Peak    |
| / | 4     | 5932.1182      | 35.69                 | 5.23                  | -36.18                                     | 45.06             | 49.80             | 74.00             | 24.20         | Pass   | Н        | Peak    |
| 6 | 5     | 7386.0000      | 36.49                 | 5.85                  | -36.34                                     | 42.30             | 48.30             | 74.00             | 25.70         | Pass   | Н        | Peak    |
|   | 6     | 9848.0000      | 37.74                 | 6.83                  | -36.93                                     | 44.93             | 52.57             | 74.00             | 21.43         | Pass   | Н        | Peak    |
|   | 7     | 9848.0000      | 37.74                 | 6.83                  | -36.93                                     | 31.00             | 38.64             | 54.00             | 15.36         | Pass   | Н        | Average |
|   | 8     | 2193.0386      | 31.97                 | 3.65                  | -36.53                                     | 50.79             | 49.88             | 74.00             | 24.12         | Pass   | V        | Peak    |
|   | 9     | 2987.1974      | 33.18                 | 4.51                  | -36.73                                     | 48.05             | 49.01             | 74.00             | 24.99         | Pass   | V        | Peak    |
|   | 10    | 4924.0000      | 34.50                 | 4.85                  | -36.17                                     | 43.17             | 46.35             | 74.00             | 27.65         | Pass   | V        | Peak    |
|   | 11    | 6725.8476      | 35.99                 | 5.60                  | -36.22                                     | 44.70             | 50.07             | 74.00             | 23.93         | Pass   | V        | Peak    |
|   | 12    | 7386.0000      | 36.49                 | 5.85                  | -36.34                                     | 42.10             | 48.10             | 74.00             | 25.90         | Pass   | V        | Peak    |
|   | 12    | 1000.0000      | 00.10                 | 0.00                  | -00.04                                     | 42.10             | 40.10             | 74.00             | 20.00         |        |          | Tour    |
| - | 12    | 9848.0000      | 37.74                 | 6.83                  | -36.93                                     | 43.26             | 50.90             | 74.00             | 23.10         | Pass   | V        | Peak    |







