

# **TEST REPORT**

| Applicant:                              | Shenzhen YYW Tech. Co.,Ltd                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:<br>Manufacturer : | 1-2F,No.22 Chenhe Road, Liuyue,Henggang Town, Longgang<br>District, Shenzhen, Guangdong, China<br>Shenzhen YYW Tech. Co.,Ltd |
| Address of<br>Manufacturer :            | 1-2F,No.22 Chenhe Road, Liuyue,Henggang Town, Longgang<br>District, Shenzhen, Guangdong, China                               |
| Equipment Under Test (El                | JT)                                                                                                                          |
| Product Name:                           | Portable Speaker with Bluetooth Wireless Technology                                                                          |
| Model No.:                              | CMA3568                                                                                                                      |
| Trade Mark:                             | CRAIG , MAGNAVOX                                                                                                             |
| FCC ID:                                 | 2AHM7CMA3568                                                                                                                 |
| Applicable standards:                   | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                                                            |
| Date of sample receipt:                 | Mar.04,2021                                                                                                                  |
| Date of Test:                           | Mar.04,2021- Mar.08,2021                                                                                                     |
| Date of report issued:                  | Mar.08,2021                                                                                                                  |
| Test Result :                           | PASS *                                                                                                                       |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



**Robinson Luo** Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.



#### 2 Version

| Version No. | Date        | Description |
|-------------|-------------|-------------|
| 00          | Mar.08,2021 | Original    |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |

Joseph Qu

Date:

Mar.08,2021

Mar.08,2021

**Project Engineer** 

Check By:

Tested/ Prepared By

opplasor (und Date:

Reviewer



## 3 Contents

| 1 | COV        | /ER PAGE                               | .1 |
|---|------------|----------------------------------------|----|
| 2 | VER        | SION                                   | .2 |
| 3 |            | ITENTS                                 |    |
| 4 |            | T SUMMARY                              |    |
| 5 | _          |                                        |    |
| Э | GEN        |                                        | -  |
|   | 5.1        | GENERAL DESCRIPTION OF EUT             |    |
|   | 5.2        | TEST MODE                              |    |
|   | 5.3        | DESCRIPTION OF SUPPORT UNITS           |    |
|   | 5.4        | DEVIATION FROM STANDARDS               |    |
|   | 5.5<br>5.6 | ABNORMALITIES FROM STANDARD CONDITIONS |    |
|   | 5.0<br>5.7 | Test Location                          |    |
|   | 5.8        | Additional Instructions                |    |
| 6 | TES        | T INSTRUMENTS LIST                     | Q  |
|   | _          |                                        | -  |
| 7 | TES        | T RESULTS AND MEASUREMENT DATA1        | 0  |
|   | 7.1        | ANTENNA REQUIREMENT                    | 10 |
|   | 7.2        | CONDUCTED EMISSIONS                    |    |
|   | 7.3        | CONDUCTED PEAK OUTPUT POWER1           |    |
|   | 7.4        | 20DB EMISSION BANDWIDTH                |    |
|   | 7.5        | FREQUENCIES SEPARATION                 |    |
|   | 7.6        | HOPPING CHANNEL NUMBER                 |    |
|   | 7.7<br>7.8 | DWELL TIME                             |    |
|   | 7.8        | BAND EDGE                              |    |
|   | 7.9.1      |                                        |    |
|   | 7.9.2      |                                        |    |
|   | 7.10       | SPURIOUS EMISSION                      |    |
|   | 7.10       |                                        |    |
|   | 7.10       | .2 Radiated Emission Method            | 41 |
| 8 | TES        | T SETUP PHOTO4                         | 19 |
| 9 | EUT        | CONSTRUCTIONAL DETAILS                 | 19 |
| - |            |                                        |    |

## 4 Test Summary

| Test Item                                  | Section in CFR 47 | Result |
|--------------------------------------------|-------------------|--------|
| Antenna Requirement                        | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission           | 15.207            | Pass   |
| Conducted Peak Output Power                | 15.247 (b)(1)     | Pass   |
| 20dB Occupied Bandwidth                    | 15.247 (a)(1)     | Pass   |
| Carrier Frequencies Separation             | 15.247 (a)(1)     | Pass   |
| Hopping Channel Number                     | 15.247 (a)(1)     | Pass   |
| Dwell Time                                 | 15.247 (a)(1)     | Pass   |
| Pseudorandom Frequency Hopping<br>Sequence | 15.247(b)(4)      | Pass   |
| Radiated Emission                          | 15.205/15.209     | Pass   |
| Band Edge                                  | 15.247(d)         | Pass   |

#### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Test Item                           | Frequency Range                                                  | Measurement Uncertainty           | Notes |  |  |
|-------------------------------------|------------------------------------------------------------------|-----------------------------------|-------|--|--|
| Radiated Emission                   | 30MHz-200MHz 3.8039dB                                            |                                   | (1)   |  |  |
| Radiated Emission                   | 200MHz-1GHz         3.9679dB           1GHz-18GHz         4.29dB |                                   | (1)   |  |  |
| Radiated Emission                   |                                                                  |                                   | (1)   |  |  |
| Radiated Emission                   | ission 18GHz-40GHz 3.30dB                                        |                                   |       |  |  |
| AC Power Line Conducted<br>Emission | () 15MHz ~ 30MHz   3 44dB                                        |                                   |       |  |  |
| Note (1): The measurement unce      | ertainty is for coverage factor of k                             | =2 and a level of confidence of 9 | 5%.   |  |  |



## **5** General Information

#### 5.1 General Description of EUT

| Product Name:                                                             | Portable Speaker with Bluetooth Wireless Technology                                                                                                                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:                                                                | CMA3568                                                                                                                                                                                                              |
| Series model:                                                             | CMA3568-BK, CMA3568-BL, CMA3568-RD, CMA3568-WH,<br>CMA3568-PK, CMA3568-GR, CMA3568-YL, CMA3568-SL.<br>MMA3568, MMA3568-BK, MMA3568-BL, MMA3568-RD,<br>MMA3568-WH, MMA3568-PK, MMA3568-GR, MMA3568-YL,<br>MMA3568-SL. |
| Test sample(s) ID:                                                        | GTSL202103000052-1                                                                                                                                                                                                   |
| Operation Frequency:                                                      | 2402MHz~2480MHz                                                                                                                                                                                                      |
| Channel numbers:                                                          | 79                                                                                                                                                                                                                   |
| Channel separation:                                                       | 1MHz                                                                                                                                                                                                                 |
| Modulation type:                                                          | GFSK, π/4-DQPSK, 8-DPSK                                                                                                                                                                                              |
| Antenna Type:                                                             | PCB ANT                                                                                                                                                                                                              |
| Antenna gain:                                                             | 0.00dBi                                                                                                                                                                                                              |
| Power supply:                                                             | DC 3.7V/400mAh From Battery and DC 5V From External Circuit                                                                                                                                                          |
| Adapter Information<br>(auxiliary test equipment<br>supplied by test Lab) | Mode: CD122<br>Input: AC100-240V, 50/60Hz, 500mA<br>Output: DC 5V, 2A                                                                                                                                                |

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 1       | 2402MHz   | 21      | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |
| 2       | 2403MHz   | 22      | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |
| 3       | 2404MHz   | 23      | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |
| 4       | 2405MHz   | 24      | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |
| 5       | 2406MHz   | 25      | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |
| 6       | 2407MHz   | 26      | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |
| 7       | 2408MHz   | 27      | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |
| 8       | 2409MHz   | 28      | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |
| 9       | 2410MHz   | 29      | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |
| 10      | 2411MHz   | 30      | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |
| 11      | 2412MHz   | 31      | 2432MHz   | 51      | 2452MHz   | 71      | 2472MHz   |
| 12      | 2413MHz   | 32      | 2433MHz   | 52      | 2453MHz   | 72      | 2473MHz   |
| 13      | 2414MHz   | 33      | 2434MHz   | 53      | 2454MHz   | 73      | 2474MHz   |
| 14      | 2415MHz   | 34      | 2435MHz   | 54      | 2455MHz   | 74      | 2475MHz   |
| 15      | 2416MHz   | 35      | 2436MHz   | 55      | 2456MHz   | 75      | 2476MHz   |
| 16      | 2417MHz   | 36      | 2437MHz   | 56      | 2457MHz   | 76      | 2477MHz   |
| 17      | 2418MHz   | 37      | 2438MHz   | 57      | 2458MHz   | 77      | 2478MHz   |
| 18      | 2419MHz   | 38      | 2439MHz   | 58      | 2459MHz   | 78      | 2479MHz   |
| 19      | 2420MHz   | 39      | 2440MHz   | 59      | 2460MHz   | 79      | 2480MHz   |
| 20      | 2421MHz   | 40      | 2441MHz   | 60      | 2461MHz   |         |           |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

#### 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

#### 5.3 Description of Support Units

None.

#### 5.4 Deviation from Standards

None.

#### 5.5 Abnormalities from Standard Conditions

|     | None.                                                                                                                                                                                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.6 | Test Facility                                                                                                                                                                                                                                                                                     |
|     | The test facility is recognized, certified, or accredited by the following organizations:<br>• FCC —Registration No.: 381383                                                                                                                                                                      |
|     | Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.<br>• IC —Registration No.: 9079A |
|     | The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by<br>Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration<br>No.: 9079A                                                                         |
|     | • NVLAP (LAB CODE:600179-0)<br>Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory<br>Accreditation Program (NVLAP). LAB CODE:600179-0                                                                                                                |
| 5.7 | Test Location                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                   |

All tests were performed at:

Air tests were performed at.

