

TEST REPORT

Product : Mini PC
Trade mark : CHUWI
Model/Type reference : HeroBox
Serial Number : N/A

Report Number : EED32M00265501 **FCC ID** : 2AHLZ-HEROBOX

Date of Issue: : Oct. 23, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED 2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Sunlight Sun

Reviewed by:

Jok Yang

Sunlight Sun

Date:

Oct. 23, 2020

Sam Chuang

Check No: 4762139776

Page 2 of 93

2 Version

Version No.	Date	Description		
00	Oct. 23, 2020		Original	
/	(6)	(6)	(0)	(0)

3 Test Summary

rest Summary		200	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Domarke	(0)	(63 /	

Remark:

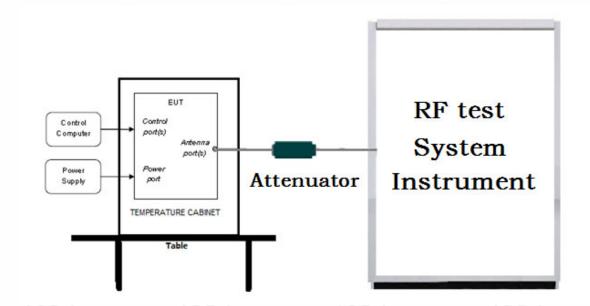
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 93

4 Content

1 CO	VER PAGE			•••••		1
2 VEI	RSION		•••••	•••••		
3 TES	ST SUMMARY	•••••	•••••	•••••	•••••	
4 CO	NTENT	540 E		A 17 To 2		Jan 10 Sec. 1
	ST REQUIREMENT					
	1 TEST SETUP5.1.1 For Conducted test s					
	5.1.2 For Radiated Emission	•				
	5.1.3 For Conducted Emiss					
5.2	2 TEST ENVIRONMENT					6
5.3	3 TEST CONDITION					6
6 GE	NERAL INFORMATION	•••••	•••••	•••••	•••••	
6.1	CLIENT INFORMATION					
	GENERAL DESCRIPTION OF					
	PRODUCT SPECIFICATION S					
	DESCRIPTION OF SUPPORT					
	TEST LOCATION					
	S DEVIATION FROM STANDARI 7 ABNORMALITIES FROM STAI					
	3 OTHER INFORMATION REQU					
	MEASUREMENT UNCERTAIN					
7 EQ	UIPMENT LIST	•••••		•••••	•••••	10
8 RA	DIO TECHNICAL REQUIR	EMENTS SPECIFICA	ATION			13
	Appendix A): 20dB Occupio					
	Appendix B): Carrier Frequ					
	Appendix C): Dwell Time					
	Appendix D): Hopping Cha					
	Appendix E): Conducted P					
	Appendix F): Band-edge fo					
	Appendix G): RF Conducte	· ·				
	Appendix H) Pseudorando					
	Appendix I) Antenna Requi Appendix J) AC Power Line	rement	n	•••••		50 50
	Appendix K) Restricted bar	nds around fundamen	ıtal frequency (Radi	ated)		50 50
	Appendix L) Radiated Spur					
	TOGRAPHS OF TEST SET					
	TOGRAPHS OF EUT CON					
PHU	IUGKAPHS OF EUT CON	SIKUCHUNAL DET	AIL5	•••••		84



