

Product WiFi module

Trade mark N/A

Model/Type reference ESP-01E

Serial Number N/A

Report Number EED32K00216301 **FCC ID** : 2AHMR-ESP01E Date of Issue : Nov. 07, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

Shenzhen Ai-Thinker Technology Co., Ltd. 6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen Tom chen (Test Project)

Compiled by:

Kevin lan (Project Engineer)

Reviewed by:

Relm (a

Report Sea

Sheek Luo (Lab supervisor)

Date:

Nov. 07, 2018

Kevin yang (Reviewer)

Check No.: 3320276355

2 Version

Version No.	Date	Description
00	Nov. 07, 2018	Original

Page 3 of 68

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

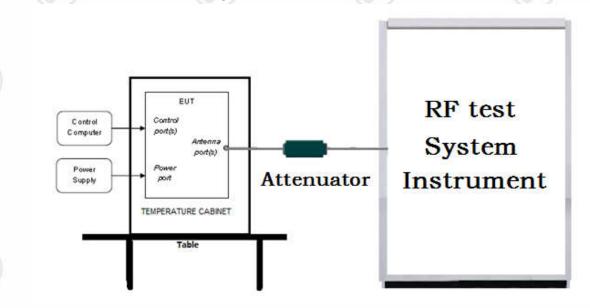
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

2 VERSION.				•••••		
3 TEST SUM	MARY			•••••	•••••	
4 CONTENT				•••••	•••••	
5 TEST REC	QUIREMENT	/** <u>*</u>		•••••	•••••	
5.1.1 Fo 5.1.2 Fo 5.1.3 Fo 5.2 TEST E	or Conducted test s or Radiated Emission or Conducted Emiss ENVIRONMENT	etup ons test setupsions test setup				6
6 GENERAL	INFORMATION			•••••		
6.2 GENER 6.3 PRODU 6.4 DESCR 6.5 TEST L 6.6 TEST F 6.7 DEVIAT 6.8 ABNOR 6.9 OTHER	RAL DESCRIPTION OF JCT SPECIFICATION S RIPTION OF SUPPORT LOCATION FACILITY TION FROM STANDAR RMALITIES FROM STAI R INFORMATION REQU	EUT UBJECTIVE TO THIS STATE UNITS DS NDARD CONDITIONS JESTED BY THE CUSTOL INTY (95% CONFIDENCI	ANDARD			
		INTY (95% CONFIDENCE	200			
		EMENTS SPECIFICA				
Append Append Append Append Append Append Append Append	dix A): Conducted P dix B): 6dB Occupie dix C): Band-edge fo dix D): RF Conducte dix E): Power Spect dix F): Antenna Req dix G): AC Power Lidix H): Restricted ba	eak Output Powerd Bandwidthor RF Conducted Emised Spurious Emissions ral Densityuirementne Conducted Emissions around fundamentious Emissions	ssionson	ndiated)		
PHOTOGRA	PHS OF TEST SE	ΓUΡ		•••••	•••••	62
PHOTOGRA	PHS OF EUT CON	STRUCTIONAL DET	AILS		•••••	65



Page 5 of 68

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

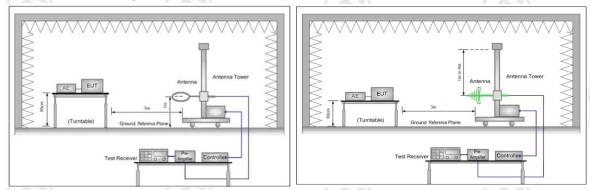


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

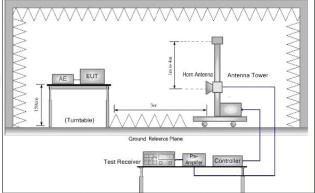
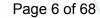
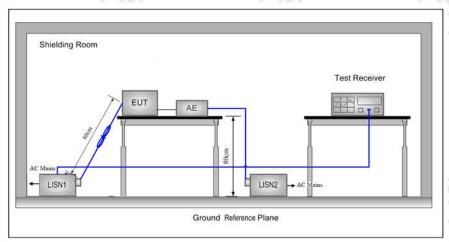


Figure 3. Above 1GHz





5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(5.23)	((2)		3
Temperature:	22°C					(9
Humidity:	62% RH					
Atmospheric Pressure:	1010mbar		-10-		-0-	

5.3 Test Condition

Test channel:

	t Chamilei.					
	Took Mode	Tv/Dv	RF Channel			
	Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
	802.11b/g/n(HT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
			2412MHz	2437MHz	2462MHz	
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		8	302.11b	(4				
Data Rate	1Mb	os 2Mbp	s 5.5Mbp	s 11Mbps	S		<	
Power(dBm)	15.5	1 15.4	7 15.78	15.89				
Mode 802.11g								
Data Rate 6Mb		os 9Mbp	os 12Mbps	18Mbps	24Mbps	s 36Mbps	48Mbps	54Mbps
Power(dBm) 15.3	6 15.3	4 15.22	15.10	15.06	15.00	14.98	14.89
Mode		802.11n (HT20)						
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	14.04	14.01	13.97	13.81	13.74	13.87	13.64	13.61

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Page 7 of 68

6 General Information

6.1 Client Information

Applicant:	Shenzhen Ai-Thinker Technology Co., Ltd.
Address of Applicant:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China
Manufacturer:	Shenzhen Ai-Thinker Technology Co., Ltd.
Address of Manufacturer:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China
Factory:	Shenzhen Ai-Thinker Technology Co., Ltd.
Address of Factory:	6/F, Block C2, Huafeng Industrial Park, Hangcheng Road, Baoan district, Shenzhen, China

6.2 General Description of EUT

Product Name:	WiFi module	
Model No.(EUT):	ESP-01E	
Trade Mark:	N/A	
EUT Supports Radios application:	WiFi 802.11b/g/n(HT20): 2412MHz to 2462MHz	(41)
Power Supply:	DC 3.3V	
Sample Received Date:	Aug. 09, 2018	
Sample tested Date:	Aug. 09, 2018 to Nov. 07, 2018	


6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
Channel Separation:	5MHz	
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPS IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK)	
Test Power Grade:	N/A	
Test Software of EUT:	ESP Series Modules FCC & CE Test Tool V2.2.3.exe (manufacturer declare)	
Antenna Type:	Spring antenna	(0.)
Antenna Gain:	2.78dBi	
Test Voltage:	DC 3.3V	

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	(6,2))

6.4 Description of Support Units

The EUT has been tested independently.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 8 of 68

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.: CN1164

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

	•	·		
No.	Item	Measurement Uncertainty		
16	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
2	Dadioted Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

7 Eq<u>uipment List</u>

RF test system									
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019				
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019				
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019				
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019				
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019				
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019				
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019				
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019				
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019				
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019				

	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019		
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019		
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019		
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019		
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019		
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020		
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019		
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019		

Page 11 of 68

	3M		Cortal		Cal. Due date
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3	(a)	06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	04-26-2018	04-25-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-22-2017	08-21-2018
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/107 11112	(A)	01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line Communication	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

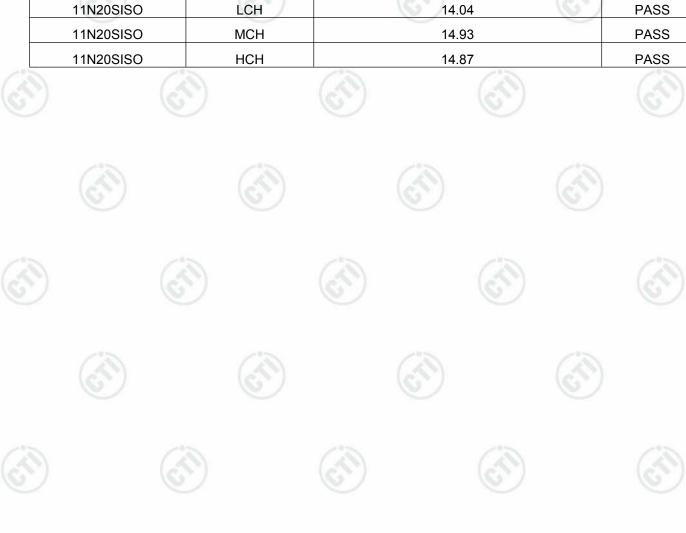
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Test Results List:

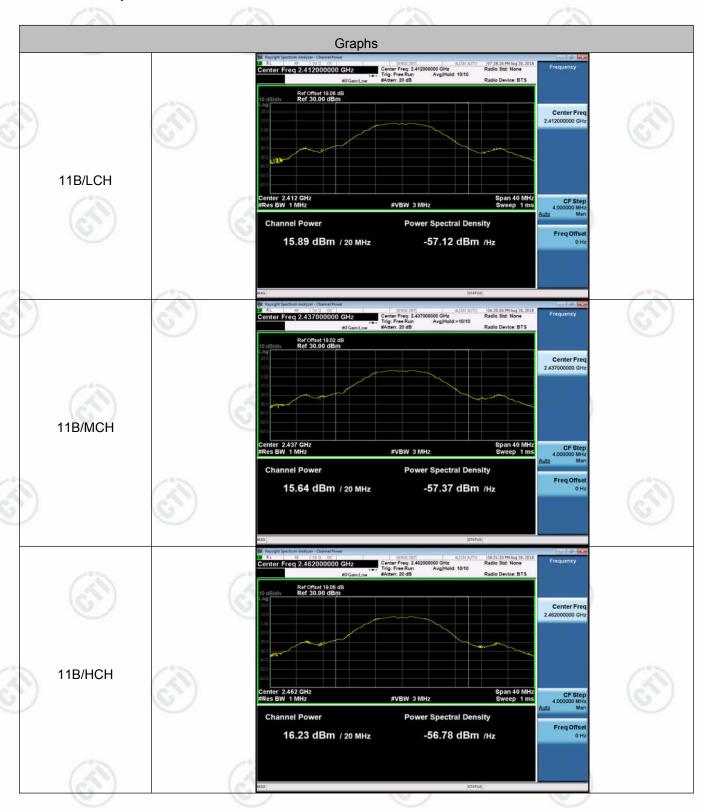
est Results List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Appendix A): Conducted Peak Output Power

Result Table

1.6.1.7.7.7.		110-0-1	A STATE OF THE STA	
Mode		Channel	Conducted Peak Output Power [dBm]	Verdict
11B		LCH	15.89	PASS
11B	19	MCH	15.64	PASS
11B	(6)	HCH	16.23	PASS
11G		LCH	15.36	PASS
11G		MCH	15.42	PASS
11G		HCH	16.22	PASS
11N20SISO		LCH	14.04	PASS
11N20SISO		MCH	14.93	PASS
11N20SISO		HCH	14.87	PASS


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graph

Page 15 of 68

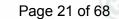
Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.070	13.798	PASS
11B	MCH	9.101	13.488	PASS
11B	НСН	9.088	13.387	PASS
11G	LCH	16.29	16.452	PASS
11G	MCH	16.07	16.466	PASS
11G	HCH	16.31	16.466	PASS
11N20SISO	LCH	16.04	17.459	PASS
11N20SISO	MCH	16.53	17.480	PASS
11N20SISO	HCH	16.29	17.490	PASS

Test Graph

Page 19 of 68

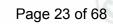


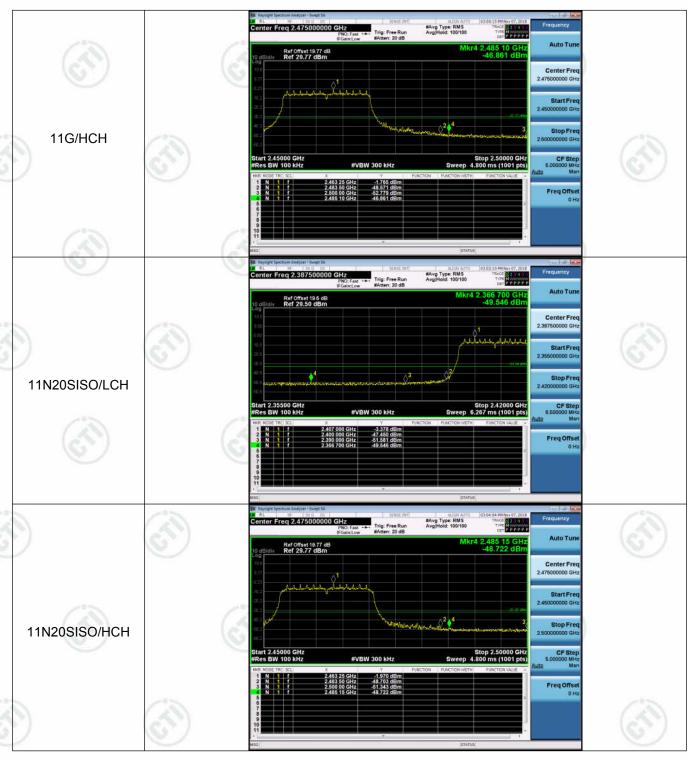
Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	3.889	-49.050	-26.11	PASS
11B	HCH	3.305	-48.741	-26.70	PASS
11G	LCH	-3.362	-49.357	-33.36	PASS
11G	НСН	-1.765	-46.861	-31.77	PASS
11N20SISO	LCH	-3.378	-49.546	-33.38	PASS
11N20SISO	HCH	-1.970	-48.722	-31.97	PASS

Test Graph





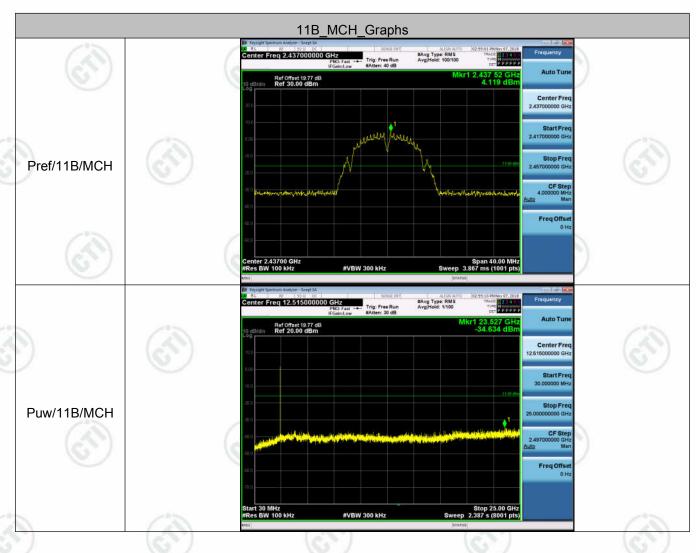
Page 24 of 68

Appendix D): RF Conducted Spurious Emissions

Result Table

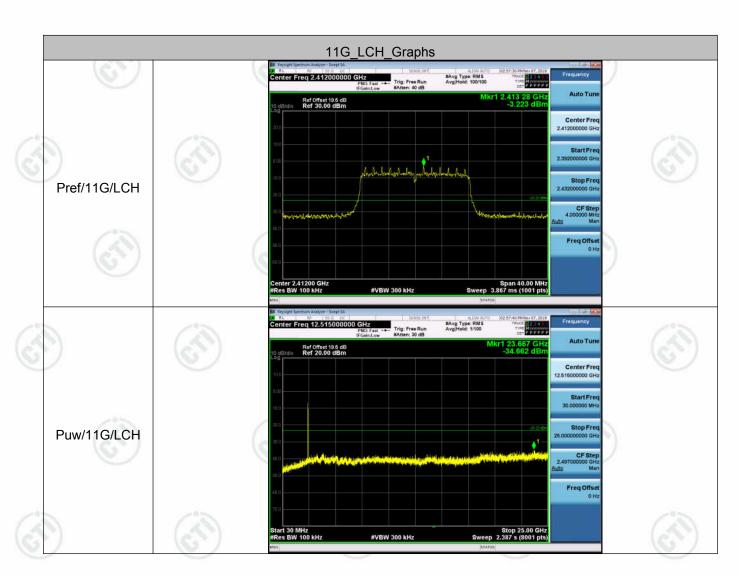
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	3.547	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.119	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	3.446	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-3.223	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-2.711	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-1.458	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.493	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-2.992	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-2.109	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