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

#### 5.8 Additional Instructions

|                   | Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power level setup | Default                                                                                                             |



### 6 Test Instruments list

| Rad  | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| ltem | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 02 2020          | July. 01 2025              |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 25 2020          | June. 24 2021              |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 25 2020          | June. 24 2021              |  |  |
| 5    | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 25 2020          | June. 24 2021              |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 25 2020          | June. 24 2021              |  |  |
| 7    | EMI Test Software                      | FARAD                          | EZ-EMC                      | N/A              | N/A                    | N/A                        |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 25 2020          | June. 24 2021              |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 25 2020          | June. 24 2021              |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 25 2020          | June. 24 2021              |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 25 2020          | June. 24 2021              |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 25 2020          | June. 24 2021              |  |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 25 2020          | June. 24 2021              |  |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 25 2020          | June. 24 2021              |  |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 25 2020          | June. 24 2021              |  |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 25 2020          | June. 24 2021              |  |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 25 2020          | June. 24 2021              |  |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 25 2020          | June. 24 2021              |  |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 25 2020          | June. 24 2021              |  |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 25 2020          | June. 24 2021              |  |  |
| 21   | Breitband<br>hornantenne               | SCHWARZBECK                    | BBHA 9170                   | GTS579           | Oct. 18 2020           | Oct. 17 2021               |  |  |
| 22   | Amplifier                              | TDK                            | PA-02-02                    | GTS574           | Oct. 18 2020           | Oct. 17 2021               |  |  |
| 23   | Amplifier                              | TDK                            | PA-02-03                    | GTS576           | Oct. 18 2020           | Oct. 17 2021               |  |  |
| 24   | PSA Series Spectrum<br>Analyzer        | Rohde & Schwarz                | FSP                         | GTS578           | June. 25 2020          | June. 24 2021              |  |  |

| Con  | Conducted Emission |                  |                      |                  |                        |                            |  |  |  |
|------|--------------------|------------------|----------------------|------------------|------------------------|----------------------------|--|--|--|
| ltem | Test Equipment     | Manufacturer     | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | Shielding Room     | ZhongYu Electron | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.15 2019            | May.14 2022                |  |  |  |
| 2    | EMI Test Receiver  | R&S              | ESCI 7               | GTS552           | June. 25 2020          | June. 24 2021              |  |  |  |

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



| 3 | Coaxial Switch                | ANRITSU CORP                | MP59B     | GTS225 | June. 25 2020 | June. 24 2021 |
|---|-------------------------------|-----------------------------|-----------|--------|---------------|---------------|
| 4 | ENV216 2-L-V-<br>NETZNACHB.DE | ROHDE&SCHWARZ               | ENV216    | GTS226 | June. 25 2020 | June. 24 2021 |
| 5 | Coaxial Cable                 | GTS                         | N/A       | GTS227 | N/A           | N/A           |
| 6 | EMI Test Software             | FARAD                       | EZ-EMC    | N/A    | N/A           | N/A           |
| 7 | Thermo meter                  | КТЈ                         | TA328     | GTS233 | June. 25 2020 | June. 24 2021 |
| 8 | Absorbing clamp               | Elektronik-<br>Feinmechanik | MDS21     | GTS229 | June. 25 2020 | June. 24 2021 |
| 9 | ISN                           | SCHWARZBECK                 | NTFM 8158 | GTD565 | June. 25 2020 | June. 24 2021 |

| RF C | onducted Test:                                       |                                |                  |            |                        |                            |
|------|------------------------------------------------------|--------------------------------|------------------|------------|------------------------|----------------------------|
| ltem | Test Equipment                                       | Manufacturer                   | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1    | MXA Signal Analyzer                                  | Agilent                        | N9020A           | GTS566     | June. 25 2020          | June. 24 2021              |
| 2    | EMI Test Receiver                                    | R&S                            | ESCI 7           | GTS552     | June. 25 2020          | June. 24 2021              |
| 3    | Spectrum Analyzer                                    | Agilent                        | E4440A           | GTS533     | June. 25 2020          | June. 24 2021              |
| 4    | MXG vector Signal<br>Generator                       | Agilent                        | N5182A           | GTS567     | June. 25 2020          | June. 24 2021              |
| 5    | ESG Analog Signal<br>Generator                       | Agilent                        | E4428C           | GTS568     | June. 25 2020          | June. 24 2021              |
| 6    | USB RF Power Sensor                                  | DARE                           | RPR3006W         | GTS569     | June. 25 2020          | June. 24 2021              |
| 7    | RF Switch Box                                        | Shongyi                        | RFSW3003328      | GTS571     | June. 25 2020          | June. 24 2021              |
| 8    | Programmable Constant<br>Temp & Humi<br>Test Chamber | WEWON                          | WHTH-150L-40-880 | GTS572     | June. 25 2020          | June. 24 2021              |
| 9    | Power Sensor                                         | Agilent                        | E9300A           | GTS589     | June. 25 2020          | June. 24 2021              |
| 10   | Spectrum analyzer                                    | Agilent                        | N9020A           | GTS591     | June. 25 2020          | June. 24 2021              |
| 11   | EMI Test Software                                    | Shenzhen<br>Best<br>Technology | TST-PASS         | N/A        | N/A                    | N/A                        |

| Gene | General used equipment:            |              |           |               |                        |                            |  |  |  |  |
|------|------------------------------------|--------------|-----------|---------------|------------------------|----------------------------|--|--|--|--|
| ltem | Test Equipment                     | Manufacturer | Model No. | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |  |
| 1    | Humidity/ Temperature<br>Indicator | KTJ          | TA328     | GTS243        | June. 25 2020          | June. 24 2021              |  |  |  |  |
| 2    | Barometer                          | ChangChun    | DYM3      | GTS255        | June. 25 2020          | June. 24 2021              |  |  |  |  |

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

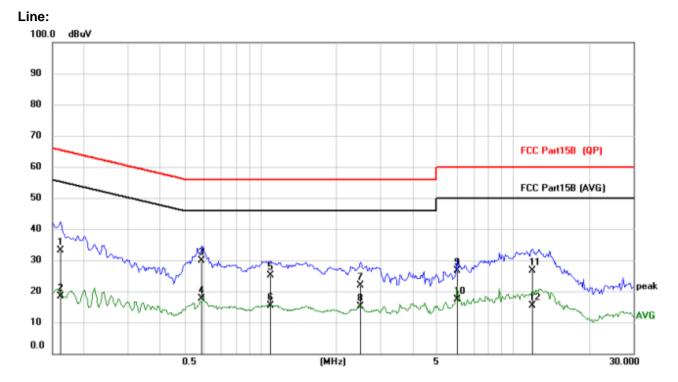


#### 7 Test results and Measurement Data

### 7.1 Antenna requirement

| Standard requirement:                                         | FCC Part15 C Section 15.203 /247(c)                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.203 requirement:                                           |                                                                                                                                                                                                                                                                                                                                  |
| responsible party shall be us<br>antenna that uses a unique o | te designed to ensure that no antenna other than that furnished by the<br>sed with the device. The use of a permanently attached antenna or of an<br>coupling to the intentional radiator, the manufacturer may design the unit so<br>e replaced by the user, but the use of a standard antenna jack or electrical<br><b>t</b> : |
| (i) Systems operating in the<br>operations may employ trans   | 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the                                                                                                      |
| E.U.T Antenna:                                                |                                                                                                                                                                                                                                                                                                                                  |
| The antenna is PCB ANT, t                                     | he best case gain of the is 0.00dBi, reference to the appendix II for details                                                                                                                                                                                                                                                    |




| Test Requirement:     | FCC Part15                                                                                                                                                                                                                                                                                                       | C Section 15.2                                                                                                                                                                                     | 207                                                                                                                |                                                                                                                                    |                                                                                                                                |                                                                                |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Test Method:          | ANSI C63.1                                                                                                                                                                                                                                                                                                       | 0:2013                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Test Frequency Range: | 150KHz to 3                                                                                                                                                                                                                                                                                                      | 80MHz                                                                                                                                                                                              |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Receiver setup:       | RBW=9KHz                                                                                                                                                                                                                                                                                                         | , VBW=30KHz                                                                                                                                                                                        | z, Sweep tir                                                                                                       | ne=auto                                                                                                                            |                                                                                                                                |                                                                                |  |
| <br>Limit:            |                                                                                                                                                                                                                                                                                                                  | <i>(</i> <b></b> )                                                                                                                                                                                 |                                                                                                                    | Limit                                                                                                                              | (dBuV)                                                                                                                         |                                                                                |  |
|                       | Frequence                                                                                                                                                                                                                                                                                                        | cy range (MHz)                                                                                                                                                                                     | ) Qi                                                                                                               | lasi-peak                                                                                                                          | Ave                                                                                                                            | rage                                                                           |  |
|                       | 0                                                                                                                                                                                                                                                                                                                | .15-0.5                                                                                                                                                                                            | (                                                                                                                  | 66 to 56*                                                                                                                          | 56 to                                                                                                                          | o 46*                                                                          |  |
|                       |                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                  | 6                                                                                                                  |                                                                                                                                    |                                                                                                                                |                                                                                |  |
|                       |                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                  | 0                                                                                                                  |                                                                                                                                    |                                                                                                                                |                                                                                |  |
|                       | * Decreases                                                                                                                                                                                                                                                                                                      | with the logar                                                                                                                                                                                     | ithm of the                                                                                                        | frequency.                                                                                                                         |                                                                                                                                |                                                                                |  |
| Test setup:           |                                                                                                                                                                                                                                                                                                                  | Reference P                                                                                                                                                                                        | lane                                                                                                               |                                                                                                                                    |                                                                                                                                |                                                                                |  |
|                       | LISN       40cm       80cm       Filter       AC power         Full       E.U.T       Filter       AC power         Equipment       E.U.T       EMI       Eceiver         Remark:       E.U.T. Equipment Under Test       ENSITY       ENSITY         LISN       Lisn       Network       Test table height=0.8m |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Test procedure:       | line impe<br>50ohm/50<br>2. The perip<br>LISN that<br>terminatio<br>photogra<br>3. Both side<br>interferen<br>positions                                                                                                                                                                                          | T and simulato<br>dance stabiliza<br>OuH coupling in<br>pheral devices a<br>provides a 50<br>on. (Please refe<br>phs).<br>s of A.C. line a<br>nce. In order to<br>of equipment a<br>g to ANSI C63. | ation netwo<br>mpedance<br>are also co<br>ohm/50uH<br>er to the blo<br>are checked<br>find the ma<br>and all of th | rk (L.I.S.N.).<br>for the measu<br>nnected to th<br>coupling imp<br>ock diagram<br>d for maximus<br>aximum emis<br>ne interface ca | This provides<br>uring equipm<br>e main powe<br>edance with<br>of the test se<br>m conducted<br>sion, the rela<br>ables must b | a a<br>ent.<br>r through a<br>50ohm<br>tup and<br>tup and<br>tive<br>e changed |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
| Test environment:     | Temp.:                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | Humid.:                                                                                                            | 52%                                                                                                                                | Press.:                                                                                                                        | 1012mbar                                                                       |  |
| Test voltage:         | AC 120V, 60                                                                                                                                                                                                                                                                                                      | )Hz                                                                                                                                                                                                |                                                                                                                    | 1                                                                                                                                  | 1                                                                                                                              | I                                                                              |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |
|                       | 1                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                    |                                                                                                                                |                                                                                |  |

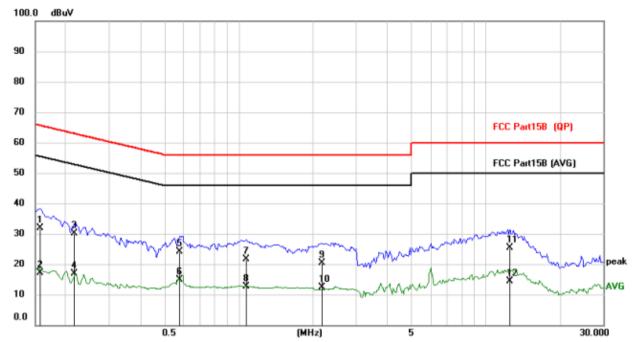
#### 7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

