

Report No.: EED32P81581401 Page 1 of 50

TEST REPORT

Product Tablet PC Trade mark **CHUWI**

Model/Type reference : Hi10 XPro, CWI520, CWI536, CWI555,

CWI598, CWI637, CWI638, CWI639,

CWI640, CWI6641, CWI642

Serial Number : N/A

Report Number : EED32P81581401 FCC ID 2AHLZ-HI10XPRO

Oct. 30, 2023 Date of Issue

47 CFR Part 15 Subpart C **Test Standards**

Test result **PASS**

Prepared for:

CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED 2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Tom Chen

Mark Chen avon /Va

Date:

Oct. 30, 2023

Aaron Ma

Check No.: 4418071023

Report No.: EED32P81581401

Content

2 CONTENT 3 VERSION 4 TEST SUMMARY 5 GENERAL INFORMATION 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 6 EQUIPMENT LIST 7 TEST RESULTS AND MEASUREMENT DATA 1.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 1.7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 1.7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 1.7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 28 APPENDIX BLE 39 PHOTOGRAPHS OF TEST SETUP 310 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	1 COVER PAGE		 1
4 TEST SUMMARY			
5 GENERAL INFORMATION 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 6 EQUIPMENT LIST 7 TEST RESULTS AND MEASUREMENT DATA	3 VERSION		 3
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.2 TEST CONFIGURATION 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 6 EQUIPMENT LIST 7 TEST RESULTS AND MEASUREMENT DATA 1 7.1 ANTENNA REQUIREMENT 1 7.2 CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 DTS BANDWIDTH 1 7.5 MAXIMUM POWER SPECTRAL DENSITY 1 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 1 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 2 8 APPENDIX BLE 3 9 PHOTOGRAPHS OF TEST SETUP 3	4 TEST SUMMARY		 4
5.2 GENERAL DESCRIPTION OF EUT	5 GENERAL INFORMATION		
7 TEST RESULTS AND MEASUREMENT DATA 1 7.1 ANTENNA REQUIREMENT 1 7.2 CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 DTS BANDWIDTH 1 7.5 MAXIMUM POWER SPECTRAL DENSITY 1 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 1 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 2 8 APPENDIX BLE 3 9 PHOTOGRAPHS OF TEST SETUP 3	5.2 GENERAL DESCRIPTION OF EUT	LEVELS, K=2)	
7.1 ANTENNA REQUIREMENT 1 7.2 CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 DTS BANDWIDTH 1 7.5 MAXIMUM POWER SPECTRAL DENSITY 1 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 1 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 2 8 APPENDIX BLE 3 9 PHOTOGRAPHS OF TEST SETUP 3	6 EQUIPMENT LIST		 9
7.2 CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 DTS BANDWIDTH 1 7.5 MAXIMUM POWER SPECTRAL DENSITY 1 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 1 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 2 8 APPENDIX BLE 3 9 PHOTOGRAPHS OF TEST SETUP 3	7 TEST RESULTS AND MEASUREMENT DATA		12
9 PHOTOGRAPHS OF TEST SETUP3	7.2 CONDUCTED EMISSIONS	PURIOUS EMISSION	
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS3			
	10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL D	DETAILS	38

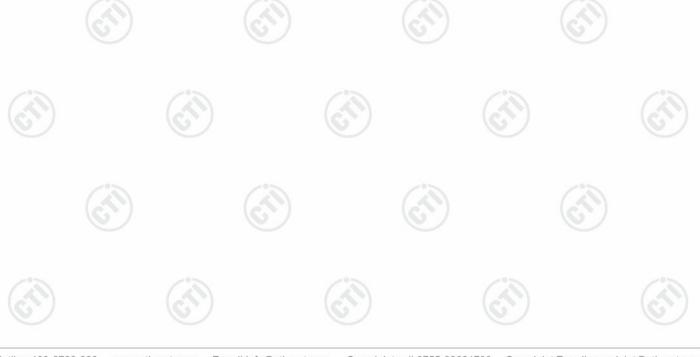
Report No.: EED32P81581401

3 Version

Version No.	Date	6	Description	
00	Oct. 30, 2023		Original	
	*			73
((50)	(42)	(0,1,2)	(0,1)

Report No. : EED32P81581401 Page 4 of 50

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: Hi10 XPro, CWI520, CWI536, CWI555, CWI598, CWI637, CWI638, CWI639, CWI640, CWI6641, CWI642

Only the model Hi10 XPro was tested. They have the same circuit principle, electrical design, and key components used. The models may vary depending on the sales platform and sales channel, the model sold on Amazon platform is Hi10 XPro, and the model sold on eBay platform is CWI520, etc. The models may vary depending on the sales platform and sales channel, and its differences do not affect safety and electromagnetic compatibility performance.