Page 5 of 93

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

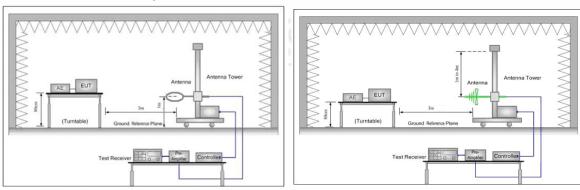


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

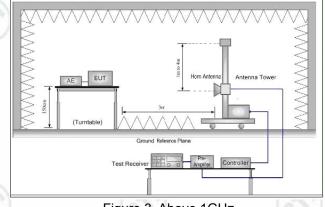
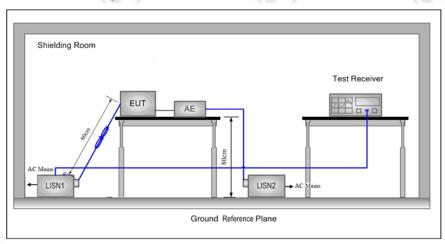
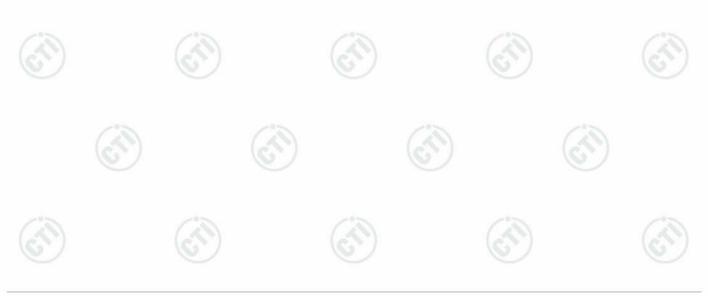



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test Mode	Ty/Dy	RF Channel			
rest Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 0	Channel 39	Channel78	
8DPSK(DH1,DH3,DH5)	2402IVII IZ ~2400 IVITIZ	2402MHz	2441MHz	2480MHz	

6 General Information

6.1 Client Information

Applicant:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Applicant:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Manufacturer:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Manufacturer:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Factory:	ILIFE Technology Co., Ltd
Address of Factory:	3rd Floor,Bld3,4-5rd, Bld6 ,LiJinCheng Industrial Park,The East of Gong Ye Road, LongHua ,ShenZhen, Guangdong Province,China

6.2 General Description of EUT

Product Name:	Mini PC			
Model No.(EUT):	HeroBox			
Tark mark:	CHUWI			(2)
EUT Supports Radios application	2400MHz to	o 2483.5MHz		6.
Power Supply:	Adapter	Model:A241-1202000D Input:100-240V~ 50/60Hz		
Sample Received Date:	Aug. 28, 20	20	6	
Sample tested Date:	Aug. 28, 20	20 to Oct.14, 2020		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(6,)
Bluetooth Version:	5.0	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	6.
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Test Power Grade:	Default	
Test Software of EUT:	DRTU	705
Antenna Type:	FPC antenna	(2/2)
Antenna Gain:	2.14 dBi	
Test Voltage:	DC 12V	

Operation	Frequency ea	ch of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7 💮	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		(6.7)

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

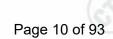
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

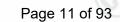
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3 Radiate	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
2/	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



7 Equipment List

		RF test s	evetem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u> </u>		
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				



/ 43	(4)	6.1	1 431		1 20
3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(21)		(EA)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	<u> </u>	
Cable line	Fulai(3M)	SF106	5217/6A	(44	

Page 12 of 93

	3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021	
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021	
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021	
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710	(0)		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(A)	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C.)	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001			

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Appendix A): 20dB Occupied Bandwidth

Test Limit

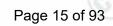
According to §15.247(a) (1),

<u>20 dB Bandwidth</u>: For reporting purposes only.

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

6.