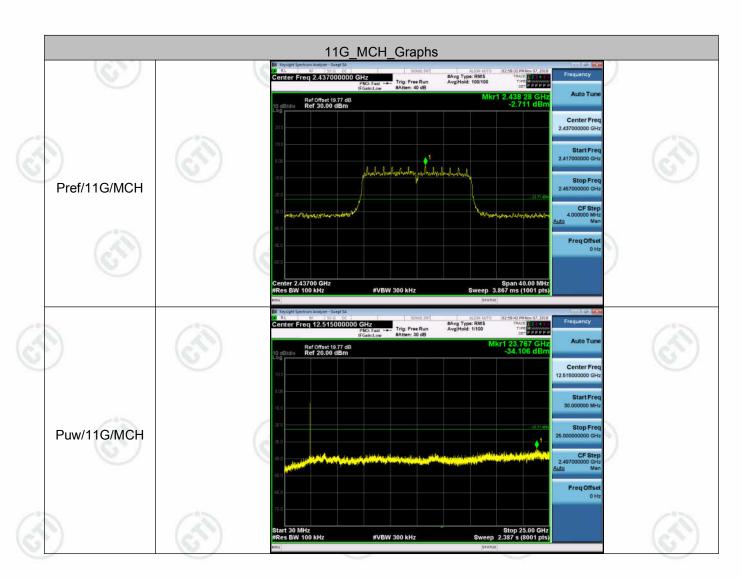


Page 25 of 68

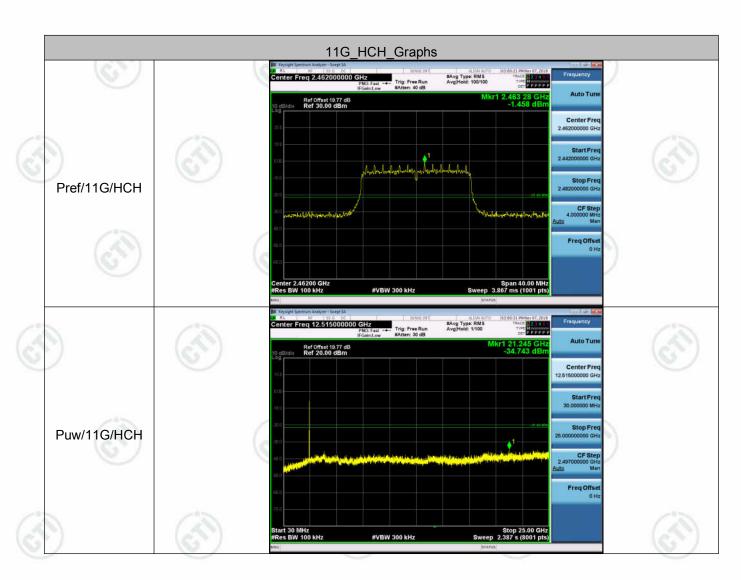
Page 26 of 68



Page 27 of 68

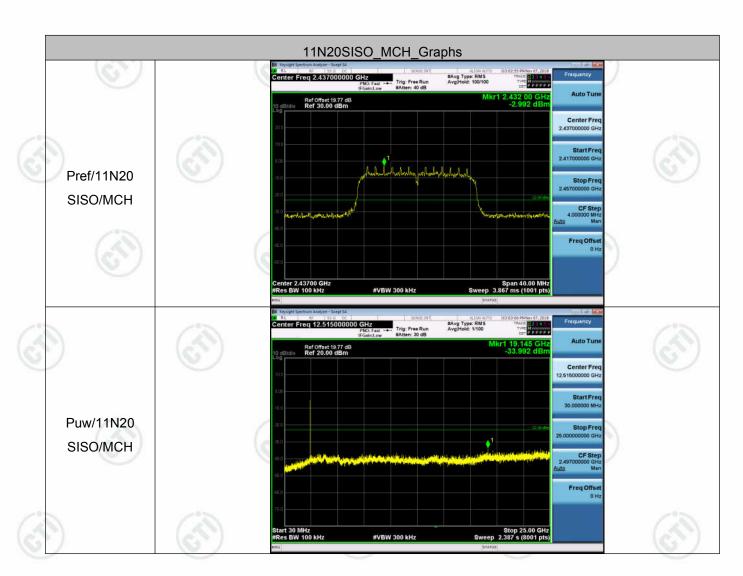


Page 28 of 68



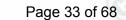
Page 29 of 68

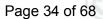
Page 30 of 68



Page 31 of 68

Page 32 of 68

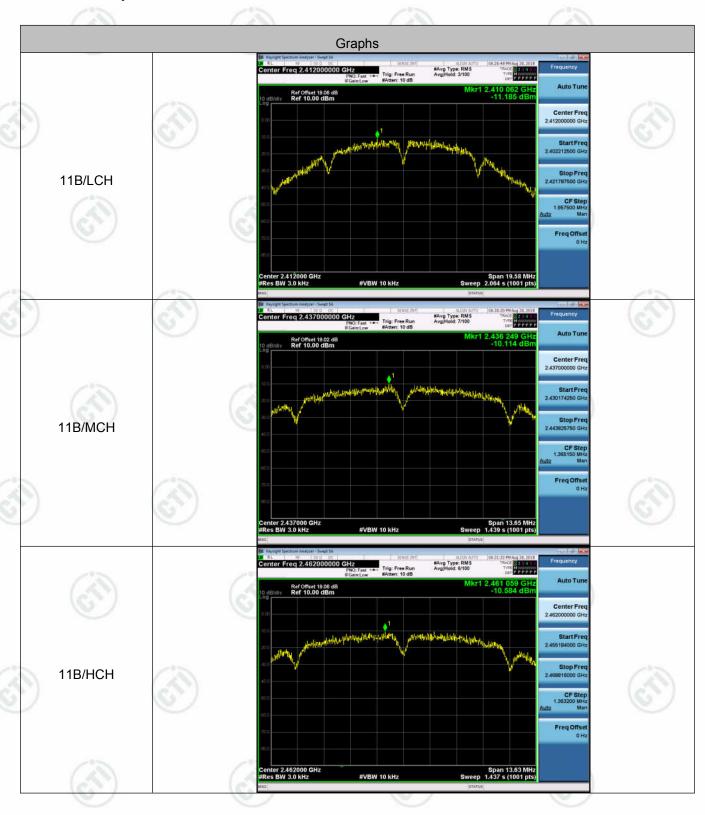




Appendix E): Power Spectral Density

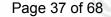
Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-11.185	8	PASS
11B	MCH	-10.114	8	PASS
11B	НСН	-10.584	8	PASS
11G	LCH	-17.332	8	PASS
11G	MCH	-17.225	8	PASS
11G	НСН	-16.782	8	PASS
11N20SISO	LCH	-19.633	8	PASS
11N20SISO	MCH	-19.266	8	PASS
11N20SISO	НСН	-19.043	8	PASS



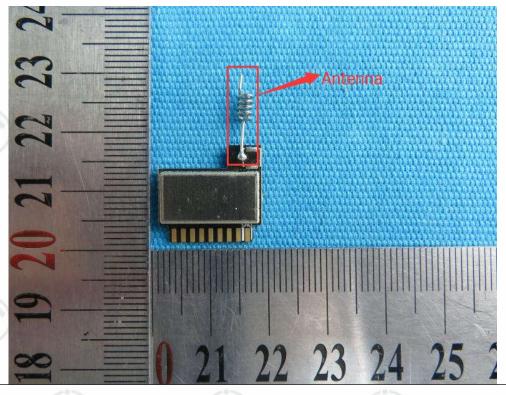
Test Graph

Page 35 of 68



Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

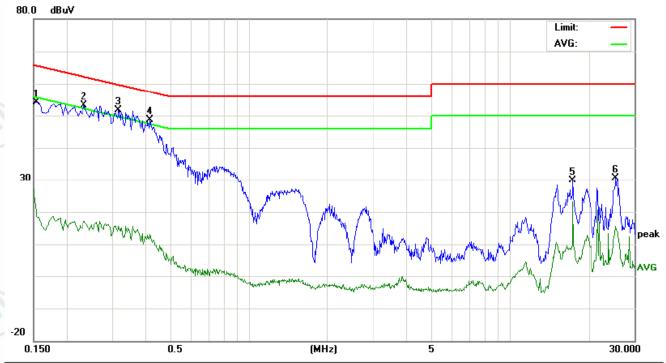
EUT Antenna:

The antenna is Spring antenna and no consideration of replacement. The best case gain of the antenna is 2.78dBi.