# GTS

#### Report No.: GTSL202103000052F01




#### Measurement data:

| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1       | 0.1617  | 22.27            | 10.92             | 33.19            | 65.38 | -32.19 | QP       |         |
| 2       | 0.1617  | 7.46             | 10.92             | 18.38            | 55.38 | -37.00 | AVG      |         |
| 3 *     | 0.5868  | 19.06            | 10.92             | 29.98            | 56.00 | -26.02 | QP       |         |
| 4       | 0.5868  | 6.81             | 10.92             | 17.73            | 46.00 | -28.27 | AVG      |         |
| 5       | 1.0976  | 14.15            | 10.92             | 25.07            | 56.00 | -30.93 | QP       |         |
| 6       | 1.0976  | 4.46             | 10.92             | 15.38            | 46.00 | -30.62 | AVG      |         |
| 7       | 2.4900  | 11.02            | 10.98             | 22.00            | 56.00 | -34.00 | QP       |         |
| 8       | 2.4900  | 4.23             | 10.98             | 15.21            | 46.00 | -30.79 | AVG      |         |
| 9       | 6.0030  | 15.36            | 11.15             | 26.51            | 60.00 | -33.49 | QP       |         |
| 10      | 6.0030  | 6.12             | 11.15             | 17.27            | 50.00 | -32.73 | AVG      |         |
| 11      | 11.9465 | 15.35            | 11.40             | 26.75            | 60.00 | -33.25 | QP       |         |
| 12      | 11.9465 | 3.96             | 11.40             | 15.36            | 50.00 | -34.64 | AVG      |         |
|         |         |                  |                   |                  |       |        |          |         |



Report No.: GTSL202103000052F01

#### Neutral:



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1       | 0.1578  | 21.06            | 10.93             | 31.99            | 65.58 | -33.59 | QP       |         |
| 2       | 0.1578  | 6.20             | 10.93             | 17.13            | 55.58 | -38.45 | AVG      |         |
| 3       | 0.2163  | 19.23            | 10.92             | 30.15            | 62.96 | -32.81 | QP       |         |
| 4       | 0.2163  | 6.06             | 10.92             | 16.98            | 52.96 | -35.98 | AVG      |         |
| 5       | 0.5790  | 13.20            | 10.92             | 24.12            | 56.00 | -31.88 | QP       |         |
| 6 *     | 0.5790  | 4.02             | 10.92             | 14.94            | 46.00 | -31.06 | AVG      |         |
| 7       | 1.0743  | 10.77            | 10.92             | 21.69            | 56.00 | -34.31 | QP       |         |
| 8       | 1.0743  | 1.83             | 10.92             | 12.75            | 46.00 | -33.25 | AVG      |         |
| 9       | 2.1702  | 9.40             | 10.98             | 20.38            | 56.00 | -35.62 | QP       |         |
| 10      | 2.1702  | 1.32             | 10.98             | 12.30            | 46.00 | -33.70 | AVG      |         |
| 11      | 12.5628 | 14.07            | 11.41             | 25.48            | 60.00 | -34.52 | QP       |         |
| 12      | 12.5628 | 3.03             | 11.41             | 14.44            | 50.00 | -35.56 | AVG      |         |
|         |         |                  |                   |                  |       |        |          |         |

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Los

| Test Requirement: | FCC Part15                                                                          | FCC Part15 C Section 15.247 (b)(3) |             |     |         |          |  |  |
|-------------------|-------------------------------------------------------------------------------------|------------------------------------|-------------|-----|---------|----------|--|--|
| Test Method:      | ANSI C63.1                                                                          | ANSI C63.10:2013                   |             |     |         |          |  |  |
| Limit:            | 30dBm(for                                                                           | GFSK),20.97                        | dBm(for EDF | २)  |         |          |  |  |
| Test setup:       | Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane |                                    |             |     |         |          |  |  |
| Test Instruments: | Refer to see                                                                        | ction 6.0 for d                    | letails     |     |         |          |  |  |
| Test mode:        | Refer to section 5.2 for details                                                    |                                    |             |     |         |          |  |  |
| Test results:     | Pass                                                                                |                                    |             |     |         |          |  |  |
| Test environment: | Temp.:                                                                              | 25 °C                              | Humid.:     | 52% | Press.: | 1012mbar |  |  |

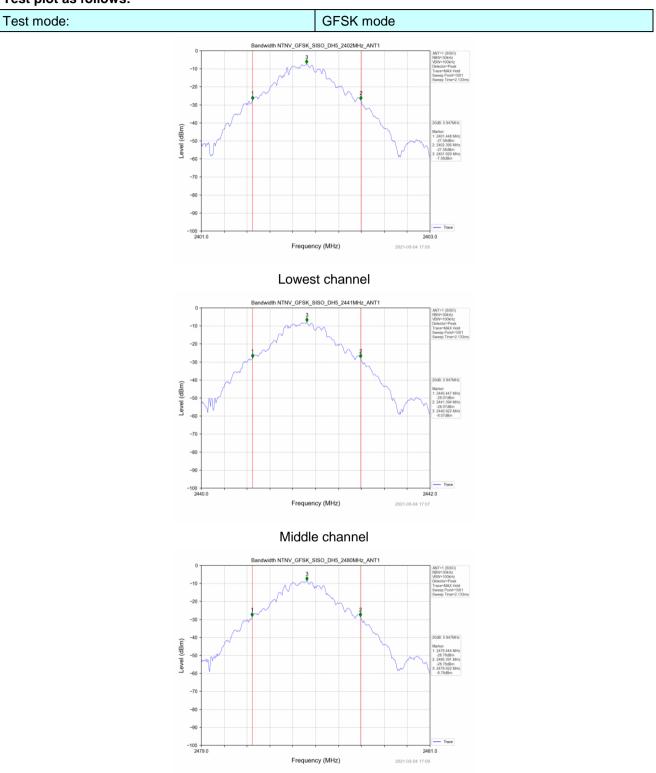
#### 7.3 Conducted Peak Output Power

#### **Measurement Data**

| Mode      | Test channel | Test channel Peak Output Power (dBm) |       | Result |
|-----------|--------------|--------------------------------------|-------|--------|
|           | Lowest       | -5.06                                |       |        |
| GFSK      | Middle       | -5.55                                | 30.00 | Pass   |
|           | Highest      | -6.19                                |       |        |
|           | Lowest       | -2.71                                |       |        |
| π/4-DQPSK | Middle       | -3.16                                | 20.97 | Pass   |
|           | Highest      | -3.85                                |       |        |
|           | Lowest       | -2.18                                |       |        |
| 8-DPSK    | Middle       | -2.56                                | 20.97 | Pass   |
|           | Highest      | -3.26                                |       |        |

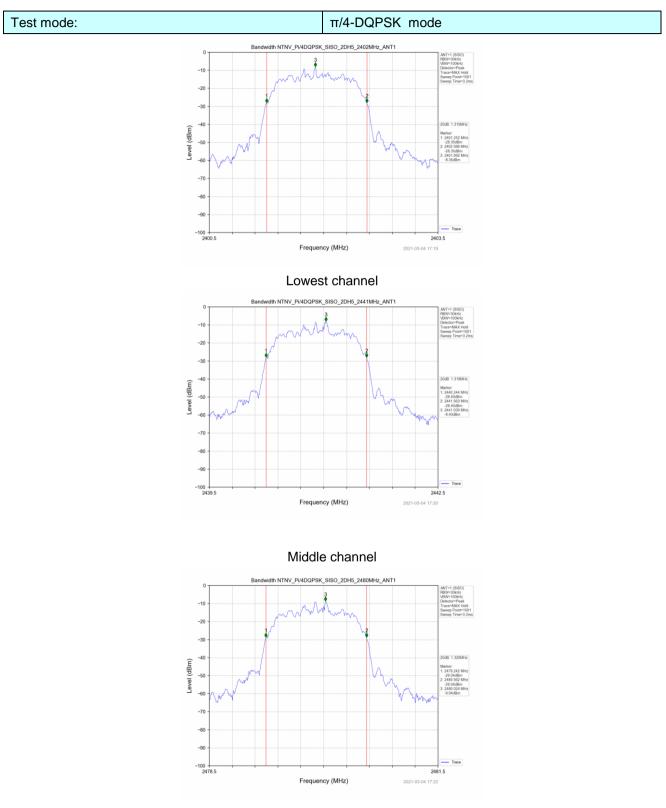


#### **Test Requirement:** FCC Part15 C Section 15.247 (a)(2) Test Method: ANSI C63.10:2013 Limit: N/A Test setup: Spectrum Analyzer E.U.T • **Non-Conducted Table Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mbar


#### 7.4 20dB Emission Bandwidth

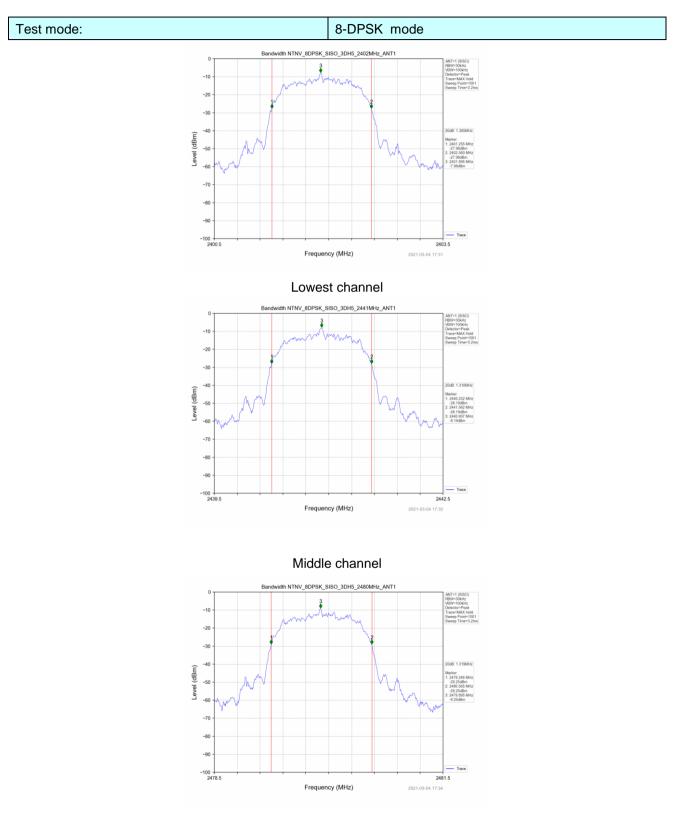
#### **Measurement Data**

| Mode      | Test channel | 20dB Emission Bandwidth<br>(MHz) | Result |
|-----------|--------------|----------------------------------|--------|
|           | Lowest       | 0.947                            |        |
| GFSK      | Middle       | 0.947                            | Pass   |
|           | Highest      | 0.947                            |        |
|           | Lowest       | 1.315                            |        |
| π/4-DQPSK | Middle       | 1.319                            | Pass   |
|           | Highest      | 1.320                            |        |
|           | Lowest       | 1.305                            |        |
| 8-DPSK    | Middle       | 1.310                            | Pass   |
|           | Highest      | 1.319                            |        |