Report No.: EED32P81581401 Page 5 of 50

General Information 5

5.1 Client Information

Applicant:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED				
Address of Applicant:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China				
Manufacturer:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED				
Address of Manufacturer:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China				
Factory:	Shenzhen Yuko Technology Co., Ltd				
Address of Factory:	4/F-B, Building A4, 4/F-A, Building A4, 6/F, Building A4, 6/F-A, Building A9, 4/F, Building A9, TianRui Industrial Park, No.35, FuYuan 1st Road, Zhancheng Community, Fuhai Street, Baoan District, Shenzhen City, Guangdong Province, P.R. China				

5.2 General Description of EUT

2 Ocheral Beschip	<u> </u>				
Product Name:	Tablet PC				
Model No.:	Hi10 XPro, CWI520, CWI536, CWI555, CWI598, CWI637, CWI638, CWI639, CWI640, CWI6641, CWI642				
Test Model No.:	Hi10 XPro				
Trade mark:	CHUWI				
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location				
Operation Frequency:	2402MHz~2480MHz				
Modulation Type:	GFSK				
Transfer Rate:	⊠1Mbps ⊠2Mbps				
Number of Channel:	40				
Antenna Type:	FPC Antenna				
Antenna Gain:	0.23dBi				
Power Supply:	Adapter: Model:UC13US Input:100-240V~50/60Hz Output:5.0V——2000mA				
Test Voltage:	Battery DC 3.85V				
Sample Received Date:	Oct. 07, 2023				
Sample tested Date:	Oct. 07, 2023 to Oct. 23, 2023				

Report No. : EED32P81581401 Page 6 of 50

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	e Settings:				
Test Software of EUT:		N/A	(c	(1)	(2.73)
EUT Power Grade:		Default(Pov selected)	ver level is built-in s	set parameters and ca	annot be changed and
Use test software to transmitting of the E		est frequency	, the middle freque	ncy and the highest f	requency keep
Test Mode Mod		ulation	Rate	Channel	Frequency(MHz)
Mode a	Mode a GFSK		1Mbps	CH0	2402
Mode b GF		SK	1Mbps	CH19	2440
Mode c Gl		SK	1Mbps	CH39	2480
Mode d GI		SK 2Mbps		CH0	2402
Mode e GF		SK	2Mbps	CH19	2440
Mode f GF		SK	2Mbps	CH39	2480

Report No. : EED32P81581401 Page 7 of 50

5.4 Test Environment

	Operating Environment	Operating Environment:								
	Radiated Spurious Emissions:									
	Temperature:	22~25.0 °C	(4)		(41)		(41)			
1	Humidity:	50~55 % RH	0		(0)		6			
	Atmospheric Pressure:	1010mbar								
	Conducted Emissions:									
	Temperature:	22~25.0 °C		(3)		(30)				
	Humidity:	50~55 % RH		(0,)		(0,)				
	Atmospheric Pressure:	1010mbar								
	RF Conducted:									
	Temperature:	22~25.0 °C	(3)		(3)					
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)			
	Atmospheric Pressure:	1010mbar								

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	1	/	1	/

5.6 Test Location

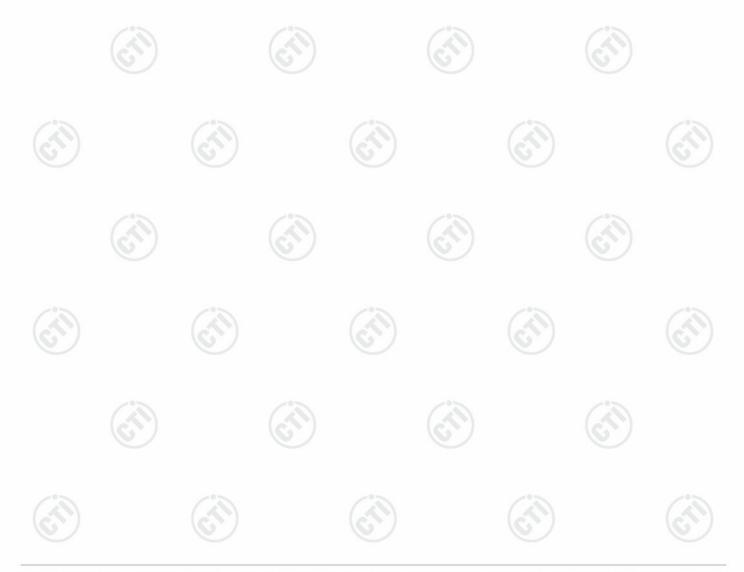
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
(P)		3.4dB (18GHz-40GHz)	
	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No.: EED32P81581401 Page 9 of 50