Page 38 of 68

Test Procedure:	 Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 						
	 3)The tabletop EUT was place reference plane. And for flat horizontal ground reference 4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the 	poor-standing arrange plane, a a vertical ground ref vertical ground ref d to the horizontal g	ement, the EUT was eference plane. The re erence plane. The v ground reference plan	placed on the ear of the EUT ertical ground e. The LISN 1			
	reference plane for LISNs distance was between the confidence of the EUT and associated of the interface cables must measurement.	closest points of the equipment was at lean emission, the rela	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated confidence of the interface cables must be distance of the interface cables must be distance of the interface cables.	closest points of the equipment was at lean emission, the rela	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement.	closest points of the equipment was at lean emission, the relate to the changed according to the	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated confidence of the interface cables must be distance of the interface cables must be distance of the interface cables.	closest points of the equipment was at lean emission, the relate to the changed according to the	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ rding to ANSI C63.10	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement.	closest points of the equipment was at lean emission, the related be changed according to the change of the change	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ rding to ANSI C63.10 (dBµV)	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement. Frequency range (MHz)	closest points of the equipment was at lean emission, the related be changed according to the ch	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ rding to ANSI C63.10 (dBµV) Average	All other units N 2. ipment and all			
Limit:	distance was between the confidence of the EUT and associated estables in order to find the maximum of the interface cables must measurement. Frequency range (MHz) 0.15-0.5	closest points of the equipment was at lead a emission, the related be changed according to the change of the chang	LISN 1 and the EUT. ast 0.8 m from the LIS tive positions of equ rding to ANSI C63.10 (dBµV) Average 56 to 46*	All other units N 2. ipment and all			

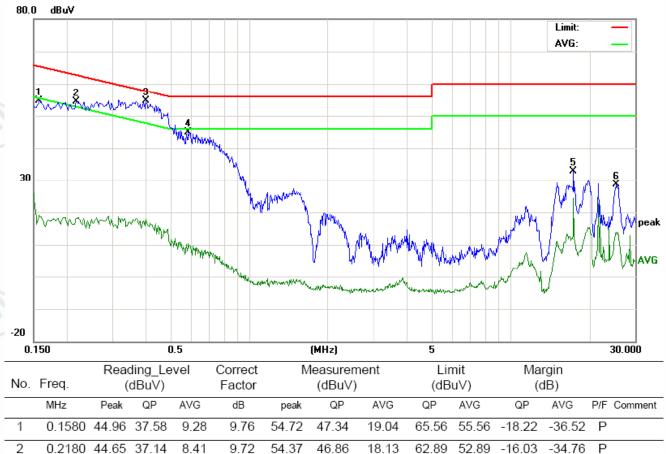
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected



Page 39 of 68

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	44.28	37.74	6.91	9.76	54.04	47.50	16.67	65.78	55.78	-18.28	-39.11	Р	
2	0.2340	43.29	36.29	5.50	9.73	53.02	46.02	15.23	62.30	52.30	-16.28	-37.07	Р	
3	0.3180	41.83	34.61	4.05	9.77	51.60	44.38	13.82	59.76	49.76	-15.38	-35.94	Р	
4	0.4180	38.87	30.92	0.78	9.74	48.61	40.66	10.52	57.49	47.49	-16.83	-36.97	Р	
5	17.4380	19.81	12.33	0.66	10.03	29.84	22.36	10.69	60.00	50.00	-37.64	-39.31	Р	
6	25.5540	20.52	12.25	3.49	10.19	30.71	22.44	13.68	60.00	50.00	-37.56	-36.32	Р	



Page 40 of 68

Neutral line:

Notes:

3

5

6

0.4020 44.86

0.5860 35.21

17.4220 22.78

18.35

25.4820

37.47

28.15

15.44

11.26

8.11

0.57

14.22

3.63

1. The following Quasi-Peak and Average measurements were performed on the EUT:

54.61

44.95

32.81

28.54

47.22

37.89

25.47

21.45

17.86

10.31

24.25

13.82

57.81

56.00

60.00

60.00

47.81

46.00

50.00

50.00

-10.59

-18.11

-34.53

-38.55

-29.95

-35.69

-25.75

-36.18

Ρ

Ρ

Ρ

Ρ

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

9.75

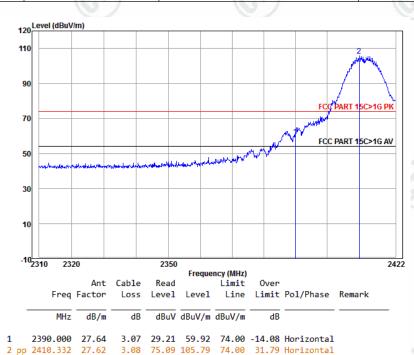
9.74

10.03

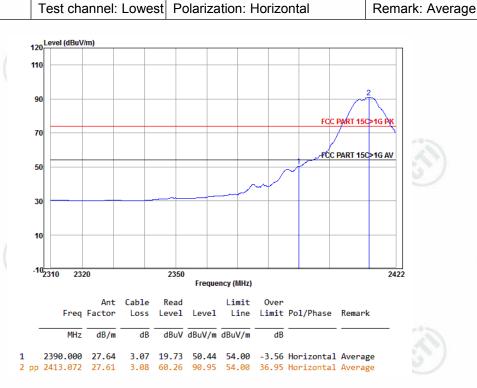
10.19

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Freq	uency	Detector	RBW	VBW	Remark	
	30MH	z-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A la	. 4011-	Peak	1MHz	3MHz	Peak	
	Above	e 1GHz	Peak	1MHz	10Hz	Average	-05
Test Procedure:	a. The EUT at a 3 me determin b. The EUT was mou c. The ante determin polarizati d. For each the anter was turne e. The test-Bandwidt f. Place a r frequence	was placed eter semi-and ethe position was set 3 m nted on the tinna height is ethe maximuons of the ar suspected ena was tuneed from 0 dereceiver system with Maximarker at the y to show co	lure as below: on the top of a received camber. The of the highest rate terms away from top of a variable-to varied from one turn value of the fintenna are set to emission, the EUT of to heights from the top of the fintenna are set to emission, the EUT of the heights from the trum and the restrict mpliance. Also metrum analyzer place.	otating table he table was adiation. the interfer neight ante meter to for eld strengtl make the rowas arrang 1 meter to rees to find eak Detect	e 0.8 meter as rotated 3 ence-recei nna tower. our meters h. Both hor neasurement aged to its way 4 meters a the maxim Function a	rs above the growing antenna, above the growizontal and versent. worst case and the rotata and reading. In the restrict in th	whic und t ertical d ther ble
	for lowes Above 1GHz g. Different to fully Al 18GHz th h. Test the i. The radia Transmit	t and highes t test proced between about the distance is EUT in the ation measurating mode, a	7	e, change fin table 0.8 ble is 1.5 method in X, kis position	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo ositioning for t is worse cas	ambe ve
Limit:	30MH: 88MHz 216MH:	quency z-88MHz z-216MHz z-960MHz Hz-1GHz	Limit (dBµV 40. 43. 46.	0 5 0	Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value eak Value	
	/ // //		E4.	n //	Averag	e Value	
	Abov	e 1GHz	54.0 74.0	165	-	Value	



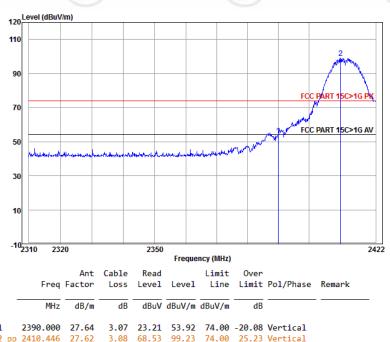
Page 42 of 68

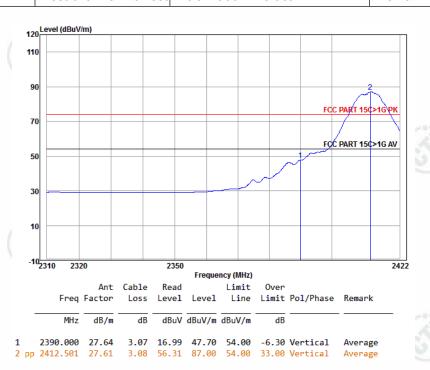

Test plot as follows:


Worse case mode:	802.11b (11Mbps)					
	Test channel: Lowest	Polarization: Horizontal	Remark: Peak			

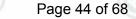
Worse case mode:

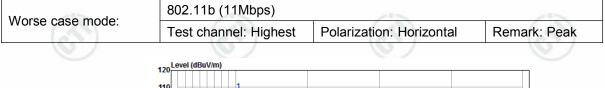

802.11b (11Mbps)