#### Test plot as follows:




Highest channel





Highest channel

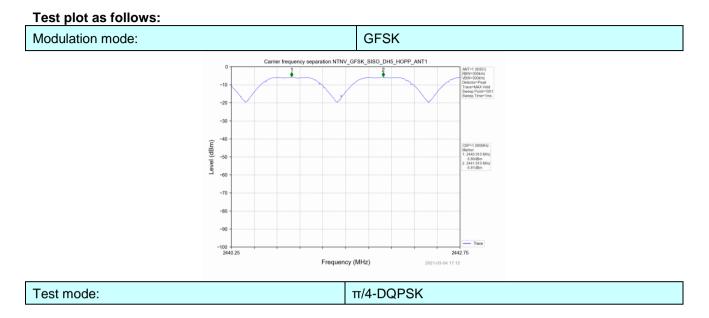


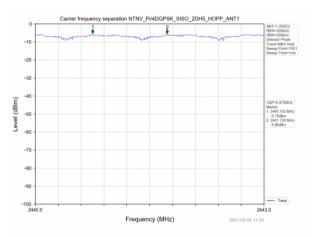


Highest channel



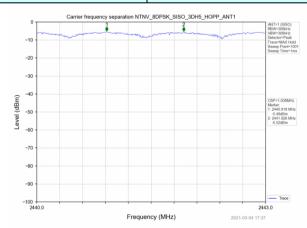
| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                       |                 |         |     |         |          |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------|-----------------|---------|-----|---------|----------|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                                                         |                 |         |     |         |          |  |  |  |
| Receiver setup:   | RBW=100KHz, VBW=300KHz, detector=Peak                                                                    |                 |         |     |         |          |  |  |  |
| Limit:            | GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) |                 |         |     |         |          |  |  |  |
| Test setup:       | Sp                                                                                                       |                 |         |     |         |          |  |  |  |
| Test Instruments: | Refer to se                                                                                              | ction 6.0 for o | details |     |         |          |  |  |  |
| Test mode:        | Refer to se                                                                                              | ction 5.2 for o | details |     |         |          |  |  |  |
| Test results:     | Pass                                                                                                     |                 |         |     |         |          |  |  |  |
| Test environment: | Temp.:                                                                                                   | 25 °C           | Humid.: | 52% | Press.: | 1012mbar |  |  |  |


#### 7.5 Frequencies Separation


#### Measurement Data

| Mode      | Test channel | Frequencies Separation (MHz) | Limit (kHz) | Result |
|-----------|--------------|------------------------------|-------------|--------|
|           |              |                              | 25KHz or    |        |
| GFSK      | Middle       | 1.000                        | 2/3*20dB    | Pass   |
|           |              |                              | bandwidth   |        |
|           |              |                              | 25KHz or    |        |
| π/4-DQPSK | Middle       | 0.975                        | 2/3*20dB    | Pass   |
|           |              |                              | bandwidth   |        |
|           |              |                              | 25KHz or    |        |
| 8-DPSK    | Middle       | 1.008                        | 2/3*20dB    | Pass   |
|           |              |                              | bandwidth   |        |

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle







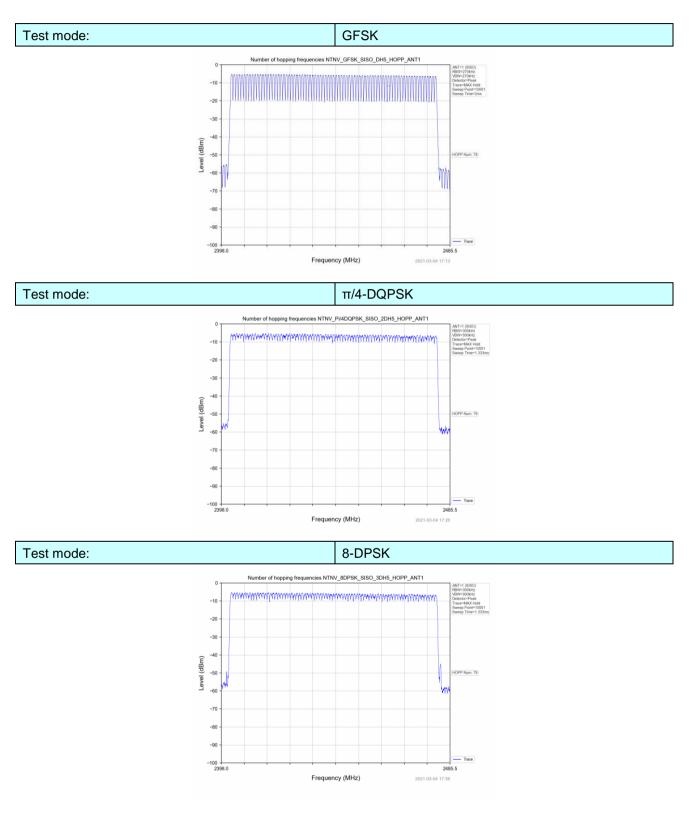

#### Test mode:

8-DPSK





| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                |                 |        |       |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------|-----------------|--------|-------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                                  |                 |        |       |  |  |  |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak          |                 |        |       |  |  |  |  |
| Limit:            | 15 channels                                                                       | 3               |        |       |  |  |  |  |
| Test setup:       | Spec                                                                              |                 |        | 2.U.T |  |  |  |  |
| Test Instruments: | Refer to see                                                                      | ction 6.0 for d | etails |       |  |  |  |  |
| Test mode:        | Refer to see                                                                      | ction 5.2 for d | etails |       |  |  |  |  |
| Test results:     | Pass                                                                              |                 |        |       |  |  |  |  |
| Test environment: | Temp.:         25 °C         Humid.:         52%         Press.:         1012mbar |                 |        |       |  |  |  |  |


#### 7.6 Hopping Channel Number

#### Measurement Data:

| Mode      | Hopping channel numbers | Limit | Result |
|-----------|-------------------------|-------|--------|
| GFSK      | 79                      | ≥15   | Pass   |
| π/4-DQPSK | 79                      |       | Pass   |
| 8-DPSK    | 79                      |       | Pass   |



#### Test plot as follows:





#### 7.7 Dwell Time

| Test Requirement: | FCC Part15                       | FCC Part15 C Section 15.247 (a)(1) |              |               |         |          |  |  |
|-------------------|----------------------------------|------------------------------------|--------------|---------------|---------|----------|--|--|
| Test Method:      | ANSI C63.1                       | ANSI C63.10:2013                   |              |               |         |          |  |  |
| Receiver setup:   | RBW=1MH                          | z, VBW=1M⊦                         | lz, Span=0Hz | z, Detector=P | eak     |          |  |  |
| Limit:            | 0.4 Second                       |                                    |              |               |         |          |  |  |
| Test setup:       | Sp                               |                                    |              |               |         |          |  |  |
| Test Instruments: | Refer to see                     | ction 6.0 for d                    | etails       |               |         |          |  |  |
| Test mode:        | Refer to section 5.2 for details |                                    |              |               |         |          |  |  |
| Test results:     | Pass                             |                                    |              |               |         |          |  |  |
| Test environment: | Temp.:                           | 25 °C                              | Humid.:      | 52%           | Press.: | 1012mbar |  |  |

#### **Measurement Data**

**GFSK mode:** 

| Frequency | Packet | Pulse time<br>(ms) | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|--------------------|----------------|-----------|--------|
| 2441MHz   | DH1    | 0.395              | 126.400        | 400       | Pass   |
| 2441MHz   | DH3    | 1.644              | 263.040        | 400       | Pass   |
| 2441MHz   | DH5    | 2.898              | 315.882        | 400       | Pass   |

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600  $\div$  6  $\div$  79) x31.6 Second for DH5, 2-DH5

#### $\pi/4$ -DQPSK mode:

| Frequency | Packet | Pulse time<br>(ms) | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|--------------------|----------------|-----------|--------|
| 2441MHz   | 2DH1   | 0.401              | 128.320        | 400       | Pass   |
| 2441MHz   | 2DH3   | 1.654              | 267.948        | 400       | Pass   |
| 2441MHz   | 2DH5   | 2.908              | 308.248        | 400       | Pass   |

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3

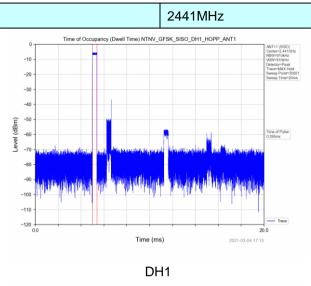
Dwell time=Pulse time (ms) ×  $(1600 \div 6 \div 79)$  ×31.6 Second for DH5, 2-DH5

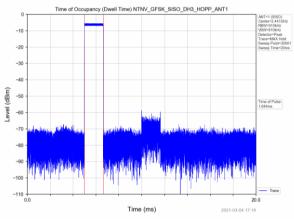
#### 8-DPSK mode:

| Frequency | Packet | Pulse time<br>(ms) | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|--------------------|----------------|-----------|--------|
| 2441MHz   | 3DH1   | 0.409              | 130.471        | 400       | Pass   |
| 2441MHz   | 3DH3   | 1.659              | 252.168        | 400       | Pass   |
| 2441MHz   | 3DH5   | 2.912              | 314.496        | 400       | Pass   |

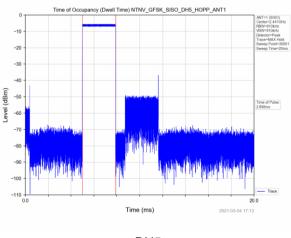
Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) × (1600  $\div$  6  $\div$  79) ×31.6 Second for DH5, 2-DH5, 3-DH5