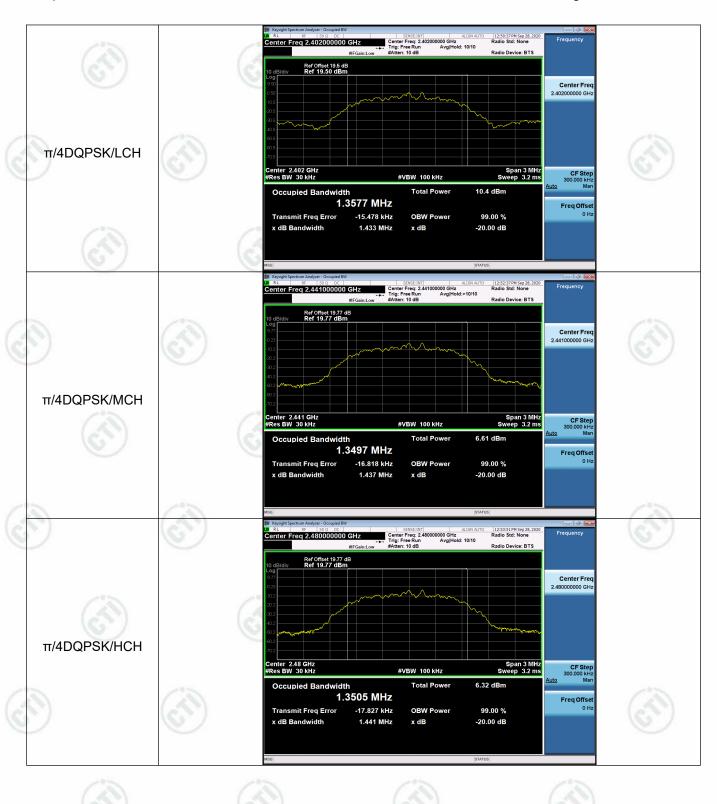
Test Setup

Test Result

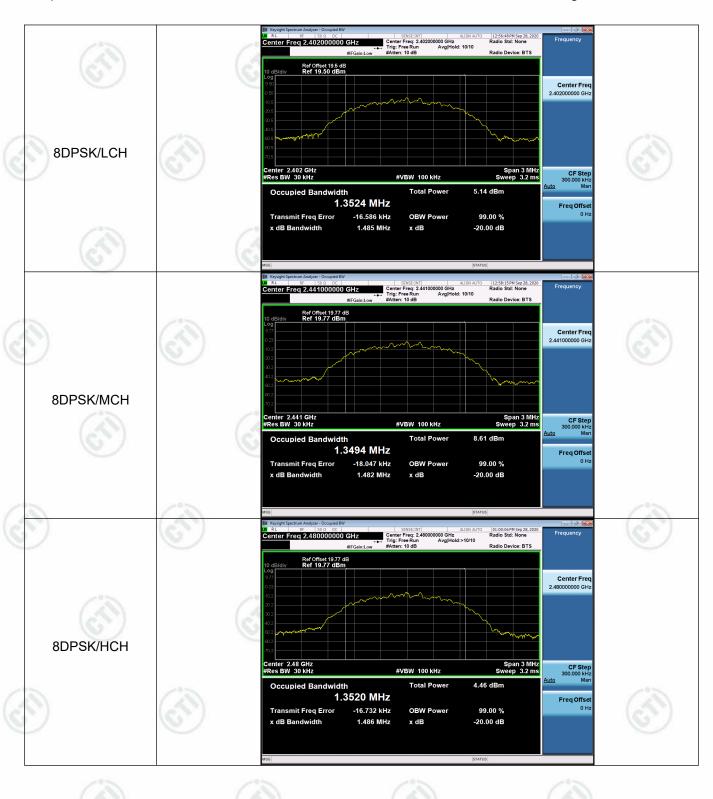
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9579	0.86719	PASS
GFSK	MCH	0.9595	0.87086	PASS
GFSK	НСН	0.9621	0.87256	PASS
π/4DQPSK	LCH	1.433	1.3577	PASS
π/4DQPSK	MCH	1.437	1.3497	PASS
π/4DQPSK	HCH	1.441	1.3505	PASS
8DPSK	LCH	1.485	1.3524	PASS
8DPSK	MCH	1.482	1.3494	PASS
8DPSK	HCH	1.486	1.3520	PASS