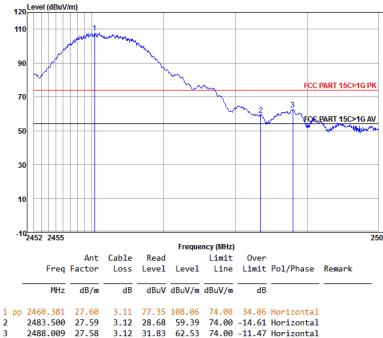


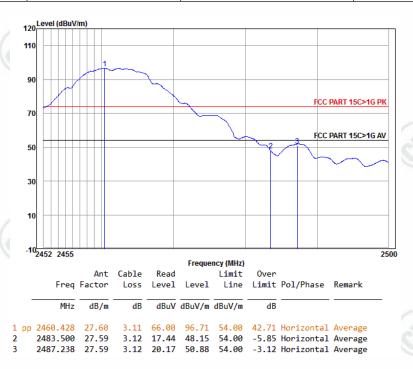


Worse case mode:
| 802.11b (11Mbps) | Test channel: Lowest | Polarization: Vertical | Remark: Average





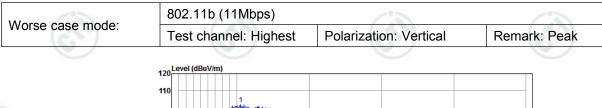


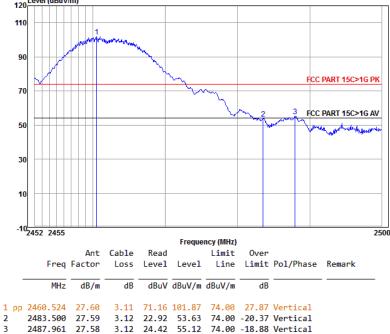


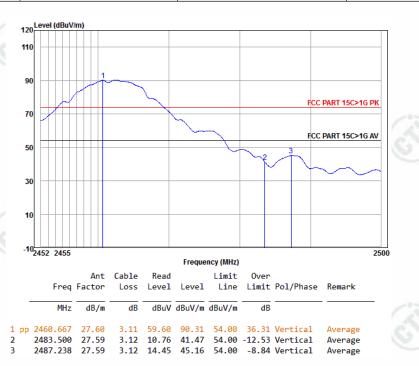
Worse case mode:

 802.11b (11Mbps)

 Test channel: Highest
 Polarization: Horizontal
 Remark: Average

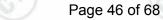


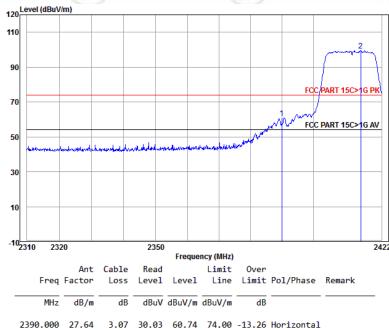


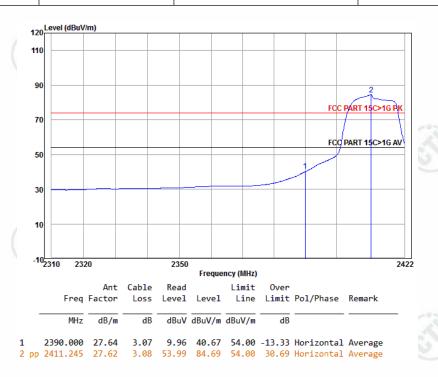


Worse case mode: 802.11b (11Mbps)

Test channel: Highest Polarization: Vertical Remark: Average







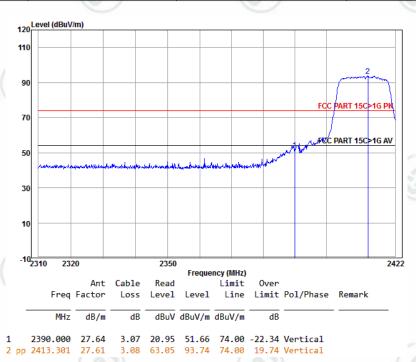
68.77 99.46 74.00 25.46 Horizontal

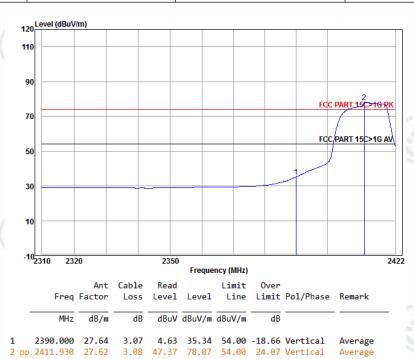
Worse case mode:	802.11g (6Mbps)	(6)	
vvorse case mode:	Test channel: Lowest	Polarization: Horizontal	Remark: Average

3.08

2 pp 2415.244 27.61

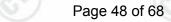






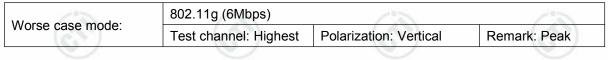
Worse case mode:

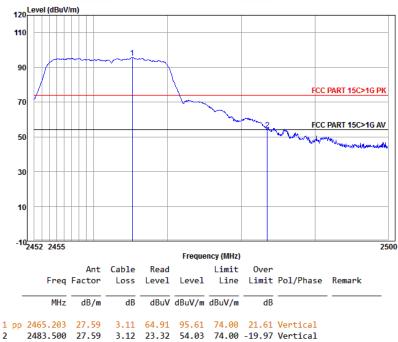
| 802.11g (6Mbps) | Test channel: Lowest | Polarization: Vertical | Remark: Average |



Worse case mode:

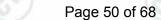
| 802.11g (6Mbps) | Test channel: Highest | Polarization: Horizontal | Remark: Average |

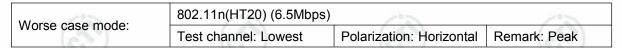


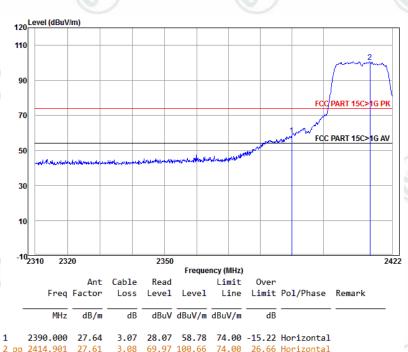


Worse case mode: 802.11g (6Mbps)

Test channel: Highest Polarization: Vertical Remark: Average





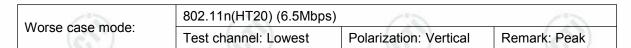


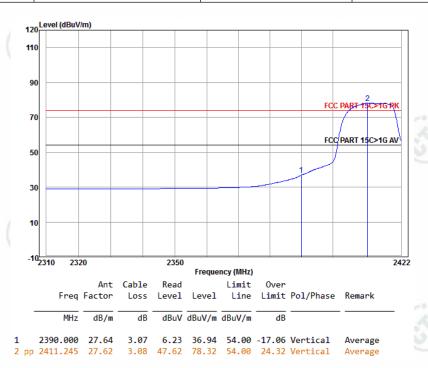


Worse case mode:

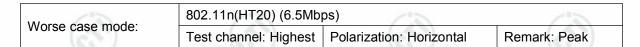
| 802.11n(HT20) (6.5Mbps) | Test channel: Lowest | Polarization: Horizontal | Remark: Average |

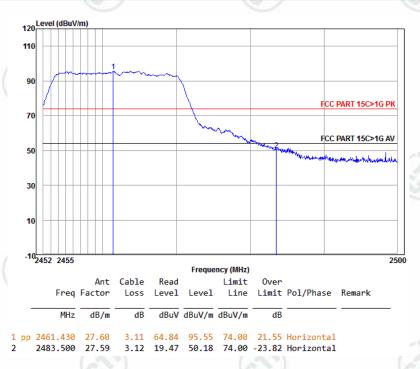






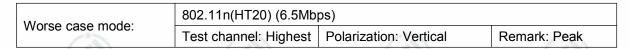
Worse ages made:	802.11n(HT20) (6.5Mbps)		
Worse case mode:	Test channel: Lowest	Polarization: Vertical	Remark: Average