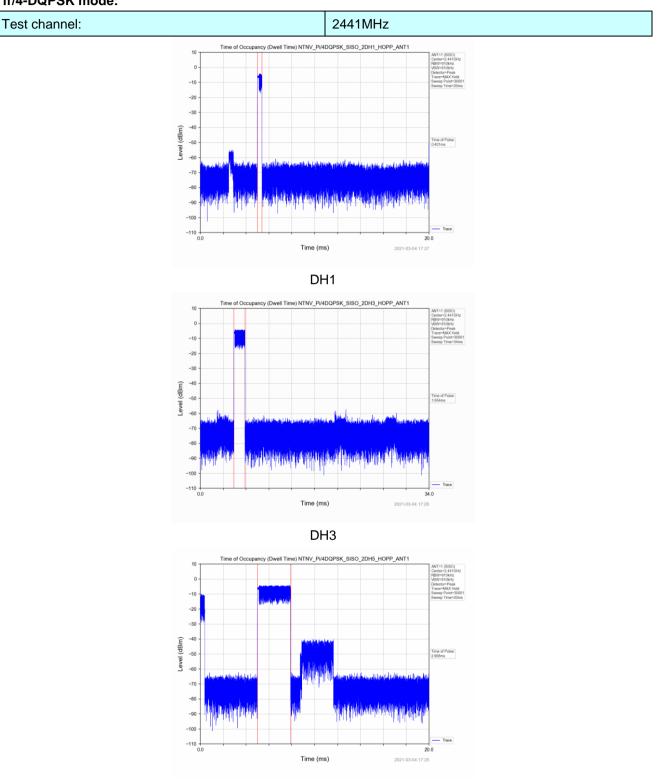

#### Test plot as follows: GFSK mode:

Test channel:





DH3




DH5

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### $\pi$ /4-DQPSK mode:



DH5



#### 8-DPSK mode: Test channel: 2441MHz upancy (Dwell Time) NTNV\_8DPSK\_SISO\_3DH1\_HOPP\_ANT1 ne of Oc c -10 -20 -30 -4( Level (dBm) Time of Pulse 0.409ms -50 -60 -70 -80 T -90 -10 -110 20.0 Time (ms) 2021-03-04 17:40 DH1 e) NTNV 8DPSK SISO 3DH3 HOPP ANT1 -10 -20 -30 -40 Level (dBm) Time of Pulse: 1.659ms -50 -60 -70 -80 -110 34.0 Time (ms) 2021-03-04 17:41 DH3 ell Time) NTNV\_8DPSK\_SISO\_3DH5\_HOPP\_ANT1 Time of O 10 -10 -20 -30 -40 Level (dBm) -50 ime of Pulse 912ms -60 -70 -80 -90 -100 -110 40.0

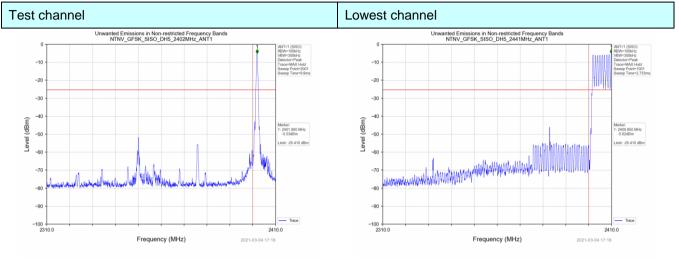
Time (ms)

2021-03-04 17:38



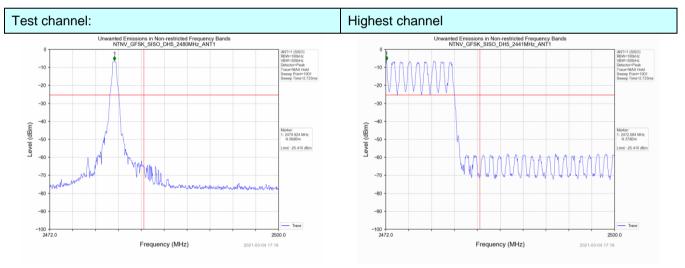
#### 7.8 Pseudorandom Frequency Hopping Sequence

| Test Requirement:                                                                                                                                                                                                                                                                                                  | FCC Part15 C Section 15.247 (a)(1)/g/h requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kHz or the 20 dB bandwidth                                                                                                                                                                                                                                                                                         | stems shall have hopping channel carrier frequencies separated by a minimum of 2<br>of the hopping channel, whichever is greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| carrier frequencies that are<br>whichever is greater, provid<br>shall hop to channel frequen<br>hopping frequencies. Each<br>receivers shall have input be                                                                                                                                                         | pping systems operating in the 2400-2483.5 MHz band may have hopping channel separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, led the systems operate with an output power no greater than 125 mW. The system ncies that are selected at the system hopping rate from a Pseudorandom ordered lis frequency must be used equally on the average by each transmitter. The system andwidths that match the hopping channel bandwidths of their corresponding frequencies in synchronization with the transmitted signals.                                                   |
| each transmission. Howeve<br>comply with all of the regula<br>information) stream. In addi                                                                                                                                                                                                                         | ead spectrum systems are not required to employ all available hopping channels dur<br>or, the system, consisting of both the transmitter and the receiver, must be designed<br>ations in this section should the transmitter be presented with a continuous data (or<br>tion, a system employing short transmission bursts must comply with the definition of<br>and must distribute its transmissions over the minimum number of hopping channels                                                                                                                                                       |
| recognize other users within<br>hopsets to avoid hopping or                                                                                                                                                                                                                                                        | elligence within a frequency hopping spread spectrum system that permits the system<br>in the spectrum band so that it individually and independently chooses and adapts its<br>in occupied channels is permitted. The coordination of frequency hopping systems in<br>spress purpose of avoiding the simultaneous occupancy of individual hopping<br>smitters is not permitted.                                                                                                                                                                                                                         |
| · · ·                                                                                                                                                                                                                                                                                                              | equency Hopping Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random                                                                                                                                                                                          | ition stage. And the result is fed back to the input of the first stage. The sequence 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9 sequence: $2^9 - 1 = 511$ bits                                                                                                                                                                                                                                                                                                                                                                                               |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta                                                                                                                                                                                                                       | ition stage. And the result is fed back to the input of the first stage. The sequence 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9 sequence: $2^9 - 1 = 511$ bits                                                                                                                                                                                                                                                                                                                                                                                               |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros                                                                                                                                                           | <pre>ition stage. And the result is fed back to the input of the first stage. The sequence<br/>if on stage. And the result is fed back to the input of the first stage. The sequence<br/>9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br/>ages: 9<br/>sequence: 2<sup>9</sup> -1 = 511 bits<br/>s: 8 (non-inverted signal)</pre>                                                                                                                                                                                                                                           |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback                                                                                                                                        | Shift Register for Generation of the PRBS sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback                                                                                                                                        | Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback<br>An example of Pseudorando                                                                                                           | ce may be generated in a nine-stage shift register whose 5th and 9th stage outputs<br>ition stage. And the result is fed back to the input of the first stage. The sequence<br>9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9<br>sequence: 2 <sup>9</sup> -1 = 511 bits<br>s: 8 (non-inverted signal)<br>Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:                                                                                                                                                           |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback<br>An example of Pseudorando<br>0 2 4 6                                                                                                | Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback<br>An example of Pseudorando<br>0 2 4 6<br>Each frequency used equals                                                                  | ce may be generated in a nine-stage shift register whose 5th and 9th stage outputs<br>ition stage. And the result is fed back to the input of the first stage. The sequence<br>9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9<br>sequence: 2 <sup>9</sup> - 1 = 511 bits<br>s: 8 (non-inverted signal)<br>Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:<br>62 64 78 1 73 75 77                                                                                                                                   |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback<br>An example of Pseudorando<br>0 2 4 6<br>Each frequency used equals<br>The system receivers have                                     | live may be generated in a nine-stage shift register whose 5th and 9th stage outputs<br>ition stage. And the result is fed back to the input of the first stage. The sequence<br>9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9<br>sequence: 2 <sup>9</sup> - 1 = 511 bits<br>s: 8 (non-inverted signal)<br>Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:<br>62 64 78 1 73 75 77<br>14 0 0 the average by each transmitter.                                                                                      |
| added in a modulo-two addi<br>begins with the first ONE of<br>• Number of shift register sta<br>• Length of pseudo-random<br>• Longest sequence of zeros<br>Linear Feedback<br>An example of Pseudorando<br>0 2 4 6<br>Each frequency used equals<br>The system receivers have<br>transmitters and shift frequency | live may be generated in a nine-stage shift register whose 5th and 9th stage outputs<br>ition stage. And the result is fed back to the input of the first stage. The sequence<br>9 consecutive ONEs; i.e. the shift register is initialized with nine ones.<br>ages: 9<br>sequence: 2 <sup>9</sup> -1 = 511 bits<br>s: 8 (non-inverted signal)<br>Shift Register for Generation of the PRBS sequence<br>om Frequency Hopping Sequence as follow:<br>62 64 78 1 73 75 77<br>If y on the average by each transmitter.<br>input bandwidths that match the hopping channel bandwidths of their corresponding |


#### 7.9 Band Edge

#### 7.9.1 Conducted Emission Method

| Test Requirement: | FCC Part15                                                  | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |         |     |         |          |  |  |
|-------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|---------|----------|--|--|
| Test Method:      | ANSI C63.10:2013                                            |                                                                                                                                                                                                                                                                                                                                                                                         |         |     |         |          |  |  |
| Receiver setup:   | RBW=100k                                                    | RBW=100kHz, VBW=300kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                   |         |     |         |          |  |  |
| Limit:            | spectrum in<br>produced by<br>100 kHz bar<br>desired pow    | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |         |     |         |          |  |  |
| Test setup:       | Spectrum Analyzer         F.U.T         Non-Conducted Table |                                                                                                                                                                                                                                                                                                                                                                                         |         |     |         |          |  |  |
| Test Instruments: | Refer to sec                                                | tion 6.0 for c                                                                                                                                                                                                                                                                                                                                                                          | letails |     |         |          |  |  |
| Test mode:        | Refer to sec                                                | ction 5.2 for c                                                                                                                                                                                                                                                                                                                                                                         | letails |     |         |          |  |  |
| Test results:     | Pass                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |         |     |         |          |  |  |
| Test environment: | Temp.:                                                      | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.: | 52% | Press.: | 1012mbar |  |  |