Page 16 of 93

Test Graph



Page 17 of 93



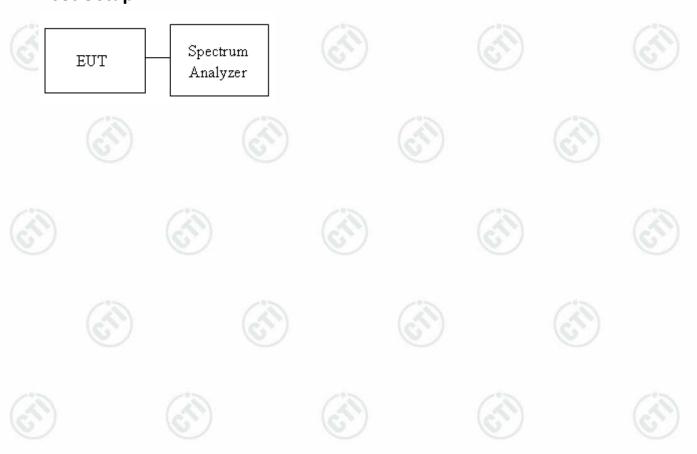
Page 18 of 93

Appendix B): Carrier Frequency Separation

Test Limit

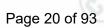
According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Limit	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.

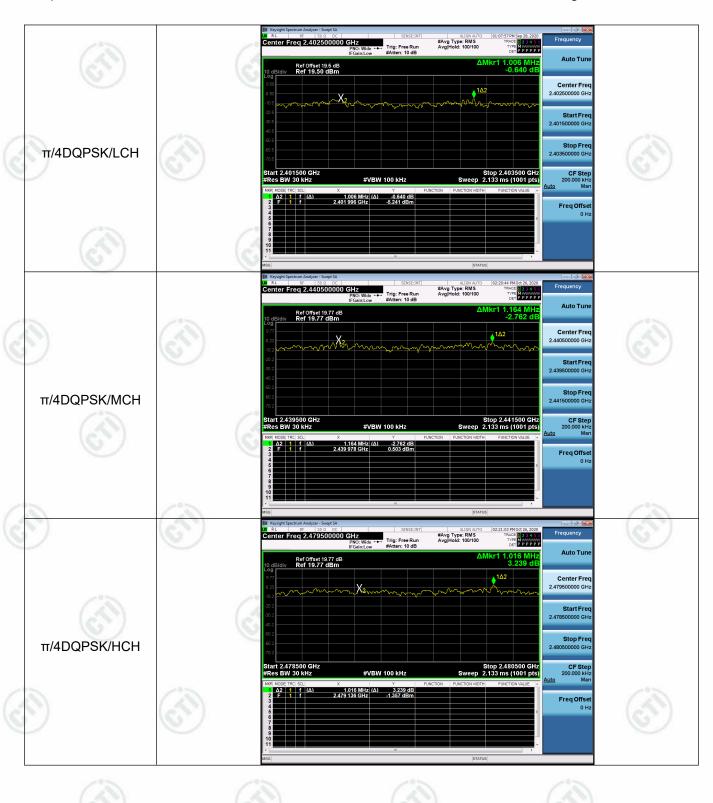

 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup

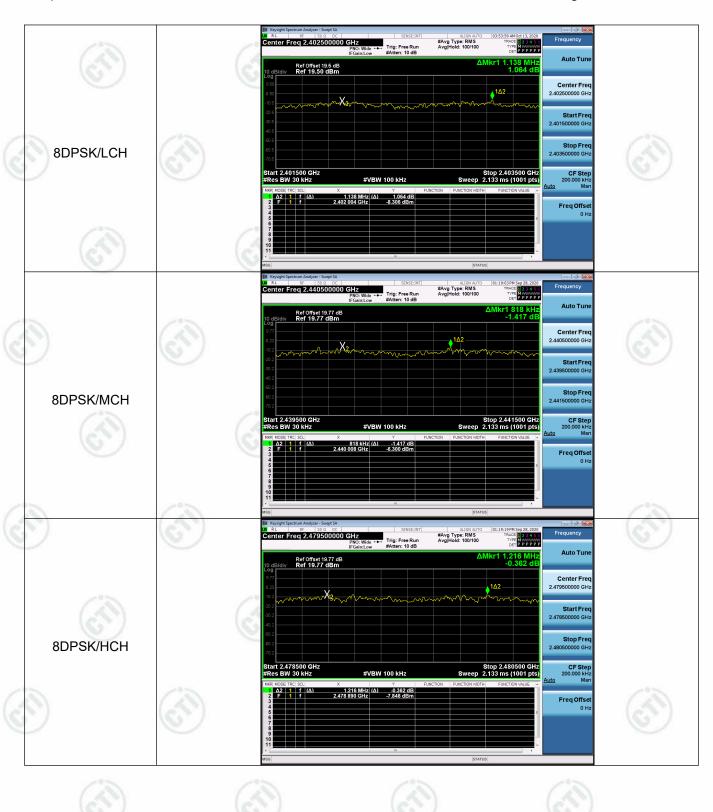
Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict	
GFSK	LCH	1.086	PASS	
GFSK	MCH	1.018	PASS	
GFSK	НСН	0.840	PASS	
π/4DQPSK	LCH	1.006	PASS	
π/4DQPSK	МСН	1.164	PASS	
π/4DQPSK	HCH	1.016	PASS	
8DPSK	LCH	1.138	PASS	
8DPSK	мсн	1.016	PASS	
8DPSK	нсн	1 216	PASS	

Page 21 of 93



Page 22 of 93



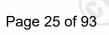
Page 23 of 93

Appendix C): Dwell Time

Test Limit

According to §15.247(a)(1)(iii),

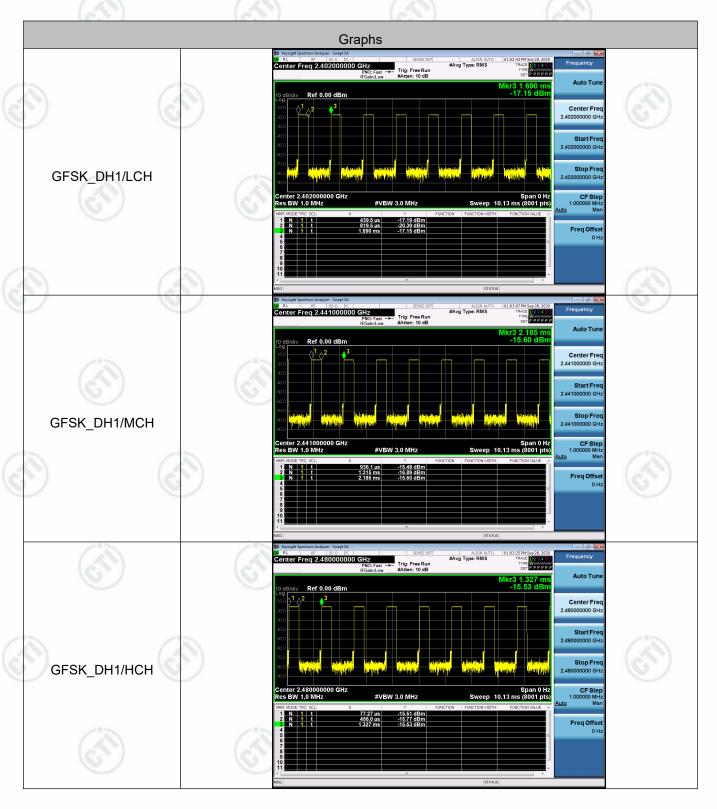
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