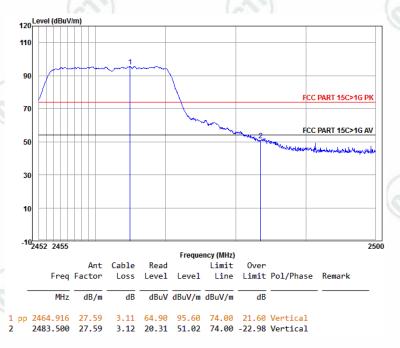




Worse case mode:

| 802.11n(HT20) (6.5Mbps) | Test channel: Highest | Polarization: Horizontal | Remark:Average





Page 53 of 68

Worse case mode:	802.11n(HT20) (6.5Mb		
Worse case mode.	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading Correct Factor
- Correct Factor = Preamplifier Factor Antenna Factor Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 54 of 68

Appendix I): Radiated Spurious Emissions

Receiver	Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	nit

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(2)	30
1.705MHz-30MHz	30	-	(0)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 55 of 68

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz
Test mode: 802.11 b(11Mbps)Transmitting

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	161.1702	7.96	1.48	-31.98	49.09	26.55	43.50	16.95	Pass	Horizontal
2	199.7840	10.88	1.67	-31.94	51.54	32.15	43.50	11.35	Pass	Horizontal
3	290.2060	13.00	2.03	-31.87	45.79	28.95	46.00	17.05	Pass	Horizontal
4	399.2559	15.38	2.38	-31.76	42.16	28.16	46.00	17.84	Pass	Horizontal
5	597.3695	18.95	2.94	-31.97	40.18	30.10	46.00	15.90	Pass	Horizontal
6	839.1418	21.37	3.50	-31.90	35.14	28.11	46.00	17.89	Pass	Horizontal
7	161.3643	7.98	1.48	-31.98	48.71	26.19	43.50	17.31	Pass	Vertical
8	199.7840	10.88	1.67	-31.94	47.95	28.56	43.50	14.94	Pass	Vertical
9	290.4001	13.01	2.03	-31.88	46.05	29.21	46.00	16.79	Pass	Vertical
10	354.6269	14.40	2.25	-31.86	41.69	26.48	46.00	19.52	Pass	Vertical
11	597.9516	18.96	2.95	-31.98	41.76	31.69	46.00	14.31	Pass	Vertical
12	799.5579	20.90	3.39	-32.03	35.92	28.18	46.00	17.82	Pass	Vertical

Test mode: 802.11 g(6Mbps) Transmitting

			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>							
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	199.7840	10.88	1.67	-31.94	44.63	25.24	43.50	18.26	Pass	Horizontal
2	290.4001	13.01	2.03	-31.88	46.22	29.38	46.00	16.62	Pass	Horizontal
3	322.4165	13.69	2.13	-31.81	41.62	25.63	46.00	20.37	Pass	Horizontal
4	399.8380	15.40	2.38	-31.76	40.48	26.50	46.00	19.50	Pass	Horizontal
5	598.5337	18.97	2.95	-31.98	44.29	34.23	46.00	11.77	Pass	Horizontal
6	786.9454	20.76	3.36	-31.99	34.31	26.44	46.00	19.56	Pass	Horizontal
7	48.8218	13.20	0.79	-32.12	40.46	22.33	40.00	17.67	Pass	Vertical
8	199.0078	10.81	1.66	-31.94	44.68	25.21	43.50	18.29	Pass	Vertical
9	290.2060	13.00	2.03	-31.87	46.50	29.66	46.00	16.34	Pass	Vertical
10	399.4499	15.39	2.38	-31.77	39.71	25.71	46.00	20.29	Pass	Vertical
11	598.7277	18.97	2.95	-31.98	42.09	32.03	46.00	13.97	Pass	Vertical
12	798.1996	20.88	3.39	-32.02	35.01	27.26	46.00	18.74	Pass	Vertical

Page 56 of 68

Test mode: 802.11 n(HT20)(6.5Mbps)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	208.9038	11.13	1.71	-31.94	44.69	25.59	43.50	17.91	Pass	Horizontal
2	290.4001	13.01	2.03	-31.88	45.16	28.32	46.00	17.68	Pass	Horizontal
3	354.6269	14.40	2.25	-31.86	40.51	25.30	46.00	20.70	Pass	Horizontal
4	398.0916	15.36	2.37	-31.77	39.18	25.14	46.00	20.86	Pass	Horizontal
5	599.3099	18.99	2.96	-31.99	40.37	30.33	46.00	15.67	Pass	Horizontal
6	796.6473	20.86	3.38	-32.01	34.73	26.96	46.00	19.04	Pass	Horizontal
7	48.8218	13.20	0.79	-32.12	40.44	22.31	40.00	17.69	Pass	Vertical
8	199.2018	10.82	1.67	-31.94	51.15	31.70	43.50	11.80	Pass	Vertical
9	290.4001	13.01	2.03	-31.88	45.43	28.59	46.00	17.41	Pass	Vertical
10	355.0150	14.41	2.25	-31.85	40.07	24.88	46.00	21.12	Pass	Vertical
11	399.2559	15.38	2.38	-31.76	41.05	27.05	46.00	18.95	Pass	Vertical
12	599.8920	19.00	2.96	-31.99	41.76	31.73	46.00	14.27	Pass	Vertical
A D. To.	•	1,000			100		J. D. T.			100

Transmitter Emission above 1GHz

Mod	e:			802.11b(11Mbps) Tı	ansmitting	Channel: 2	412	200		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3215.4966	33.29	4.59	-36.74	46.88	48.02	74.00	25.98	Pass	Н	Peak
2	4824.0000	34.50	4.61	-36.11	59.38	62.38	74.00	11.62	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	43.38	46.38	54.00	7.62	Pass	Н	Average
4	5743.9244	35.39	4.95	-36.13	43.90	48.11	74.00	25.89	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	41.10	46.79	74.00	27.21	Pass	Н	Peak
6	8153.3903	36.46	6.42	-36.45	43.69	50.12	74.00	23.88	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	44.91	52.37	74.00	21.63	Pass	Н	Peak
8	9648.0000	37.66	6.72	-36.91	30.27	37.74	54.00	16.26	Pass	Н	Average
9	2645.1290	32.63	4.09	-36.65	48.09	48.16	74.00	25.84	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	57.99	60.99	74.00	13.01	Pass	V	Peak
11	4824.0000	34.50	4.61	-36.11	43.10	46.10	54.00	7.90	Pass	V	Average
12	5715.6466	35.35	4.99	-36.12	44.09	48.31	74.00	25.69	Pass	V	Peak
13	7236.0000	36.34	5.79	-36.44	40.77	46.46	74.00	27.54	Pass	V	Peak
14	8287.9538	36.52	6.13	-36.58	44.08	50.15	74.00	23.85	Pass	V	Peak
15	9648.0000	37.66	6.72	-36.92	45.06	52.52	74.00	21.48	Pass	V	Peak
16	9648.0000	37.66	6.72	-36.91	30.48	37.95	54.00	16.05	Pass	V	Average

_		10.7			100.70			98 I		0.3		
	Mode	e: 🔪			802.11b((11Mbps) Tı	ransmitting	Channel: 2	437	6		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1	3248.6499	33.30	4.46	-36.82	46.36	47.30	74.00	26.70	Pass	Н	Peak
V	2	4874.0000	34.50	4.78	-36.09	54.93	58.12	74.00	15.88	Pass	Н	Peak
	3	4874.0000	34.50	4.78	-36.09	41.84	45.03	54.00	8.97	Pass	Н	Average
	4	6575.6826	35.93	5.44	-36.19	42.10	47.28	74.00	26.72	Pass	Н	Peak
	5	7311.0000	36.41	5.85	-36.31	41.44	47.39	74.00	26.61	Pass	Н	Peak
	6	7694.1194	36.52	6.25	-36.39	43.03	49.41	74.00	24.59	Pass	Н	Peak
	7	9748.0000	37.70	6.77	-36.79	43.01	50.69	74.00	23.31	Pass	Н	Peak
	8	1593.3187	29.02	3.06	-36.99	49.97	45.06	74.00	28.94	Pass	V	Peak
	9	3575.3075	33.46	4.39	-36.51	45.11	46.45	74.00	27.55	Pass	V	Peak
1	10	4874.0000	34.50	4.78	-36.09	58.69	61.88	74.00	12.12	Pass	V	Peak
(11	4874.0000	34.50	4.78	-36.09	42.56	45.75	54.00	8.25	Pass	V	Average
1	12	6436.2436	35.89	5.46	-36.28	42.23	47.30	74.00	26.70	Pass	V	Peak
	13	7311.0000	36.41	5.85	-36.31	39.31	45.26	74.00	28.74	Pass	V	Peak
	14	9748.0000	37.70	6.77	-36.79	43.19	50.87	74.00	23.13	Pass	V	Peak