6 Equipment List

RF test system								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024			
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024			
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024			
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024			
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024			
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(i)	- (3			

	Con	ducted disturba	nce Test		
			Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024
Temperature/ Humidity Indicator	Defu	TH128	/		(3
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024
Barometer	changchun	DYM3	1188		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(<u>(</u>

Page 10 of 50 Report No.: EED32P81581401

					10.
	3M Semi-ar	nechoic Chamber (2)-	- Radiated disturb	pance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023
Multi device Controller	maturo	NCD/070/10711112			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	<u> </u>	(

Report No. : EED32P81581401 Page 11 of 50

		100			
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	<u> </u>	-61
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(6))
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	·	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(i)	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(2	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		J
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(i)	(3)

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32P81581401 Page 12 of 50

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

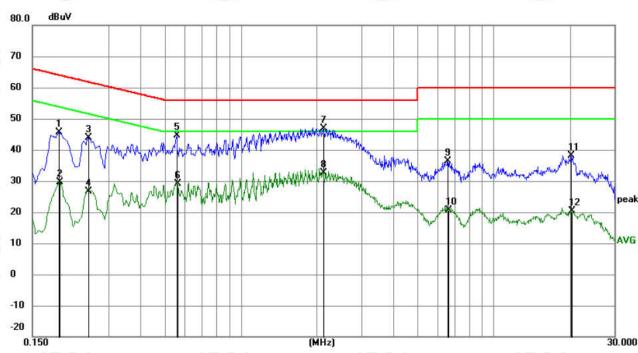
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna is 0.23dBi.

Report No.: EED32P81581401 Page 13 of 50

7.2 Conducted Emissions


7.2 Conducted Entis	3310113		(20)					
Test Requirement:	47 CFR Part 15C Section 15.	207	(0.)					
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:	Eroguepov rongo (MUz)	Limit (d	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarith	m of the frequency.						
	Shielding Room EUT AE AC Mains LISN1 Gro	Test Re						
	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 							
Test Mode:	ANSI C63.10: 2013 on co All modes were tested, only t report.	-0-	was recorded in the					
Test Results:	Pass	(e.)	(e)					
restricsuits.	1 000							

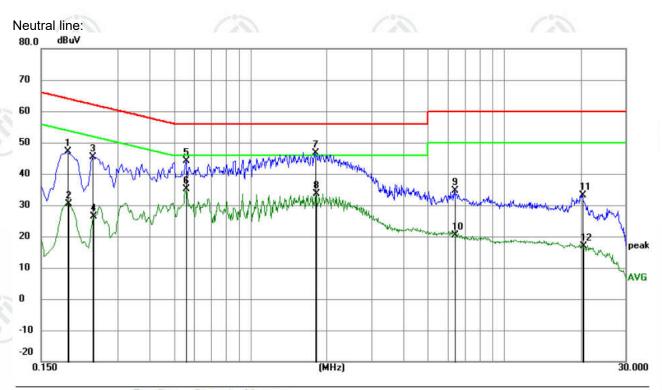
Measurement Data

Live line:

No. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1905	35.85	9.87	45.72	64.01	-18.29	QP	
2		0.1914	19.81	9.87	29.68	53.98	-24.30	AVG	
3		0.2490	33.82	9.97	43.79	61.79	-18.00	QP	
4		0.2495	16.66	9.97	26.63	51.77	-25.14	AVG	
5		0.5595	34.53	10.02	44.55	56.00	-11.45	QP	
6		0.5639	18.99	10.03	29.02	46.00	-16.98	AVG	
7 *	k .	2.1165	37.16	9.79	46.95	56.00	-9.05	QP	
8		2.1255	22.87	9.79	32.66	46.00	-13.34	AVG	
9		6.5850	26.56	9.79	36.35	60.00	-23.65	QP	
10		6.6120	10.76	9.79	20.55	50.00	-29.45	AVG	
11		20.1705	28.22	9.97	38.19	60.00	-21.81	QP	
12		20.3505	10.40	9.97	20.37	50.00	-29.63	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1905	37.26	9.87	47.13	64.01	-16.88	QP	
	2	0.1924	20.58	9.87	30.45	53.93	-23.48	AVG	
1	3	0.2400	35.48	9.95	45.43	62.10	-16.67	QP	
-	4	0.2404	16.43	9.95	26.38	52.08	-25.70	AVG	
Ī	5	0.5595	34.23	10.02	44.25	56.00	-11.75	QP	
-	6	0.5595	25.11	10.02	35.13	46.00	-10.87	AVG	
23	7 *	1.8015	36.81	9.80	46.61	56.00	-9.39	QP	
2.5	8	1.8105	23.79	9.80	33.59	46.00	-12.41	AVG	
	9	6.3735	24.79	9.79	34.58	60.00	-25.42	QP	
	10	6.3915	10.70	9.79	20.49	50.00	-29.51	AVG	
S	11	20.3055	23.13	9.97	33.10	60.00	-26.90	QP	
	12	20.3775	6.79	9.97	16.76	50.00	-33.24	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)						
	Test Method:	ANSI C63.10 2013						
8	Test Setup:							
		Control Connocker Power port(s) Power pot Table RF test System System Instrument Table						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 						
	Limit:	30dBm						
	Test Mode:	Refer to clause 5.3						
	Test Results:	Refer to Appendix BLE	6					
		• •						