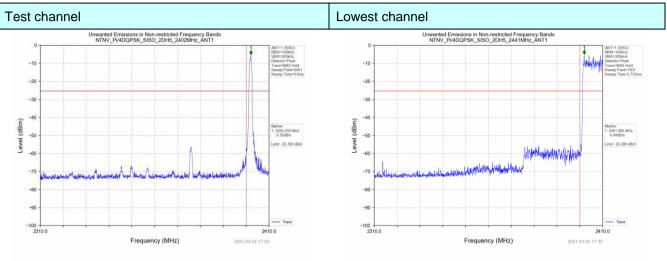



#### Test plot as follows: GFSK Mode:



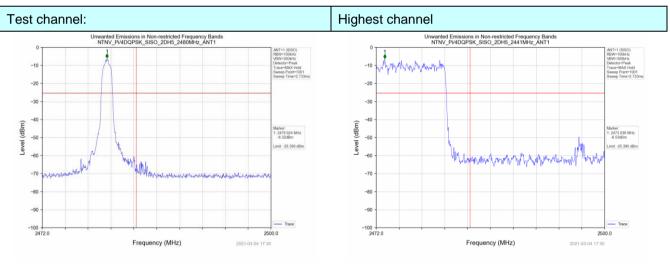
#### No-hopping mode

Hopping mode




No-hopping mode

Hopping mode




#### $\pi$ /4-DQPSK Mode:



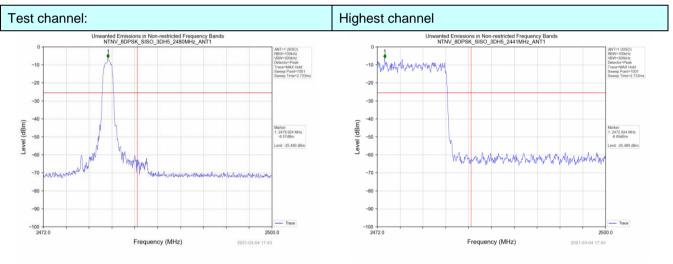
#### No-hopping mode

Hopping mode



No-hopping mode

Hopping mode




#### Test channel Lowest channel Unwanted Emissions in Non-restricted Frequency Bar NTNV\_8DPSK\_SISO\_3DH5\_2402MHz\_ANT1 Unwanted Emissions in Non-restricted Frequency Bands NTNV\_8DPSK\_SISO\_3DH5\_2441MHz\_ANT1 -10 -10 -2 -20 -30 -3 -41 -40 Level (dBm) Level (dBm) 2401.900 MHz -5.35dBm : 2402.900 MHz -5.61dBm -50 -50 and the hard hard hard of at -25 480 A -60 -60 Multination -7 -70 -80 -90 -90 Trace -100 2410.0 2410.0 Frequency (MHz) Frequency (MHz) 2021-03-04 17:43 2021-03-04 17:4

#### 8-DPSK Mode:

No-hopping mode

Hopping mode



No-hopping mode

Hopping mode

| T.9.2 Raulaleu Ellission M |                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                       |                                              |                                                      |                               |                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------|--------------------------------|
| Test Requirement:          | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                 |                                                             |                                       |                                              |                                                      |                               |                                |
| Test Method:               | ANSI C63.10                                                                                                                                                                                                                                                                                                                                            | :2013                                                       |                                       |                                              |                                                      |                               |                                |
| Test Frequency Range:      | All of the res<br>2500MHz) da                                                                                                                                                                                                                                                                                                                          |                                                             |                                       | ested, only                                  | the wo                                               | rst band's (2                 | 2310MHz to                     |
| Test site:                 | Measurement Distance: 3m                                                                                                                                                                                                                                                                                                                               |                                                             |                                       |                                              |                                                      |                               |                                |
| Receiver setup:            | Frequency                                                                                                                                                                                                                                                                                                                                              |                                                             |                                       |                                              |                                                      |                               |                                |
|                            |                                                                                                                                                                                                                                                                                                                                                        | Peak 1MHz 3MHz                                              |                                       |                                              |                                                      | z Peal                        | k Value                        |
|                            | HDI 9000A                                                                                                                                                                                                                                                                                                                                              | Above 1GHz Peak 1MHz 10Hz Average Value                     |                                       |                                              |                                                      |                               |                                |
| Limit:                     | Frec                                                                                                                                                                                                                                                                                                                                                   | quency                                                      | L                                     | .imit (dBuV                                  | /m @3m                                               | ) Re                          | emark                          |
|                            | Abov                                                                                                                                                                                                                                                                                                                                                   | e 1GHz                                                      |                                       | 54.0                                         |                                                      |                               | ge Value                       |
|                            | 7,007                                                                                                                                                                                                                                                                                                                                                  |                                                             |                                       | 74.0                                         | 00                                                   | Peal                          | k Value                        |
|                            | Tum Table*'<br><150cm>                                                                                                                                                                                                                                                                                                                                 |                                                             | < 3m :                                | Test Antenna<br>< lm 4m :                    | 1                                                    |                               |                                |
| Test Procedure:            |                                                                                                                                                                                                                                                                                                                                                        | a 3 meter ca                                                | on the tamber.                        | top of a rota                                | ating tab<br>was rotat                               | le 1.5 meters<br>ted 360 degr |                                |
|                            | <ol> <li>2. The EUT v<br/>antenna, v<br/>tower.</li> <li>3. The anten<br/>ground to</li> </ol>                                                                                                                                                                                                                                                         | which was m<br>na height is<br>determine th<br>and vertical | eters a<br>ountec<br>varied<br>ie max | way from the top<br>from one r<br>imum value | ne interfe<br>o of a var<br>neter to f<br>e of the f | iable-height                  | antenna<br>above the<br>. Both |
|                            | and the ro<br>maximum                                                                                                                                                                                                                                                                                                                                  | he antenna v<br>ta table was<br>reading.                    | was tui<br>turnec                     | ned to heig<br>I from 0 de                   | hts from<br>grees to                                 | 1 meter to 4<br>360 degrees   | meters<br>to find the          |
|                            |                                                                                                                                                                                                                                                                                                                                                        | n with Maxim                                                | um Ho                                 | old Mode.                                    |                                                      |                               |                                |
|                            | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |                                                             |                                       |                                              |                                                      |                               |                                |
| Test Instruments:          | Refer to sect                                                                                                                                                                                                                                                                                                                                          | ion 6.0 for de                                              | etails                                |                                              |                                                      |                               |                                |
| Test mode:                 | Refer to sect                                                                                                                                                                                                                                                                                                                                          | ion 5.2 for de                                              | etails                                |                                              |                                                      |                               |                                |
| Test results:              | Pass                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                       |                                              |                                                      |                               |                                |
| Test environment:          |                                                                                                                                                                                                                                                                                                                                                        | 25 °C                                                       | Humi                                  | d.: 52%                                      | 6                                                    | Press.:                       | 1012mbar                       |
|                            |                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                       |                                              |                                                      |                               |                                |

#### 7.9.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### **Measurement Data**

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

#### Horizontal (Worst case)

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |  |
|-----------|---------------|--------|----------------|----------|--------|----------|--|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |  |
| 2390      | 58.98         | -5.68  | 53.3           | 74       | -20.7  | peak     |  |
| 2390      | 43.56         | -5.68  | 37.88          | 54       | -16.12 | AVG      |  |
|           |               |        |                |          |        |          |  |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

| ventical.     |                  |                 |                    |          |        |          |
|---------------|------------------|-----------------|--------------------|----------|--------|----------|
| Frequency     | Meter Reading    | Factor          | Emission Level     | Limits   | Margin | Detector |
| (MHz)         | (dBµV)           | (dB)            | (dBµV/m)           | (dBµV/m) | (dB)   | Туре     |
| 2390          | 62.34            | -5.68           | 56.66              | 74       | -17.34 | peak     |
| 2390          | 46.43            | -5.68           | 40.75              | 54       | -13.25 | AVG      |
| Remark: Facto | or = Antenna Fac | tor + Cable Los | s – Pre-amplifier. |          |        |          |



#### Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

| Frequency     | Meter Reading    | Factor          | Emission Level     | Limits   | Margin | Detector |
|---------------|------------------|-----------------|--------------------|----------|--------|----------|
| (MHz)         | (dBµV)           | (dB)            | (dBµV/m)           | (dBµV/m) | (dB)   | Туре     |
| 2483.5        | 60.47            | -5.85           | 54.62              | 74       | -19.38 | peak     |
| 2483.5        | 43.32            | -5.85           | 37.47              | 54       | -16.53 | AVG      |
| Remark: Facto | or = Antenna Fac | tor + Cable Los | s – Pre-amplifier. |          |        |          |

Vertical:

| Frequency                                                     | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector<br>Type |
|---------------------------------------------------------------|---------------|--------|----------------|----------|--------|------------------|
| (MHz)                                                         | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   |                  |
| 2483.5                                                        | 62.69         | -5.85  | 56.84          | 74       | -17.16 | peak             |
| 2483.5                                                        | 45.55         | -5.85  | 39.7           | 54       | -14.3  | AVG              |
| Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. |               |        |                |          |        |                  |

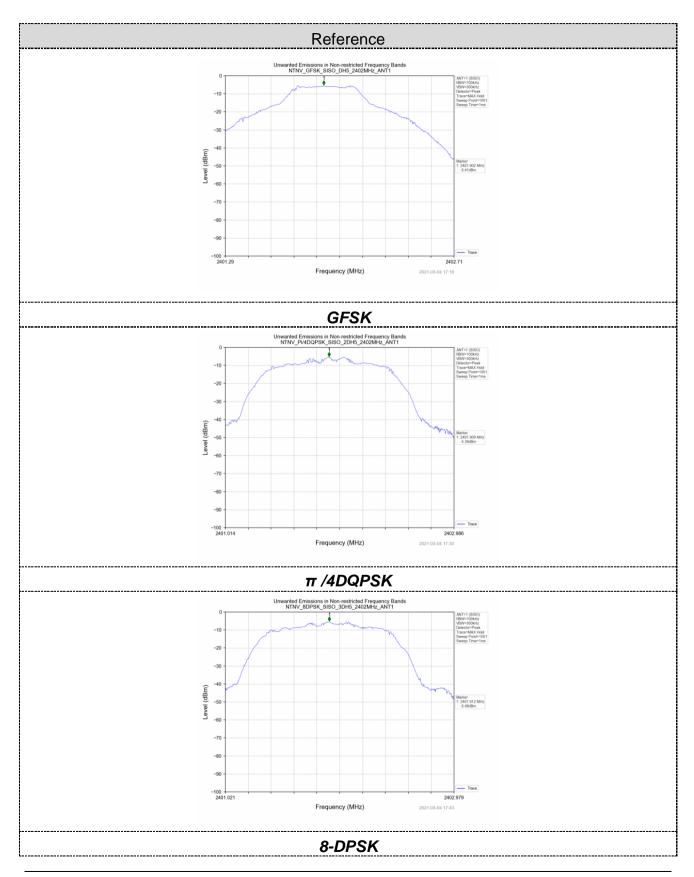
#### Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.10:2013 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details Test mode: Pass Test results:

25 °C

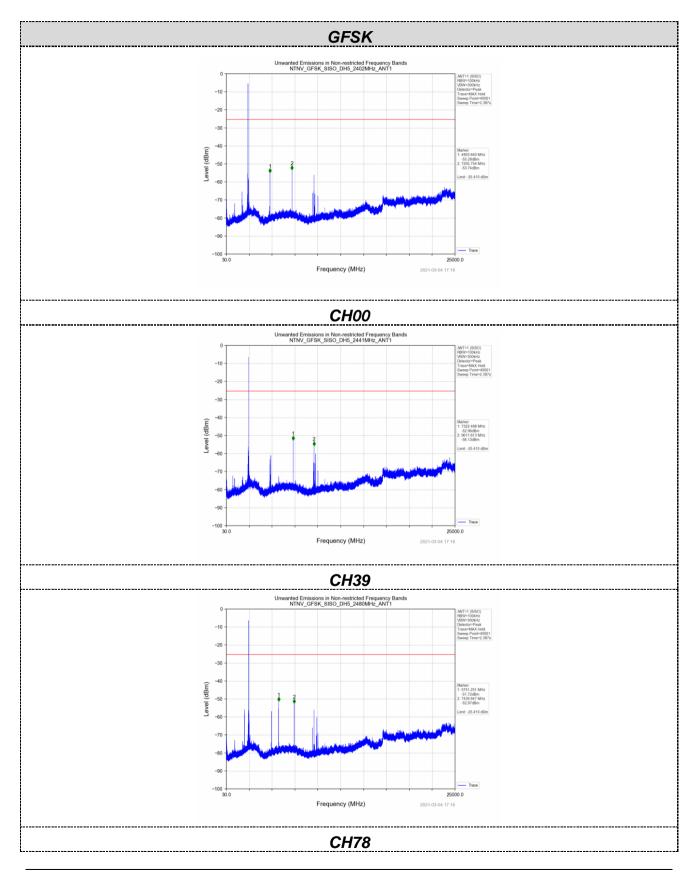
Humid .:

52%

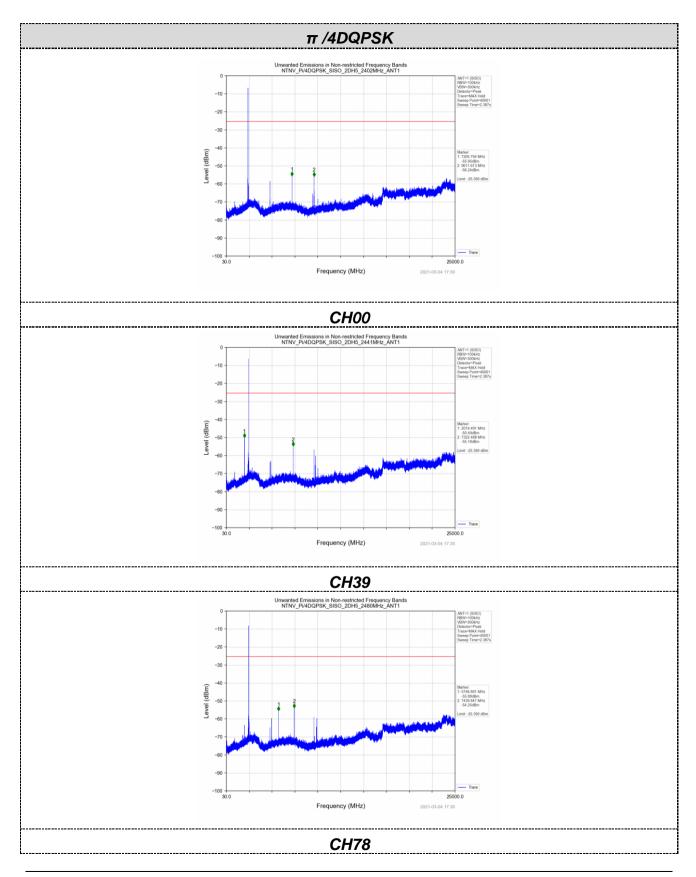
Press.:


1012mbar

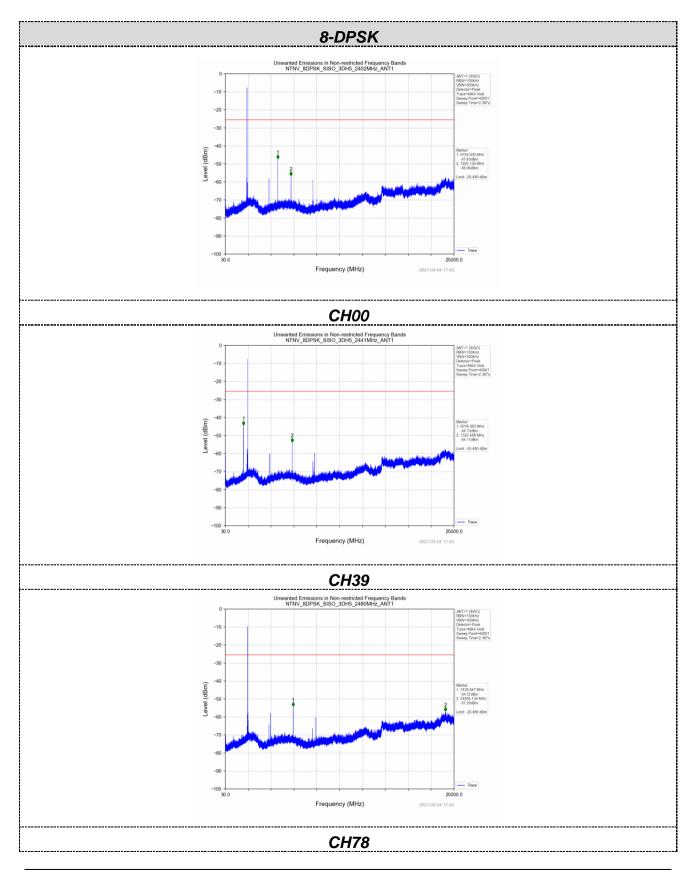
## 7.10 Spurious Emission7.10.1 Conducted Emission Method


Test environment:

Temp.:



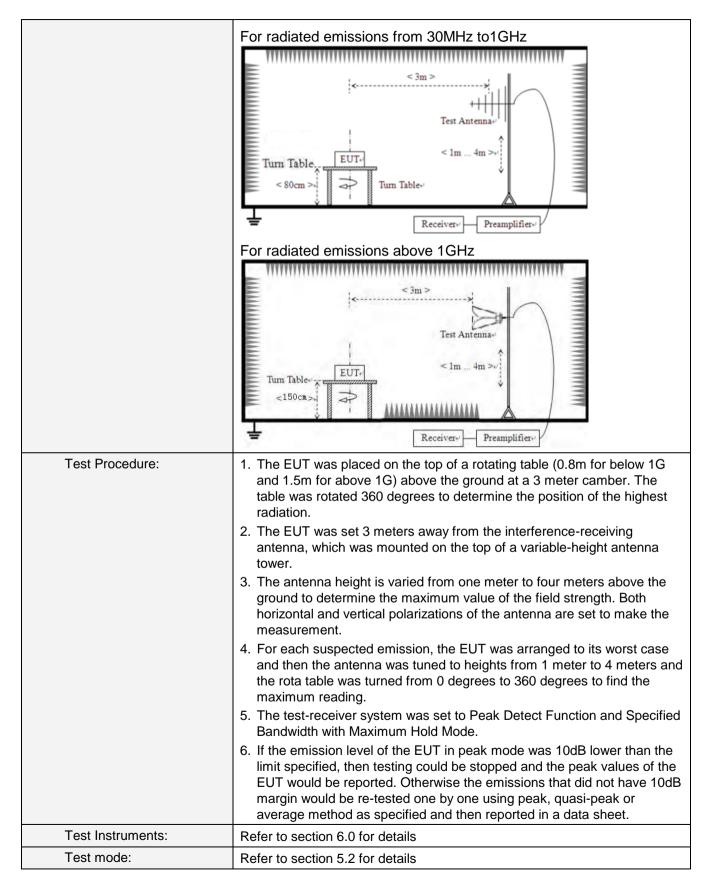











| Test Requirement:     | FCC Part15 C Section 15.209 |            |            |         |                                         |         |          |                         |  |
|-----------------------|-----------------------------|------------|------------|---------|-----------------------------------------|---------|----------|-------------------------|--|
| Test Method:          | ANSI C63.10:2013            |            |            |         |                                         |         |          |                         |  |
| Test Frequency Range: | 9kHz to 25GHz               |            |            |         |                                         |         |          |                         |  |
| Test site:            | Measurement Distance: 3m    |            |            |         |                                         |         |          |                         |  |
| Receiver setup:       | Frequency                   | 0          | Detector   | RB\     | N                                       | VBW     | '        | Value                   |  |
|                       | 9KHz-150KHz                 | Qı         | uasi-peak  | 200Hz   |                                         | 600H    | z        | Quasi-peak              |  |
|                       | 150KHz-30MHz                | Qı         | uasi-peak  | 9KH     | Ιz                                      | 30KH    | z        | Quasi-peak              |  |
|                       | 30MHz-1GHz                  | Qı         | uasi-peak  | 120K    | Hz                                      | 300K⊦   | łz       | Quasi-peak              |  |
|                       | Above 1GHz                  |            | Peak       | 1MF     | Ηz                                      | 3MHz    | Z        | Peak                    |  |
|                       |                             |            | Peak       | 1MF     | Ηz                                      | 10Hz    | <u>-</u> | Average                 |  |
| Limit:                | Frequency                   |            | Limit (u\  | //m)    | V                                       | 'alue   | P        | Measurement<br>Distance |  |
|                       | 0.009MHz-0.490M             | IHz        | 2400/F(k   | (Hz)    |                                         | QP      |          | 300m                    |  |
|                       | 0.490MHz-1.705M             | lHz        | 24000/F(   | KHz) (  |                                         | QP      |          | 30m                     |  |
|                       | 1.705MHz-30MH               | lz         | 30         | 30      |                                         | QP      |          | 30m                     |  |
|                       | 30MHz-88MHz                 |            | 100        | (       |                                         | QP      |          |                         |  |
|                       | 88MHz-216MHz                |            | 150<br>200 |         |                                         | QP      |          |                         |  |
|                       | 216MHz-960MH                | Z          |            |         |                                         | QP      |          | 3m                      |  |
|                       | 960MHz-1GHz                 |            | 500<br>500 |         |                                         | QP      |          | om                      |  |
|                       | Above 1GHz                  | Above 1GHz |            |         |                                         | Average |          |                         |  |
|                       |                             |            | 5000       | )       | F                                       | Peak    |          |                         |  |
| Test setup:           | For radiated emiss          | sions      | from 9kH   | z to 30 | ЭМН                                     | Z       |          |                         |  |
|                       |                             | 11111      |            | ****    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ****    |          |                         |  |
|                       | <pre></pre>                 |            |            |         |                                         |         |          |                         |  |