### Page 56 of 64

| Mod                         | e:                                                                                                                                               |                                                                                                          |                                                                                                              | 802.11 n(HT20)(6.5Mbps) Transmitting                                                                                                |                                                                                                                      |                                                                                                                      |                                                                                                                               |                                                                                                         | Channel: 2412                                                         |                                                       |                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|
| NO                          | Freq.<br>[MHz]                                                                                                                                   | Ant<br>Factor<br>[dB]                                                                                    | Cable<br>loss<br>[dB]                                                                                        | Pream<br>gain<br>[dB]                                                                                                               | Reading<br>[dBµV]                                                                                                    | Level<br>[dBµV/m]                                                                                                    | Limit<br>[dBµV/m]                                                                                                             | Magin<br>[dB]                                                                                           | Result                                                                | Polarity                                              | Remark                                                                          |
| 1                           | 3198.9199                                                                                                                                        | 33.28                                                                                                    | 4.65                                                                                                         | -36.70                                                                                                                              | 47.24                                                                                                                | 48.47                                                                                                                | 74.00                                                                                                                         | 25.53                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 2                           | 4824.0000                                                                                                                                        | 34.50                                                                                                    | 4.61                                                                                                         | -36.11                                                                                                                              | 47.41                                                                                                                | 50.41                                                                                                                | 74.00                                                                                                                         | 23.59                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 3                           | 5403.6154                                                                                                                                        | 34.90                                                                                                    | 4.86                                                                                                         | -35.90                                                                                                                              | 44.41                                                                                                                | 48.27                                                                                                                | 74.00                                                                                                                         | 25.73                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 4                           | 6566.9067                                                                                                                                        | 35.93                                                                                                    | 5.41                                                                                                         | -36.17                                                                                                                              | 44.88                                                                                                                | 50.05                                                                                                                | 74.00                                                                                                                         | 23.95                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 5                           | 7236.0000                                                                                                                                        | 36.34                                                                                                    | 5.79                                                                                                         | -36.44                                                                                                                              | 42.47                                                                                                                | 48.16                                                                                                                | 74.00                                                                                                                         | 25.84                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 6                           | 9648.0000                                                                                                                                        | 37.66                                                                                                    | 6.72                                                                                                         | -36.92                                                                                                                              | 44.77                                                                                                                | 52.23                                                                                                                | 74.00                                                                                                                         | 21.77                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 7                           | 9648.0000                                                                                                                                        | 37.66                                                                                                    | 6.72                                                                                                         | -36.91                                                                                                                              | 31.16                                                                                                                | 38.63                                                                                                                | 54.00                                                                                                                         | 15.37                                                                                                   | Pass                                                                  | Н                                                     | Average                                                                         |
| 8                           | 2596.7193                                                                                                                                        | 32.55                                                                                                    | 4.10                                                                                                         | -36.63                                                                                                                              | 50.01                                                                                                                | 50.03                                                                                                                | 74.00                                                                                                                         | 23.97                                                                                                   | Pass                                                                  | Н                                                     | Peak                                                                            |
| 9                           | 4429.4929                                                                                                                                        | 34.40                                                                                                    | 4.72                                                                                                         | -36.17                                                                                                                              | 45.08                                                                                                                | 48.03                                                                                                                | 74.00                                                                                                                         | 25.97                                                                                                   | Pass                                                                  | V                                                     | Peak                                                                            |