7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Control Control Power Power Pool Attenuator Temperature Cabriet Table RF test System System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 						
Limit:	≥ 500 kHz						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix BLE						

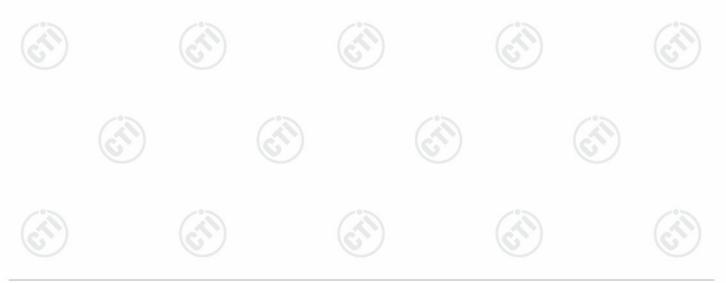
7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Control Control Control Power Supply Power TEMPERATURE CABRET	RF test System Instrument
	Remark: Offset=Cable loss+ attenua	ation factor.
Test Procedure:	within the RBW.	S bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-05
Test Results:	Refer to Appendix BLE	



7.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10 2013			
Test Setup:	Control Control Control Power Power Pool Attenuator Instrument Table RF test System System Instrument			
	Remark: Offset=Cable loss+ attenuation factor.			
Test Procedure:	 a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level. 			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Refer to clause 5.3			
Test Results:	Refer to Appendix BLE			



7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6	
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3m	(Semi-Anech	noic Cham	ber)	-61
Receiver Setup:	Frequency	1	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 1GHz		Peak	1MHz	3MHz	Peak
			Peak	1MHz	10kHz	Average
Limit:	Frequency	1	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300
	0.490MHz-1.705MHz	24	000/F(kHz)	-	(A)	30
	1.705MHz-30MHz		30	-		30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz	150		43.5	Quasi-peak	3
	216MHz-960MHz	9	200	46.0	Quasi-peak	3
	960MHz-1GHz	/	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	B above the i	maximum est. This p	permitted ave	erage emission

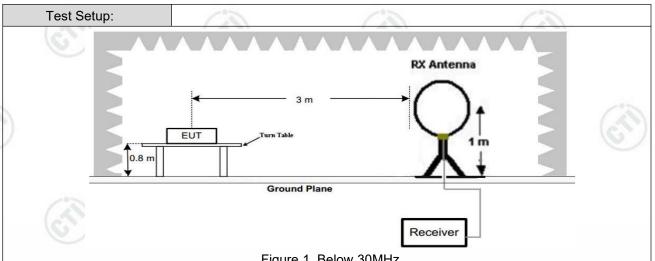
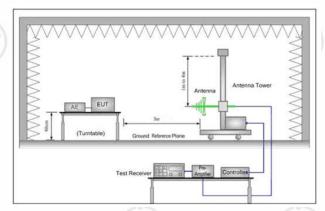



Figure 1. Below 30MHz

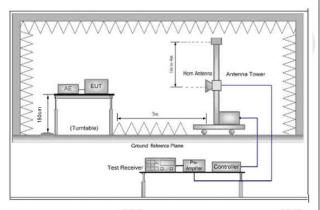


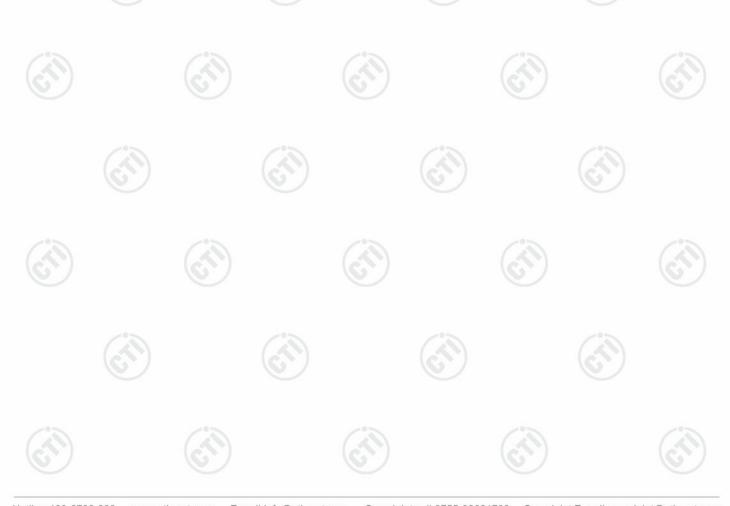
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32P81581401 Page 22 of 50