# 7.10.2 Radiated Emission Method



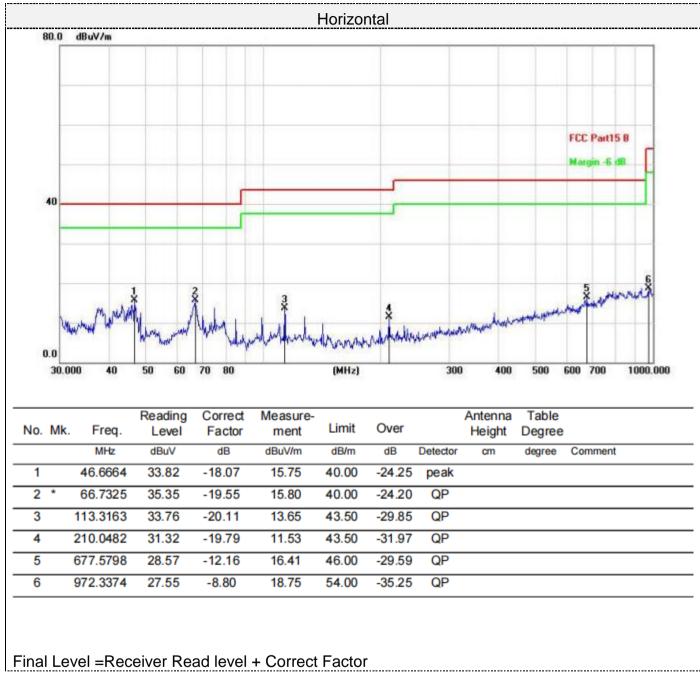




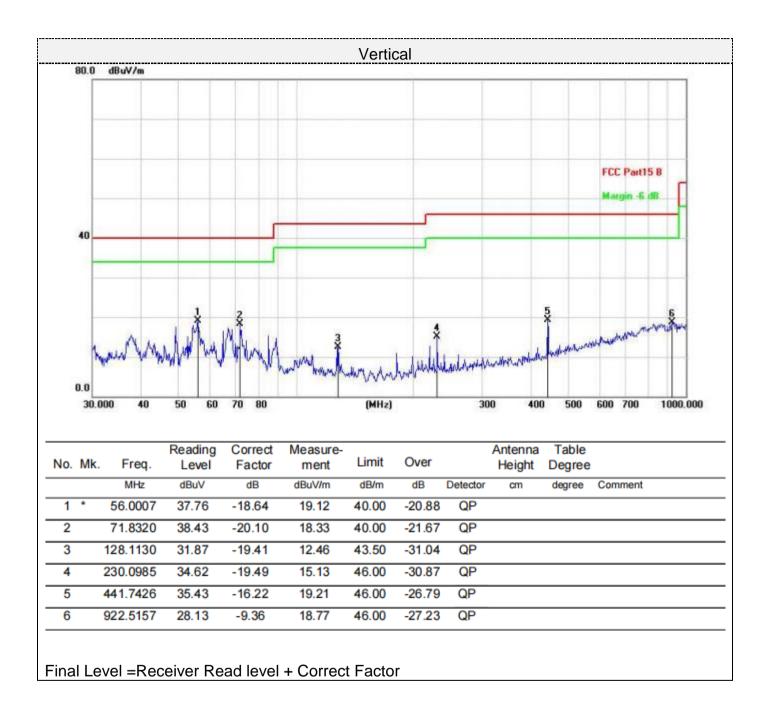
| Test environment: | Temp.:        | 25 °C | Humid.: | 52% | Press.: | 1012mbar |  |
|-------------------|---------------|-------|---------|-----|---------|----------|--|
| Test voltage:     | AC 120V, 60Hz |       |         |     |         |          |  |
| Test results:     | Pass          |       |         |     |         |          |  |

#### Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK,  $\pi$ /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.













GTS

# For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

# CH Low (2402MHz)

## Horizontal:

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin |                  |
|-----------|---------------|--------|----------------|----------|--------|------------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4804      | 61.19         | -3.61  | 57.58          | 74       | -16.42 | peak             |
| 4804      | 46.54         | -3.61  | 42.93          | 54       | -11.07 | AVG              |
| 7206      | 57.43         | -0.85  | 56.58          | 74       | -17.42 | peak             |
| 7206      | 44.74         | -0.85  | 43.89          | 54       | -10.11 | AVG              |
|           |               |        |                |          |        |                  |
|           |               |        |                |          |        |                  |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

## Vertical:

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin |                  |
|-----------|---------------|--------|----------------|----------|--------|------------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
|           | (ubµv)        | (UD)   | (00µ0/11)      | (ubµv/m) |        | Туре             |
| 4804      | 60.59         | -3.61  | 56.98          | 74       | -17.02 | peak             |
| 4804      | 47.46         | -3.61  | 43.85          | 54       | -10.15 | AVG              |
| 7206      | 56.33         | -0.85  | 55.48          | 74       | -18.52 | peak             |
| 7206      | 45.26         | -0.85  | 44.41          | 54       | -9.59  | AVG              |
|           |               |        |                |          |        |                  |
|           |               |        |                |          |        |                  |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.



# CH Middle (2441MHz)

#### Horizontal:

| Meter Reading<br>(dBµV) | Factor                      | Emission Level                                            | Limits                                                                                 | Margin                                                                                                                                                  |                                                                                                                                                                                                    |
|-------------------------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                             |                                                           |                                                                                        |                                                                                                                                                         | 1                                                                                                                                                                                                  |
|                         | (dB)                        | (dBµV/m)                                                  | (dBµV/m)                                                                               | (dB)                                                                                                                                                    | Detector<br>Type                                                                                                                                                                                   |
| (ubµv)                  | (ub)                        |                                                           | (ubµv/m)                                                                               | (ub)                                                                                                                                                    | туре                                                                                                                                                                                               |
| 61.35                   | -3.49                       | 57.86                                                     | 74                                                                                     | -16.14                                                                                                                                                  | peak                                                                                                                                                                                               |
| 46.79                   | -3.49                       | 43.3                                                      | 54                                                                                     | -10.7                                                                                                                                                   | AVG                                                                                                                                                                                                |
| 59.66                   | -0.8                        | 58.86                                                     | 74                                                                                     | -15.14                                                                                                                                                  | peak                                                                                                                                                                                               |
| 44.86                   | -0.8                        | 44.06                                                     | 54                                                                                     | -9.94                                                                                                                                                   | AVG                                                                                                                                                                                                |
|                         |                             |                                                           |                                                                                        |                                                                                                                                                         |                                                                                                                                                                                                    |
|                         |                             |                                                           |                                                                                        |                                                                                                                                                         |                                                                                                                                                                                                    |
|                         | 46.79<br>59.66<br>44.86<br> | 46.79     -3.49       59.66     -0.8       44.86     -0.8 | 46.79     -3.49     43.3       59.66     -0.8     58.86       44.86     -0.8     44.06 | 46.79         -3.49         43.3         54           59.66         -0.8         58.86         74           44.86         -0.8         44.06         54 | 46.79         -3.49         43.3         54         -10.7           59.66         -0.8         58.86         74         -15.14           44.86         -0.8         44.06         54         -9.94 |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

| Meter Reading | Factor                                         | Emission Level                                                                                         | Limits                                                                                                                                                                                                              | Margin                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
|---------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dBµV)        | (dB)                                           | (dBµV/m)                                                                                               | (dBµV/m)                                                                                                                                                                                                            | (dB)                                                                                                                                                                                                                                                                             | Detector<br>Type                                                                                                                                                                                                                                                                                                                                          |
| 61.26         | -3.49                                          | 57.77                                                                                                  | 74                                                                                                                                                                                                                  | -16.23                                                                                                                                                                                                                                                                           | peak                                                                                                                                                                                                                                                                                                                                                      |
| 45.53         | -3.49                                          | 42.04                                                                                                  | 54                                                                                                                                                                                                                  | -11.96                                                                                                                                                                                                                                                                           | AVG                                                                                                                                                                                                                                                                                                                                                       |
| 55.46         | -0.80                                          | 54.66                                                                                                  | 74                                                                                                                                                                                                                  | -19.34                                                                                                                                                                                                                                                                           | peak                                                                                                                                                                                                                                                                                                                                                      |
| 43.04         | -0.8                                           | 42.24                                                                                                  | 54                                                                                                                                                                                                                  | -11.76                                                                                                                                                                                                                                                                           | AVG                                                                                                                                                                                                                                                                                                                                                       |
|               |                                                |                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |
|               |                                                |                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |
|               | (dBµV)<br>61.26<br>45.53<br>55.46<br>43.04<br> | (dBµV)     (dB)       61.26     -3.49       45.53     -3.49       55.46     -0.80       43.04     -0.8 | (dBµV)         (dB)         (dBµV/m)           61.26         -3.49         57.77           45.53         -3.49         42.04           55.46         -0.80         54.66           43.04         -0.8         42.24 | (dBµV)         (dB)         (dBµV/m)         (dBµV/m)           61.26         -3.49         57.77         74           45.53         -3.49         42.04         54           55.46         -0.80         54.66         74           43.04         -0.8         42.24         54 | (dBµV)         (dB)         (dBµV/m)         (dBµV/m)         (dB)           61.26         -3.49         57.77         74         -16.23           45.53         -3.49         42.04         54         -11.96           55.46         -0.80         54.66         74         -19.34           43.04         -0.8         42.24         54         -11.76 |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



# CH High (2480MHz)

Horizontal:

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin |                  |
|-----------|---------------|--------|----------------|----------|--------|------------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4960      | 61.31         | -3.41  | 57.9           | 74       | -16.1  | peak             |
| 4960      | 46.06         | -3.41  | 42.65          | 54       | -11.35 | AVG              |
| 7440      | 57.55         | -0.72  | 56.83          | 74       | -17.17 | peak             |
| 7440      | 44.47         | -0.8   | 43.67          | 54       | -10.33 | AVG              |
|           |               |        |                |          |        |                  |
|           |               |        |                |          |        |                  |
|           |               |        |                |          |        |                  |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

## Vertical:

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin |                  |
|-----------|---------------|--------|----------------|----------|--------|------------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4960      | 62.36         | -3.41  | 58.95          | 74       | -15.05 | peak             |
| 4960      | 46.79         | -3.41  | 43.38          | 54       | -10.62 | AVG              |
| 7440      | 56.09         | -0.72  | 55.37          | 74       | -18.63 | peak             |
| 7440      | 43.72         | -0.8   | 42.92          | 54       | -11.08 | AVG              |
|           |               |        |                |          |        |                  |
|           |               |        |                |          |        |                  |
|           | -1            |        |                |          |        |                  |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

## Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 (2) When the test results of Peak Detected below the limits of Average Detected,

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



# 8 Test Setup Photo

Reference to the **appendix I** for details.

# 9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----