| 10                          | 4824.0000                                                                                                                                        | 34.50                                                                                                    | 4.61                                                                                                         | -36.11                                                                                                                              | 43.45                                                                                                                | 46.45                                                                                                                | 74.00                                                                                                                         | 27.55                                                                                                   | Pass                                                                  | V                                                     | Peak                                                                            |
| 11                          | 5533.3033                                                                                                                                        | 35.05                                                                                                    | 5.16                                                                                                         | -36.07                                                                                                                              | 44.18                                                                                                                | 48.32                                                                                                                | 74.00                                                                                                                         | 25.68                                                                                                   | Pass                                                                  | V                                                     | Peak                                                                            |
| 12                          | 7236.0000                                                                                                                                        | 36.34                                                                                                    | 5.79                                                                                                         | -36.44                                                                                                                              | 44.85                                                                                                                | 50.54                                                                                                                | 74.00                                                                                                                         | 23.46                                                                                                   | Pass                                                                  | V                                                     | Peak                                                                            |
| 13                          | 9648.0000                                                                                                                                        | 37.66                                                                                                    | 6.72                                                                                                         | -36.92                                                                                                                              | 43.32                                                                                                                | 50.78                                                                                                                | 74.00                                                                                                                         | 23.22                                                                                                   | Pass                                                                  | V                                                     | Peak                                                                            |
|                             |                                                                                                                                                  |                                                                                                          |                                                                                                              |                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                               |                                                                                                         |                                                                       |                                                       |                                                                                 |
|                             |                                                                                                                                                  |                                                                                                          |                                                                                                              |                                                                                                                                     |                                                                                                                      | //                                                                                                                   |                                                                                                                               |                                                                                                         | 1                                                                     |                                                       | 1                                                                               |
| Mod                         | e:                                                                                                                                               |                                                                                                          |                                                                                                              |                                                                                                                                     | (HT20)(6.5                                                                                                           | Mbps) Trans                                                                                                          | smitting                                                                                                                      |                                                                                                         | Channe                                                                | l: 2437                                               |                                                                                 |
| Mod                         | e:<br>Freq.<br>[MHz]                                                                                                                             | Ant<br>Factor<br>[dB]                                                                                    | Cable<br>loss<br>[dB]                                                                                        | 802.11 n<br>Pream<br>gain<br>[dB]                                                                                                   | (HT20)(6.5<br>Reading<br>[dBµV]                                                                                      | Mbps) Trans<br>Level<br>[dBµV/m]                                                                                     | Emitting<br>Limit<br>[dBµV/m]                                                                                                 | Magin<br>[dB]                                                                                           | Channe<br>Result                                                      | l: 2437<br>Polarity                                   | Remark                                                                          |
|                             | Freq.                                                                                                                                            | Factor                                                                                                   | loss                                                                                                         | Pream<br>gain                                                                                                                       | Reading                                                                                                              | Level                                                                                                                | Limit                                                                                                                         |                                                                                                         |                                                                       |                                                       | Remark<br>Peak                                                                  |
| NO                          | Freq.<br>[MHz]                                                                                                                                   | Factor<br>[dB]                                                                                           | loss<br>[dB]                                                                                                 | Pream<br>gain<br>[dB]                                                                                                               | Reading<br>[dBµV]                                                                                                    | Level<br>[dBµV/m]                                                                                                    | Limit<br>[dBµV/m]                                                                                                             | [dB]                                                                                                    | Result                                                                | Polarity                                              |                                                                                 |