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positionin for Transmitting mode, and found the X axis positioning which it is th worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than th limit specified, then testing could be stopped and the peak values of th EUT would be reported. Otherwise the emissions that did not have 10dl margin would be re-tested one by one using peak, quasi-peak of average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specifie Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst cas and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 36 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make th measurement.



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK 1M was recorded in the report.

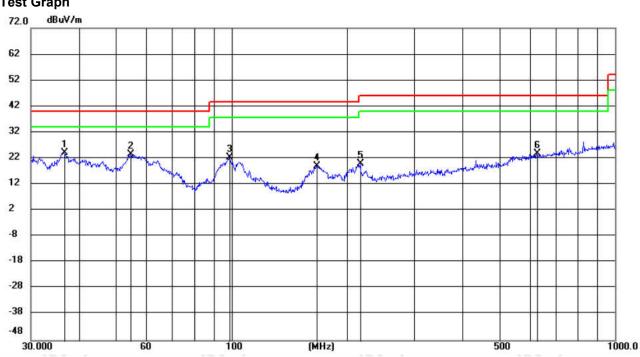
Horizontal:

-38 -48 30.000

dBuV/m 40.00 43.50	-21.71 -24.09	F	100 199	48 196	Comment	
CHORNES CO.	-24.09	F	114595	Heco		
43.50	The state of the s	peak	199	196		
43.50	-20.38	peak	100	69		
46.00	-24.32	peak	100	172		
46.00	-24.74	peak	100	244		
46 00	-22.28	peak	100	120		
	teloritani.	takaning anakaning	CARCAMAN CANADAN SA MERCANTAN	because of any design in the configuration of the c	LANGE CHARLES AND	\$ \$4.00 \$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{

(MHz)

100



1000.0

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	36.6696	11.09	13.20	24.29	40.00	-15.71	peak	100	36	
2		54.6333	10.39	13.27	23.66	40.00	-16.34	peak	100	214	
3		98.7633	9.30	13.01	22.31	43.50	-21.19	peak	100	320	
4		167.1196	8.29	10.85	19.14	43.50	-24.36	peak	100	225	
5		217.2013	6.88	13.09	19.97	46.00	-26.03	peak	100	0	
6		625.4069	1.43	22.42	23.85	46.00	-22.15	peak	200	246	

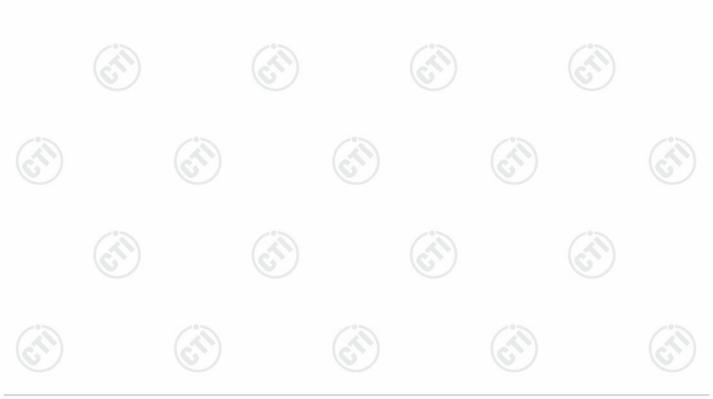
Report No.: EED32P81581401 Page 25 of 50

Radiated Spurious Emission above 1GHz:

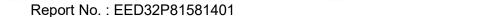
During the test, the Radiates Emission from above 1GHz was performed in all modes, only the worst case of BLE GFSK 1M was recorded in the report.