Result Table

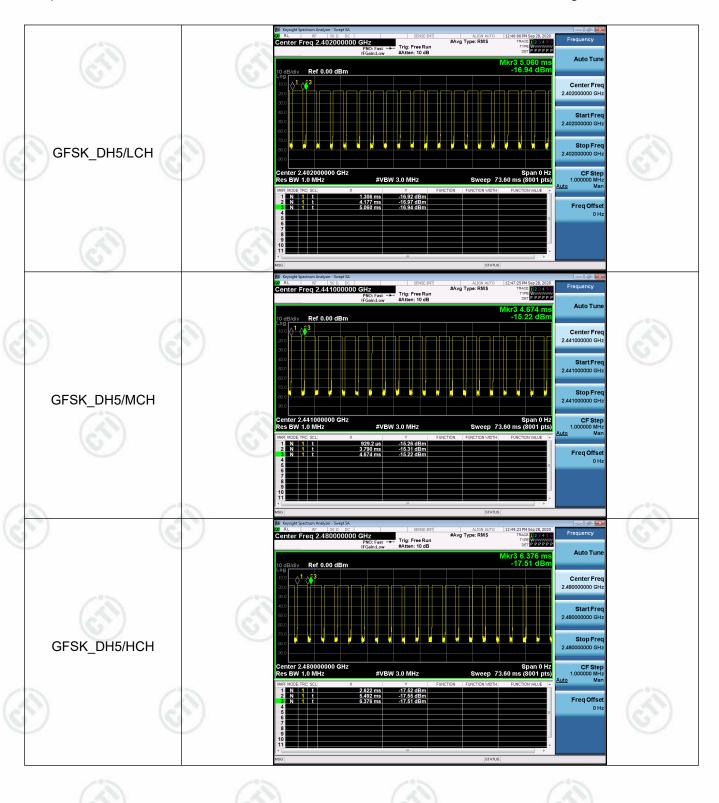
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.38	320	0.122	0.30	PASS
GFSK	DH1	MCH	0.378733	320	0.121	0.30	PASS
GFSK	DH1	НСН	0.3787333	320	0.121	0.30	PASS
GFSK	DH3	LCH	1.63527	160	0.262	0.65	PASS
GFSK	DH3	МСН	1.63527	160	0.262	0.65	PASS
GFSK	DH3	НСН	1.633997	160	0.261	0.65	PASS
GFSK	DH5	LCH	2.8704	106.7	0.306	0.76	PASS
GFSK	DH5	МСН	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	НСН	2.8704	106.7	0.306	0.76	PASS



Page 26 of 93

Test Graph

Page 27 of 93



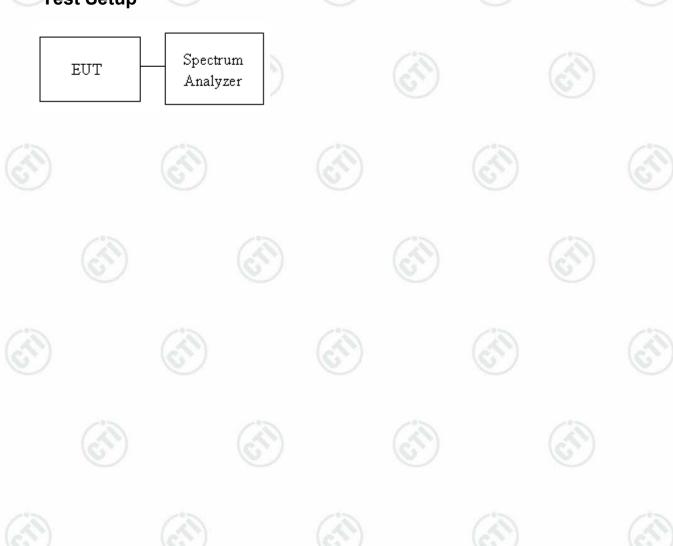
www.cti-cert.com E-mail: info@cti-cert.com

Hotline: 400-6788-333

Page 28 of 93

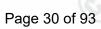
Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)


Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

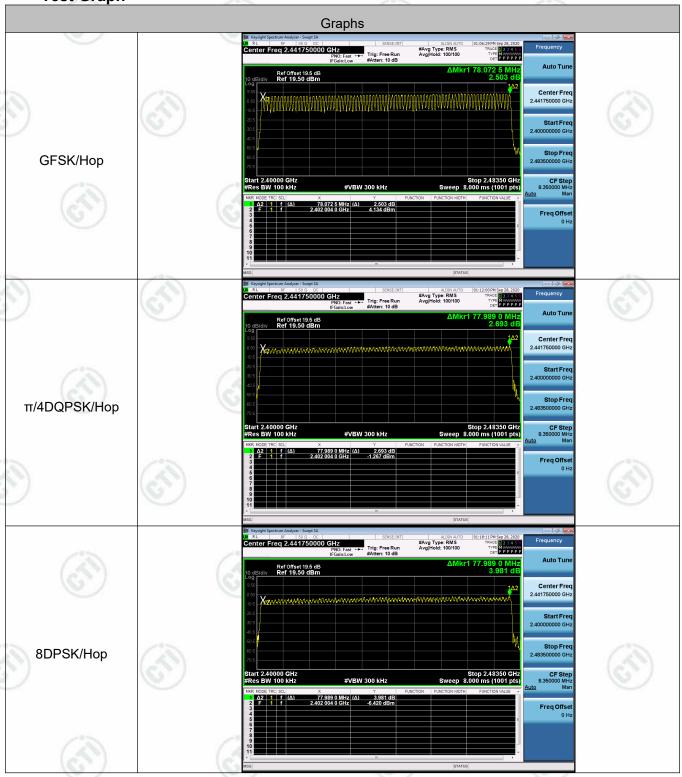
Test method Refer as ANSI C63.10: 2013 clause 7.8.3


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

Test Setup

Result Table

Mode Channel.		Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS



Page 31 of 93

Test Graph

Page 32 of 93

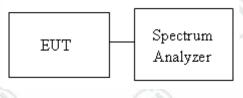
Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

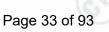
FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Limit	 ✓ Antenna not exceed 6 dBi: 21dBm ☐ Antenna with DG greater than 6 dBi: 21dBm [Limit = 30 – (DG – 6)]

Average output power: For reporting purposes only.

Test Procedure


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW ≥ RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