Page 58 of 68

Mod	e:			802.11b((11Mbps) Ti	ransmitting	Channel: 2	462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3192.0942	33.28	4.64	-36.74	46.17	47.35	74.00	26.65	Pass	Н	Peak
2	4614.7615	34.50	4.99	-36.31	43.50	46.68	74.00	27.32	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	53.03	56.21	74.00	17.79	Pass	Н	Peak
4	4924.0000	34.50	4.85	-36.17	39.52	42.70	54.00	11.30	Pass	Н	Average
5	6333.8584	35.87	5.46	-36.17	44.27	49.43	74.00	24.57	Pass	Н	Peak
6	7386.0000	36.49	5.85	-36.34	39.68	45.68	74.00	28.32	Pass	Н	Peak
7	9848.0000	37.74	6.83	-36.93	42.41	50.05	74.00	23.95	Pass	Н	Peak
8	3186.2436	33.27	4.63	-36.76	48.13	49.27	74.00	24.73	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	56.30	59.48	74.00	14.52	Pass	V	Peak
10	4924.0000	34.50	4.85	-36.17	37.73	40.91	54.00	13.09	Pass	V	Average
11	5989.6490	35.78	5.34	-36.29	43.02	47.85	74.00	26.15	Pass	V	Peak
12	7386.0000	36.49	5.85	-36.34	40.46	46.46	74.00	27.54	Pass	V	Peak
13	8406.9157	36.56	6.34	-36.28	43.74	50.36	74.00	23.64	Pass	V	Peak
14	9848.0000	37.74	6.83	-36.93	42.54	50.18	74.00	23.82	Pass	V	Peak

Mod	e:			802.11 g	(6Mbps) Tr	ansmitting	Channel: 2	412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3216.4716	33.29	4.58	-36.73	47.29	48.43	74.00	25.57	Pass	Н	Peak
2	4824.0000	34.50	4.61	-36.11	59.82	62.82	74.00	11.18	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	45.27	48.27	54.00	5.73	Pass	Н	Average
4	6375.7876	35.88	5.38	-36.24	43.71	48.73	74.00	25.27	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	41.95	47.64	74.00	26.36	Pass	Н	Peak
6	8527.8278	36.66	6.40	-36.38	43.64	50.32	74.00	23.68	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	42.50	49.96	74.00	24.04	Pass	Н	Peak
8	3185.2685	33.27	4.63	-36.77	49.68	50.81	74.00	23.19	Pass	V	Peak
9	4824.0000	34.50	4.61	-36.11	52.52	55.52	74.00	18.48	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	34.78	37.78	54.00	16.22	Pass	V	Average
11	5893.1143	35.63	5.06	-36.21	43.43	47.91	74.00	26.09	Pass	V	Peak
12	7236.0000	36.34	5.79	-36.44	40.80	46.49	74.00	27.51	Pass	V	Peak
13	7681.4431	36.53	6.22	-36.46	43.80	50.09	74.00	23.91	Pass	V	Peak
14	9648.0000	37.66	6.72	-36.92	42.32	49.78	74.00	24.22	Pass	V	Peak

Page 59 of 68

Γ	Mode	e:			802.11 g	(6Mbps) Tr	ansmitting	Channel: 2	437			
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
	1	3195.0195	33.28	4.64	-36.72	45.36	46.56	74.00	27.44	Pass	Н	Peak
	2	4874.0000	34.50	4.78	-36.09	57.41	60.60	74.00	13.40	Pass	Н	Peak
1	3	4874.0000	34.50	4.78	-36.09	42.91	46.10	54.00	7.90	Pass	Н	Average
V	4	6324.1074	35.86	5.46	-36.18	43.41	48.55	74.00	25.45	Pass	Н	Peak
	5	7311.0000	36.41	5.85	-36.31	40.35	46.30	74.00	27.70	Pass	Н	Peak
	6	8389.3639	36.56	6.30	-36.36	44.13	50.63	74.00	23.37	Pass	Н	Peak
	7	9748.0000	37.70	6.77	-36.79	42.14	49.82	74.00	24.18	Pass	Н	Peak
	8	3188.1938	33.28	4.63	-36.76	49.01	50.16	74.00	23.84	Pass	V	Peak
	9	4874.0000	34.50	4.78	-36.09	54.65	57.84	74.00	16.16	Pass	V	Peak
	10	4874.0000	34.50	4.78	-36.09	32.37	35.56	54.00	18.44	Pass	V	Average
	11	5650.3150	35.24	4.97	-36.02	43.73	47.92	74.00	26.08	Pass	V	Peak
	12	7311.0000	36.41	5.85	-36.31	41.14	47.09	74.00	26.91	Pass	V	Peak
	13	8442.0192	36.58	6.39	-36.40	43.65	50.22	74.00	23.78	Pass	V	Peak
N	14	9748.0000	37.70	6.77	-36.79	42.57	50.25	74.00	23.75	Pass	V	Peak

Mod	e:			802.11 g	(6Mbps) Tr	ansmitting	Channel: 2	462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3282.7783	33.31	4.54	-36.80	46.97	48.02	74.00	25.98	Pass	Н	Peak
2	4924.0000	34.50	4.85	-36.17	59.30	62.48	74.00	11.52	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	44.38	47.56	54.00	6.44	Pass	Н	Average
4	5769.2769	35.43	4.96	-36.09	43.40	47.70	74.00	26.30	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	40.54	46.54	74.00	27.46	Pass	Н	Peak
6	7709.7210	36.52	6.26	-36.40	43.11	49.49	74.00	24.51	Pass	Н	Peak
7	9848.0000	37.74	6.83	-36.93	40.95	48.59	74.00	25.41	Pass	Н	Peak
8	3322.7573	33.33	4.55	-36.75	46.90	48.03	74.00	25.97	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	51.16	54.34	74.00	19.66	Pass	V	Peak
10	4924.0000	34.50	4.85	-36.17	37.42	40.60	54.00	13.40	Pass	V	Average
11	5977.9478	35.76	5.33	-36.24	43.60	48.45	74.00	25.55	Pass	V	Peak
12	7386.0000	36.49	5.85	-36.34	39.94	45.94	74.00	28.06	Pass	V	Peak
13	8415.6916	36.57	6.35	-36.31	44.06	50.67	74.00	23.33	Pass	V	Peak
14	9848.0000	37.74	6.83	-36.93	43.30	50.94	74.00	23.06	Pass	V	Peak

Page 60 of 68

Mod	e:			802.11 n	(HT20)(6.5	Mbps) Trans	mitting		Channe	l: 2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3216.4716	33.29	4.58	-36.73	46.98	48.12	74.00	25.88	Pass	Н	Peak
2	4824.0000	34.50	4.61	-36.11	56.76	59.76	74.00	14.24	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	39.79	42.79	54.00	11.21	Pass	Н	Average
4	6170.0420	35.83	5.24	-36.24	43.10	47.93	74.00	26.07	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	41.08	46.77	74.00	27.23	Pass	Н	Peak
6	9064.1314	37.69	6.47	-36.53	43.23	50.86	74.00	23.14	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	42.61	50.07	74.00	23.93	Pass	Н	Peak
8	1993.3987	31.66	3.46	-36.75	51.01	49.38	74.00	24.62	Pass	Н	Peak
9	3195.9946	33.28	4.64	-36.71	46.35	47.56	74.00	26.44	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	51.33	54.33	74.00	19.67	Pass	V	Peak
11	4824.0000	34.50	4.61	-36.11	38.88	41.88	54.00	12.12	Pass	V	Average
12	6385.5386	35.88	5.35	-36.28	43.15	48.10	74.00	25.90	Pass	V	Peak
14	7236.0000	36.34	5.79	-36.44	40.70	46.39	74.00	27.61	Pass	V	Peak
15	9648.0000	37.66	6.72	-36.92	42.14	49.60	74.00	24.40	Pass	V	Peak