Mode	:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1519.4519	1.63	38.41	40.04	74.00	33.96	Pass	Н	PK
2	1982.0982	4.46	37.53	41.99	74.00	32.01	Pass	Н	PK
3	4466.0977	-16.99	51.48	34.49	74.00	39.51	Pass	Н	PK
4	7792.3195	-11.36	47.97	36.61	74.00	37.39	Pass	Н	PK
5	11168.5446	-6.36	47.59	41.23	74.00	32.77	Pass	Н	PK
6	13671.7114	-1.73	46.93	45.20	74.00	28.80	Pass	Н	PK
7	1525.0525	1.68	38.79	40.47	74.00	33.53	Pass	V	PK
8	2080.5081	4.81	37.19	42.00	74.00	32.00	Pass	V	PK
9	4316.0877	-17.20	51.34	34.14	74.00	39.86	Pass	V	PK
10	6359.2239	-12.89	48.03	35.14	74.00	38.86	Pass	V	PK
11	9688.4459	-7.66	47.33	39.67	74.00	34.33	Pass	V	PK
12	14304.7536	-0.37	45.83	45.46	74.00	28.54	Pass	V	PK

M	lode	:		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	2
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1460.446	1.44	38.47	39.91	74.00	34.09	Pass	Н	PK
	2	2059.3059	4.74	37.99	42.73	74.00	31.27	Pass	Н	PK
;	3	3821.0547	-19.21	52.98	33.77	74.00	40.23	Pass	Н	PK
	4	5892.1928	-13.60	49.10	35.50	74.00	38.50	Pass	Н	PK
	5	9203.4136	-7.88	47.48	39.60	74.00	34.40	Pass	Н	PK
	6	13742.7162	-1.71	46.45	44.74	74.00	29.26	Pass	Н	PK
	7	1529.2529	1.71	38.16	39.87	74.00	34.13	Pass	V	PK
	8	2014.1014	4.60	37.84	42.44	74.00	31.56	Pass	V	PK
	9	4267.0845	-17.49	51.58	34.09	74.00	39.91	Pass	V	PK
1	10	6990.266	-11.82	47.04	35.22	74.00	38.78	Pass	V	PK
1	11	10204.4803	-7.10	47.46	40.36	74.00	33.64	Pass	V	PK
1	12	14352.7568	0.43	45.39	45.82	74.00	28.18	Pass	V	PK

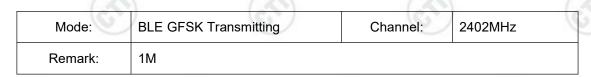


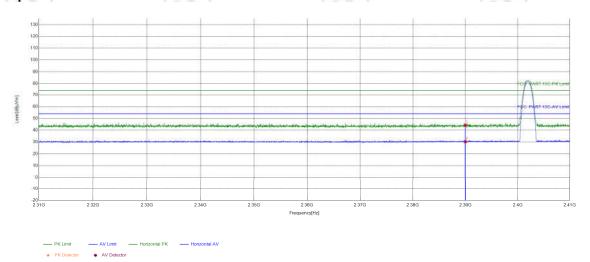
Report No.: EED32P81581401 Page 26 of 50

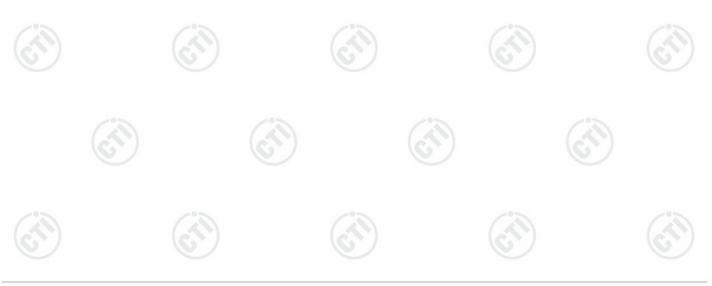

	200		70%		20%			0-	
Mode	:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1573.6574	2.08	38.00	40.08	74.00	33.92	Pass	Н	PK
2	1941.8942	4.25	38.33	42.58	74.00	31.42	Pass	Н	PK
3	3860.0573	-19.15	52.65	33.50	74.00	40.50	Pass	Н	PK
4	5930.1953	-13.41	48.14	34.73	74.00	39.27	Pass	Н	PK
5	8625.375	-10.29	48.54	38.25	74.00	35.75	Pass	Н	PK
6	13682.7122	-1.75	48.17	46.42	74.00	27.58	Pass	Н	PK
7	1620.062	2.42	38.09	40.51	74.00	33.49	Pass	V	PK
8	2039.904	4.69	37.80	42.49	74.00	31.51	Pass	V	PK
9	3476.0317	-20.06	53.67	33.61	74.00	40.39	Pass	V	PK
10	5770.1847	-13.68	48.71	35.03	74.00	38.97	Pass	V	PK
11	9692.4462	-7.68	47.33	39.65	74.00	34.35	Pass	V	PK
12	16312.8875	1.45	45.60	47.05	74.00	26.95	Pass	V	PK

Remark:

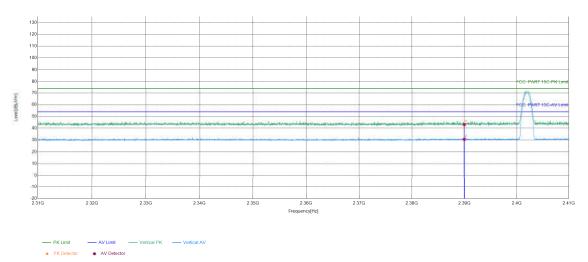
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