| NO<br>1                     | Freq.<br>[MHz]<br>2822.7646                                                                                                                      | Factor<br>[dB]<br>32.92                                                                                  | loss<br>[dB]<br>4.24                                                                                         | Pream<br>gain<br>[dB]<br>-36.91                                                                                                     | Reading<br>[dBµV]<br>48.11                                                                                           | Level<br>[dBµV/m]<br>48.36                                                                                           | Limit<br>[dBµV/m]<br>74.00                                                                                                    | [dB]<br>25.64                                                                                           | Result<br>Pass                                                        | Polarity<br>H                                         | Peak                                                                            |
| NO<br>1<br>2                | Freq.<br>[MHz]<br>2822.7646<br>4874.0000                                                                                                         | Factor<br>[dB]<br>32.92<br>34.50                                                                         | loss<br>[dB]<br>4.24<br>4.78                                                                                 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09                                                                                           | Reading<br>[dBµV]<br>48.11<br>48.04                                                                                  | Level<br>[dBµV/m]<br>48.36<br>51.23                                                                                  | Limit<br>[dBµV/m]<br>74.00<br>74.00                                                                                           | [dB]<br>25.64<br>22.77                                                                                  | Result<br>Pass<br>Pass                                                | Polarity<br>H<br>H                                    | Peak<br>Peak                                                                    |
| NO<br>1<br>2<br>3           | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000                                                                                            | Factor<br>[dB]<br>32.92<br>34.50<br>34.50                                                                | loss<br>[dB]<br>4.24<br>4.78<br>4.78                                                                         | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09                                                                                 | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48                                                                         | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67                                                                         | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00                                                                                  | [dB]<br>25.64<br>22.77<br>14.33                                                                         | Result<br>Pass<br>Pass<br>Pass                                        | Polarity<br>H<br>H<br>H                               | Peak<br>Peak<br>Average                                                         |
| NO<br>1<br>2<br>3<br>4      | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698                                                                               | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70                                                       | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91                                                                 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91                                                                       | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71                                                                | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41                                                                | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00                                                                         | [dB]<br>25.64<br>22.77<br>14.33<br>25.59                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass                                | Polarity<br>H<br>H<br>H<br>H                          | Peak<br>Peak<br>Average<br>Peak                                                 |
| NO<br>1<br>2<br>3<br>4<br>5 | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618                                                                  | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82                                              | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26                                                         | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91<br>-36.28                                                             | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32                                                       | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12                                                       | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00                                                                | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88                                                       | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                        | Polarity<br>H<br>H<br>H<br>H<br>H                     | Peak<br>Peak<br>Average<br>Peak<br>Peak                                         |
| NO 1 2 3 4 5 6              | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000                                                     | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82<br>36.41                                     | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85                                                 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91<br>-36.28<br>-36.31                                                   | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71                                              | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66                                              | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00<br>74.00                                                       | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34                                              | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                | Polarity<br>H<br>H<br>H<br>H<br>H<br>H                | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak                                 |
| NO 1 2 3 4 5 6 7            | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000<br>9748.0000                                        | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82<br>36.41<br>37.70                            | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85<br>6.77                                         | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91<br>-36.28<br>-36.31<br>-36.79                                         | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71<br>42.89                                     | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66<br>50.57                                     | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00<br>74.00<br>74.00                                              | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34<br>23.43                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass        | Polarity<br>H<br>H<br>H<br>H<br>H<br>H<br>H           | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak<br>Peak                         |
| NO 1 2 3 4 5 6 7 8          | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000<br>9748.0000<br>4476.2976                           | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82<br>36.41<br>37.70<br>34.47                   | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85<br>6.77<br>4.72                                 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91<br>-36.28<br>-36.31<br>-36.79<br>-36.23                               | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71<br>42.89<br>45.01                            | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66<br>50.57<br>47.97                            | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00                                     | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34<br>23.43<br>26.03                            | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas | Polarity<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>V      | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak<br>Peak                         |
| NO 1 2 3 4 5 6 7 8 9        | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000<br>9748.0000<br>4476.2976<br>4874.0000              | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82<br>36.41<br>37.70<br>34.47<br>34.50          | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85<br>6.77<br>4.72<br>4.78                         | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-35.91<br>-36.28<br>-36.31<br>-36.79<br>-36.23<br>-36.09                               | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71<br>42.89<br>45.01<br>42.27                   | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66<br>50.57<br>47.97<br>45.46                   | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00                            | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34<br>23.43<br>26.03<br>26.03<br>28.54          | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas | Polarity<br>H<br>H<br>H<br>H<br>H<br>H<br>V<br>V      | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                 |
| NO 1 2 3 4 5 6 7 8 9 10     | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000<br>9748.0000<br>4476.2976<br>4874.0000<br>6380.6631 | Factor<br>[dB]<br>32.92<br>34.50<br>34.50<br>34.70<br>35.82<br>36.41<br>37.70<br>34.47<br>34.50<br>35.88 | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85<br>6.77<br>4.72<br>4.78<br>5.37                 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-36.09<br>-35.91<br>-36.28<br>-36.31<br>-36.79<br>-36.23<br>-36.23<br>-36.09<br>-36.26 | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71<br>42.89<br>45.01<br>42.27<br>45.10          | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66<br>50.57<br>47.97<br>45.46<br>50.09          | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>54.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00                   | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34<br>23.43<br>26.03<br>28.54<br>23.91          | Result Pass Pass Pass Pass Pass Pass Pass Pas                         | Polarity<br>H<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak         |
| NO 1 2 3 4 5 6 7 8 9 10 11  | Freq.<br>[MHz]<br>2822.7646<br>4874.0000<br>5197.8698<br>6118.3618<br>7311.0000<br>9748.0000<br>4476.2976<br>4874.0000<br>6380.6631<br>7311.0000 | Factor<br>[dB]<br>32.92<br>34.50<br>34.70<br>35.82<br>36.41<br>37.70<br>34.47<br>34.50<br>35.88<br>36.41 | loss<br>[dB]<br>4.24<br>4.78<br>4.78<br>4.91<br>5.26<br>5.85<br>6.77<br>4.72<br>4.72<br>4.78<br>5.37<br>5.85 | Pream<br>gain<br>[dB]<br>-36.91<br>-36.09<br>-35.91<br>-36.28<br>-36.31<br>-36.79<br>-36.23<br>-36.09<br>-36.26<br>-36.31           | Reading<br>[dBµV]<br>48.11<br>48.04<br>36.48<br>44.71<br>44.32<br>41.71<br>42.89<br>45.01<br>42.27<br>45.10<br>42.75 | Level<br>[dBµV/m]<br>48.36<br>51.23<br>39.67<br>48.41<br>49.12<br>47.66<br>50.57<br>47.97<br>45.46<br>50.09<br>48.70 | Limit<br>[dBµV/m]<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00 | [dB]<br>25.64<br>22.77<br>14.33<br>25.59<br>24.88<br>26.34<br>23.43<br>26.03<br>28.54<br>23.91<br>23.91 | Result Pass Pass Pass Pass Pass Pass Pass Pas                         | Polarity H H H H H H V V V V V                        | Peak<br>Peak<br>Average<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak |











## Page 57 of 64

| Mode | e:             |                       |                       | 802.11 n(HT20)(6.5Mbps) Transmitting |                   |                   |                   |               | Channel: 2462 |          |        |
|------|----------------|-----------------------|-----------------------|--------------------------------------|-------------------|-------------------|-------------------|---------------|---------------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB]                | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result        | Polarity | Remark |
| 1    | 1793.7588      | 30.34                 | 3.31                  | -36.81                               | 51.30             | 48.14             | 74.00             | 25.86         | Pass          | Н        | Peak   |
| 2    | 4472.3972      | 34.46                 | 4.74                  | -36.23                               | 44.39             | 47.36             | 74.00             | 26.64         | Pass          | Н        | Peak   |
| 3    | 4924.0000      | 34.50                 | 4.85                  | -36.17                               | 47.61             | 50.79             | 74.00             | 23.21         | Pass          | Н        | Peak   |
| 4    | 7133.4383      | 36.23                 | 5.71                  | -36.32                               | 43.86             | 49.48             | 74.00             | 24.52         | Pass          | Н        | Peak   |
| 5    | 7386.0000      | 36.49                 | 5.85                  | -36.34                               | 41.59             | 47.59             | 74.00             | 26.41         | Pass          | Н        | Peak   |
| 6    | 9848.0000      | 37.74                 | 6.83                  | -36.93                               | 41.74             | 49.38             | 74.00             | 24.62         | Pass          | Н        | Peak   |
| 7    | 1594.9190      | 29.03                 | 3.07                  | -37.00                               | 52.38             | 47.48             | 74.00             | 26.52         | Pass          | Н        | Peak   |
| 8    | 4924.0000      | 34.50                 | 4.85                  | -36.17                               | 41.49             | 44.67             | 74.00             | 29.33         | Pass          | V        | Peak   |
| 9    | 5760.5011      | 35.42                 | 4.95                  | -36.11                               | 45.03             | 49.29             | 74.00             | 24.71         | Pass          | V        | Peak   |
| 10   | 6427.4677      | 35.89                 | 5.43                  | -36.31                               | 44.21             | 49.22             | 74.00             | 24.78         | Pass          | V        | Peak   |
| 11   | 7386.0000      | 36.49                 | 5.85                  | -36.34                               | 42.12             | 48.12             | 74.00             | 25.88         | Pass          | V        | Peak   |
| 12   | 9848.0000      | 37.74                 | 6.83                  | -36.93                               | 42.11             | 49.75             | 74.00             | 24.25         | Pass          | V        | Peak   |

Note:

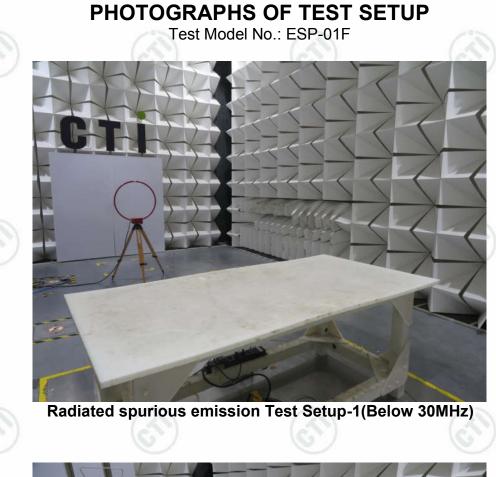
1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor


3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

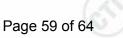













Radiated spurious emission Test Setup-2(30MHz-1GHz)









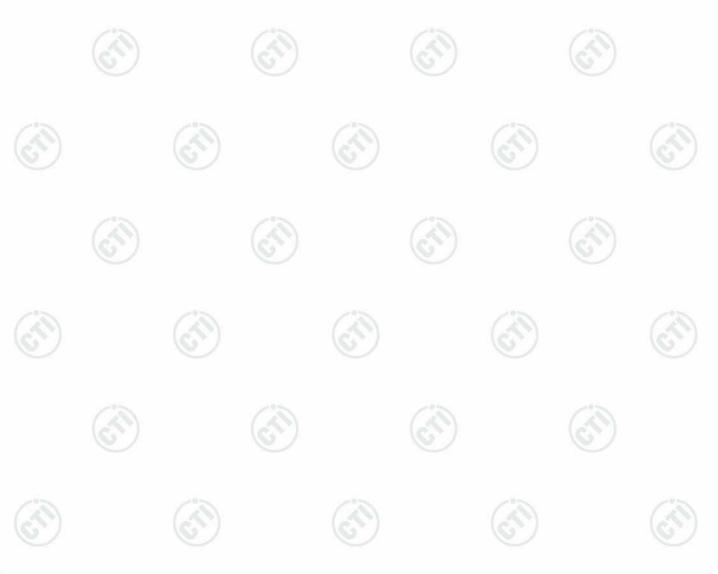


Radiated spurious emission Test Setup-3(Above 1GHz)



Radiated spurious emission Test Setup-4(Close-up)












**Conducted Emissions Test Setup** 