Mod	e:			802.11 n	(HT20)(6.5	Mbps) Trans	smitting		Channe	l: 2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3249.6250	33.30	4.45	-36.82	46.82	47.75	74.00	26.25	Pass	Н	Peak
2	4874.0000	34.50	4.78	-36.09	56.29	59.48	74.00	14.52	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	43.58	46.77	54.00	7.23	Pass	Н	Average
4	6367.9868	35.87	5.41	-36.21	44.06	49.13	74.00	24.87	Pass	Н	Peak
5	7311.0000	36.41	5.85	-36.31	41.11	47.06	74.00	26.94	Pass	Н	Peak
6	8420.5671	36.57	6.36	-36.33	43.97	50.57	74.00	23.43	Pass	Н	Peak
7	9748.0000	37.70	6.77	-36.79	41.95	49.63	74.00	24.37	Pass	Н	Peak
8	3197.9448	33.28	4.65	-36.71	46.46	47.68	74.00	26.32	Pass	V	Peak
9	4874.0000	34.50	4.78	-36.09	53.80	56.99	74.00	17.01	Pass	V	Peak
10	4874.0000	34.50	4.78	-36.09	39.78	42.97	54.00	11.03	Pass	V	Average
11	6393.3393	35.88	5.33	-36.31	43.85	48.75	74.00	25.25	Pass	V	Peak
12	7311.0000	36.41	5.85	-36.31	40.74	46.69	74.00	27.31	Pass	V	Peak
13	8418.6169	36.57	6.36	-36.33	43.65	50.25	74.00	23.75	Pass	V	Peak
14	9748.0000	37.70	6.77	-36.79	42.84	50.52	74.00	23.48	Pass	V	Peak

Page 61 of 68

	Mode	e:			802.11 n	(HT20)(6.5	Mbps) Trans	smitting		Channe	l: 2462	
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
	1	3282.7783	33.31	4.54	-36.80	46.80	47.85	74.00	26.15	Pass	Н	Peak
	2	4924.0000	34.50	4.85	-36.17	58.00	61.18	74.00	12.82	Pass	Н	Peak
1	3	4924.0000	34.50	4.85	-36.17	44.53	47.71	54.00	6.29	Pass	Н	Average
(4	7268.0018	36.37	5.81	-36.37	44.12	49.93	74.00	24.07	Pass	Н	Peak
	5	7386.0000	36.49	5.85	-36.34	40.65	46.65	74.00	27.35	Pass	Н	Peak
	6	8418.6169	36.57	6.36	-36.33	44.28	50.88	74.00	23.12	Pass	Н	Peak
	7	9848.0000	37.74	6.83	-36.93	41.53	49.17	74.00	24.83	Pass	Н	Peak
	8	2669.9340	32.67	4.10	-36.68	48.76	48.85	74.00	25.15	Pass	V	Peak
	9	4924.0000	34.50	4.85	-36.17	51.62	54.80	74.00	19.20	Pass	V	Peak
	10	4924.0000	34.50	4.85	-36.17	31.76	34.94	54.00	19.06	Pass	V	Average
	11	7026.1776	36.13	5.69	-36.17	43.42	49.07	74.00	24.93	Pass	V	Peak
	12	7386.0000	36.49	5.85	-36.34	40.51	46.51	74.00	27.49	Pass	V	Peak
	13	8520.0270	36.64	6.42	-36.39	44.08	50.75	74.00	23.25	Pass	V	Peak
1	14	9848.0000	37.74	6.83	-36.93	41.90	49.54	74.00	24.46	Pass	V	Peak

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: ESP-01E

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

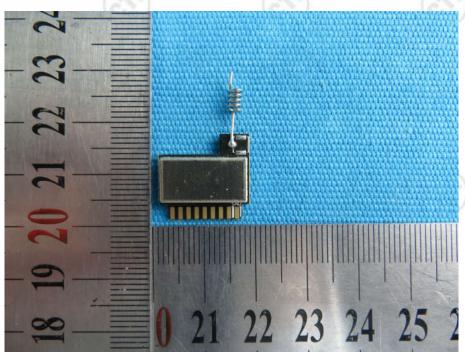
Page 62 of 68

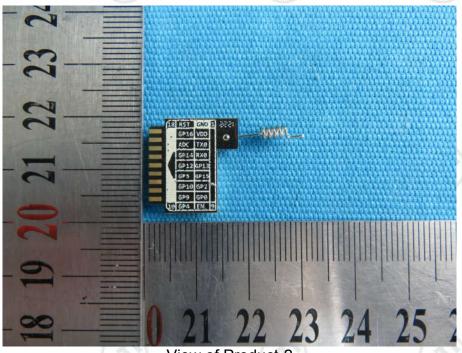
Page 63 of 68

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Close-up)

Page 64 of 68



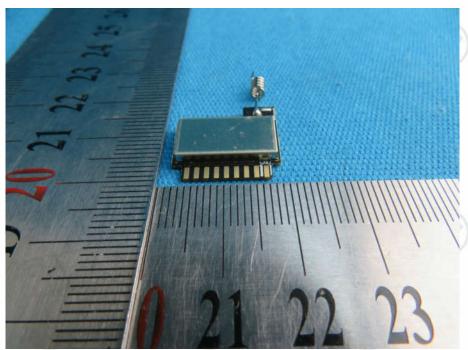

Page 65 of 68

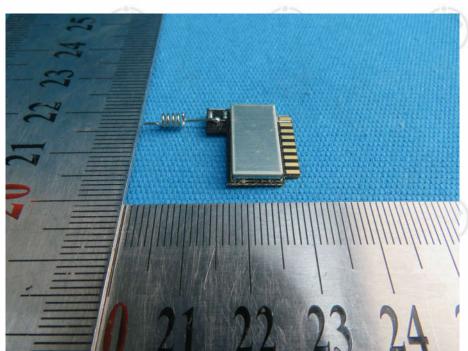
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: ESP-01E

View of Product-1

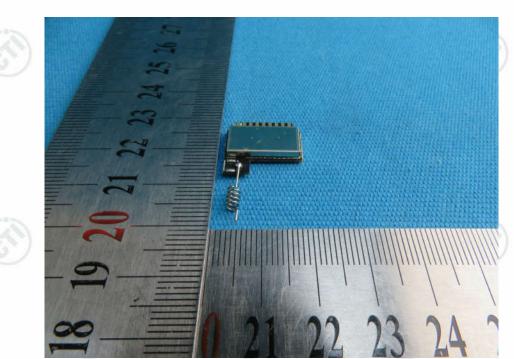
View of Product-2

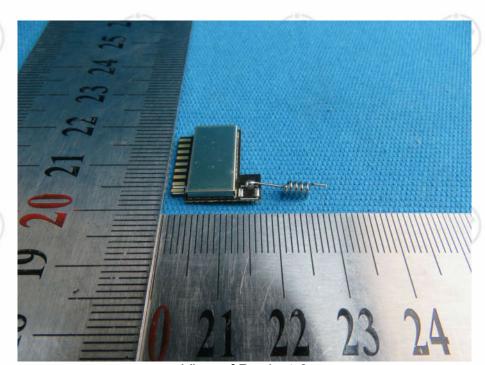



Page 66 of 68

View of Product-3

View of Product-4

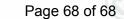


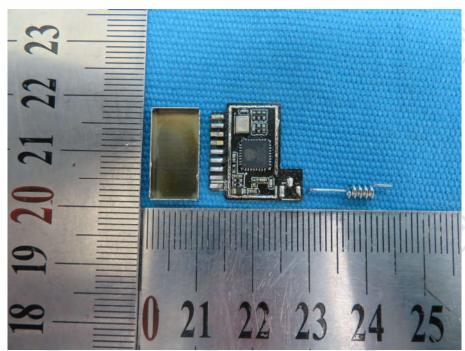


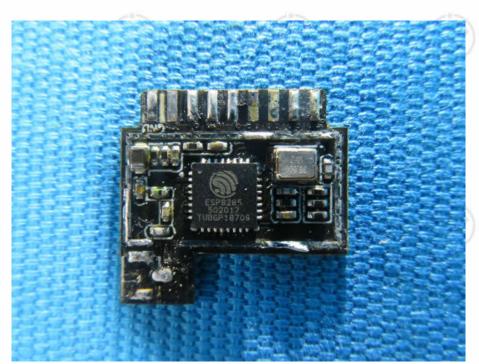
Page 67 of 68

View of Product-5

View of Product-6







View of Product-7

View of Product-8

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com