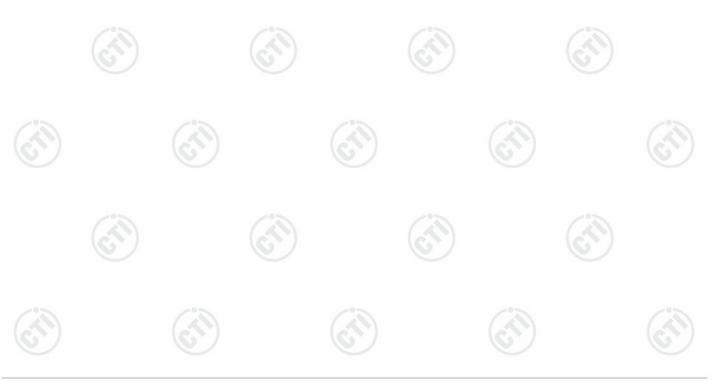





Restricted bands:

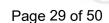
Test plot as follows:


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	38.65	44.42	74.00	29.58	PASS	Horizontal	PK
2	2390	5.77	24.51	30.28	54.00	23.72	PASS	Horizontal	AV

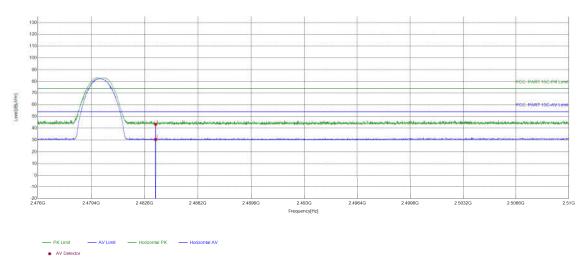


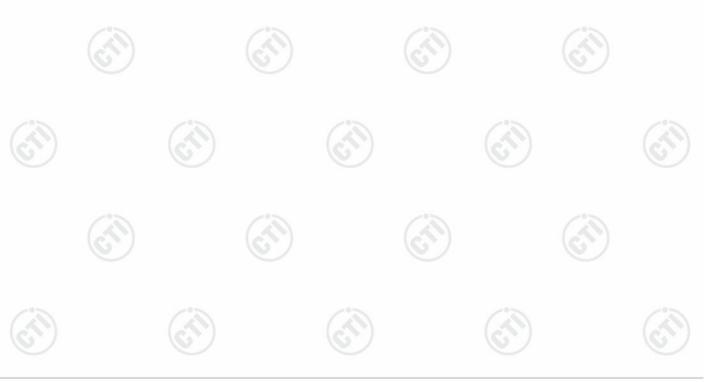
Report No.: EED32P81581401 Page 28 of 50

Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	1M		

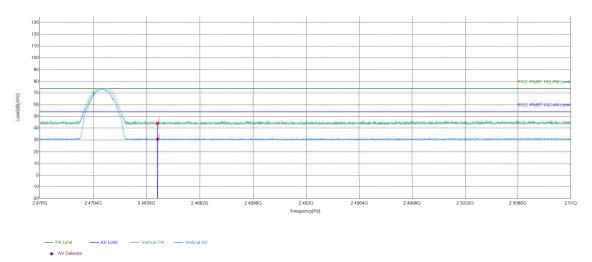


	Suspecte	d List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
S	1	2390	5.77	37.36	43.13	74.00	30.87	PASS	Vertical	PK
	2	2390	5.77	24.83	30.60	54.00	23.40	PASS	Vertical	AV

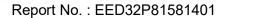




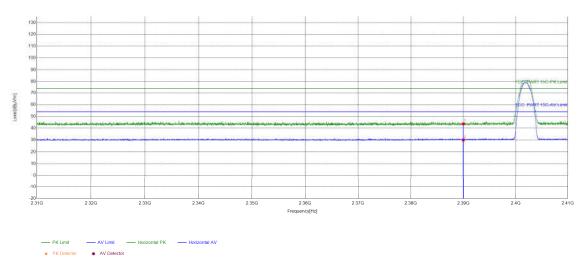
A	16.4	4 1	15.4
Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

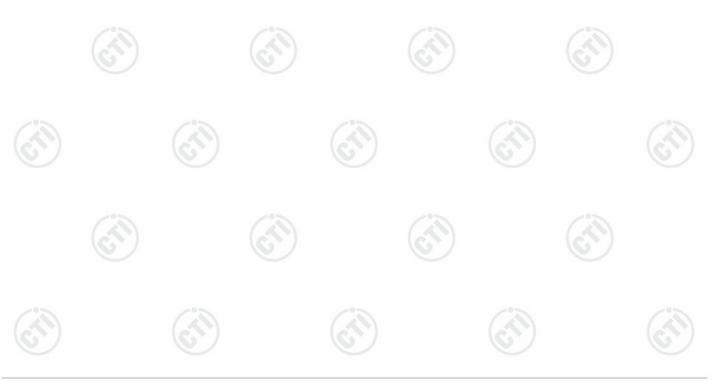

	(67)			(67)			(6.7.)			
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2483.5	6.57	36.75	43.32	74.00	30.68	PASS	Horizontal	PK
	2	2483.5	6.57	23.90	30.47	54.00	23.53	PASS	Horizontal	AV

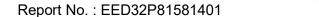
Page 30 of 50 Report No.: EED32P81581401

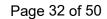

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M	-3.2	

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.69	44.26	74.00	29.74	PASS	Vertical	PK
2	2483.5	6.57	24.20	30.77	54.00	23.23	PASS	Vertical	AV

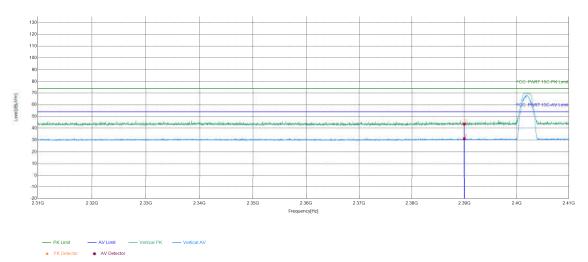


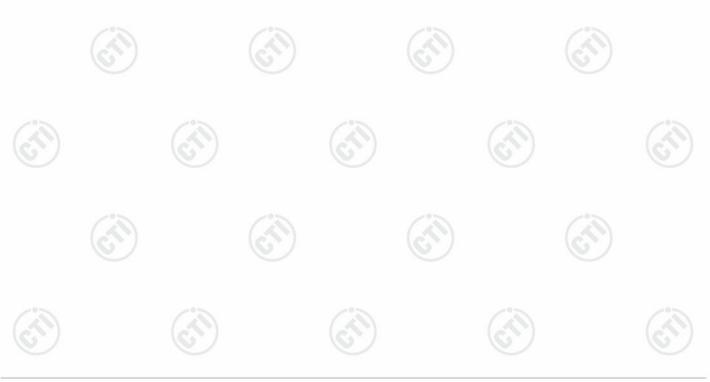



Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	2M		

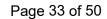


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	37.93	43.70	74.00	30.30	PASS	Horizontal	PK
	2	2390	5.77	24.32	30.09	54.00	23.91	PASS	Horizontal	AV

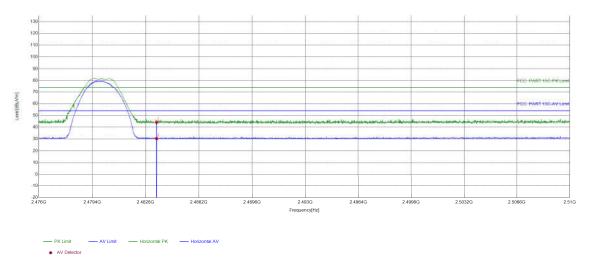




Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	2M		

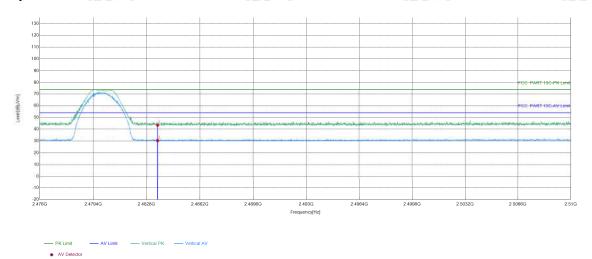


	Suspected List									
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.80	43.57	74.00	30.43	PASS	Vertical	PK
	2	2390	5.77	25.32	31.09	54.00	22.91	PASS	Vertical	AV



Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	2M		

	Suspected List										
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	6.57	37.67	44.24	74.00	29.76	PASS	Horizontal	PK	
	2	2483.5	6.57	23.80	30.37	54.00	23.63	PASS	Horizontal	AV	



Report No.: EED32P81581401 Page 34 of 50

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	2M		

Test Graph

Suspected List										
 NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	6.57	36.92	43.49	74.00	30.51	PASS	Vertical	PK	
2	2483.5	6.57	23.82	30.39	54.00	23.61	PASS	Vertical	AV	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 35 of 50 Report No.: EED32P81581401

Appendix BLE

Refer to Appendix: Bluetooth LE of EED32P81581401