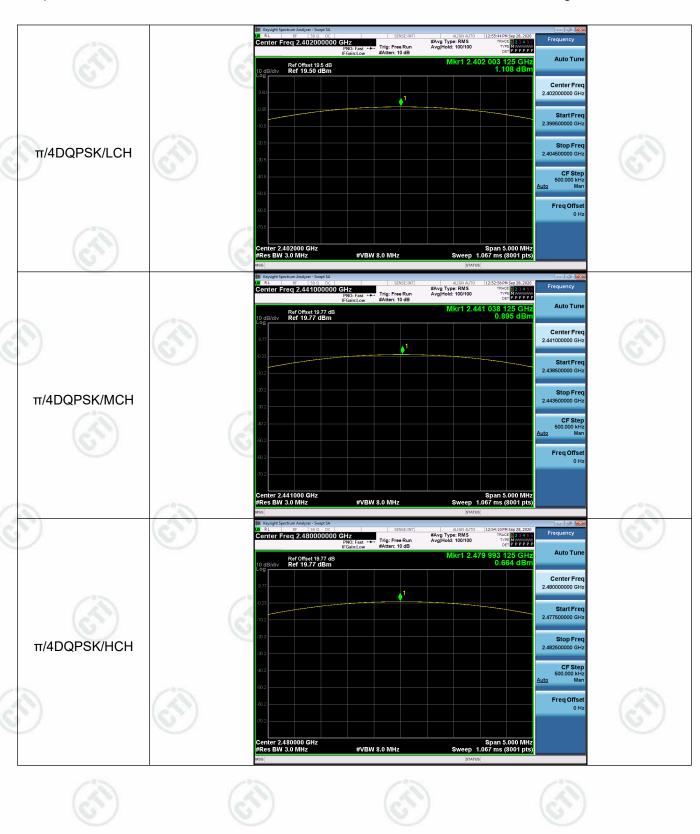
Test Setup

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	2.616	PASS
GFSK	MCH	2.501	PASS
GFSK	HCH	2.326	PASS
π/4DQPSK	LCH	1.108	PASS
π/4DQPSK	MCH	0.895	PASS
π/4DQPSK	HCH	0.664	PASS
8DPSK	LCH	-0.518	PASS
8DPSK MCH		-0.827	PASS
8DPSK	HCH	-1 147	PASS

Page 34 of 93

Test Graph





Page 35 of 93

Page 36 of 93

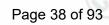
Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit	-20 dBc	(37)	(%)

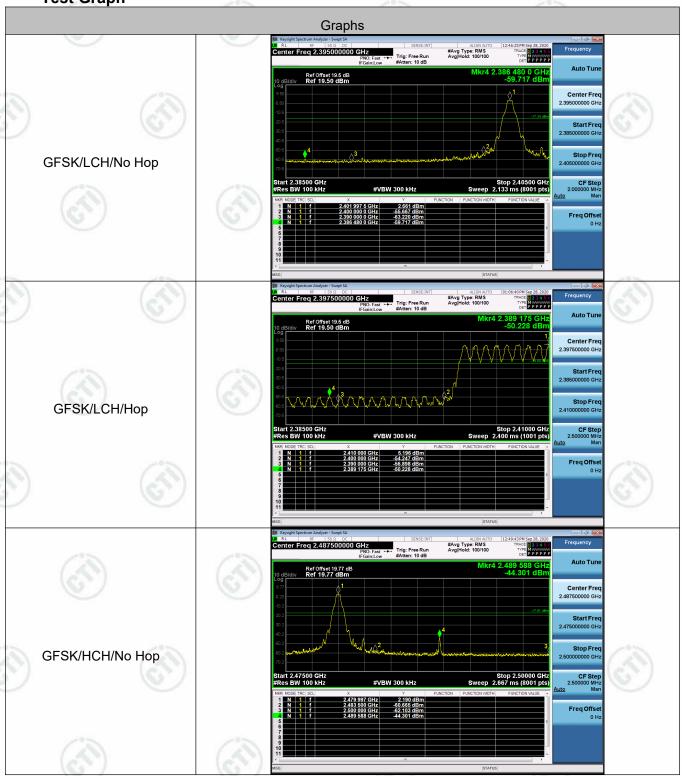
.


Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

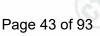
Result Table


					1657			
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict	
0501		0.400	2.661	Off	-59.717	-17.34	PASS	
GFSK	LCH	2402	5.196	On	-50.228	-14.8	PASS	
GFSK I		0.400	2.190	Off	-44.301	-17.81	PASS	
	HCH	2480	7.869	On	-46.614	-12.13	PASS	
_/ADODOK	1.011	2402	-1.092	Off	-59.218	-21.09	PASS	
π/4DQPSK	π/4DQPSK LCH		-1.117	On	-54.680	-21.12	PASS	
-UDODOK	11011	0.400	-1.749	Off	-46.314	-21.75	PASS	
π/4DQPSK	HCH	2480	1.879	On	-44.112	-18.12	PASS	
oppok	1.011	0.400	-3.026	Off	-59.328	-23.03	PASS	
8DPSK	LCH	2402	-5.417	On	-58.121	-25.42	PASS	
ODDCK	ПСП	2400	-3.767	Off	-46.098	-23.77	PASS	
8DPSK	HCH	2480	-1.993	On	-44.538	-21.99	PASS	

Page 39 of 93

Page 40 of 93

Page 41 of 93



Page 42 of 93

Appendix G): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

٩	Limit	A 10	-20 dBc	
þ	Limit	0	-20 dbc	(6)

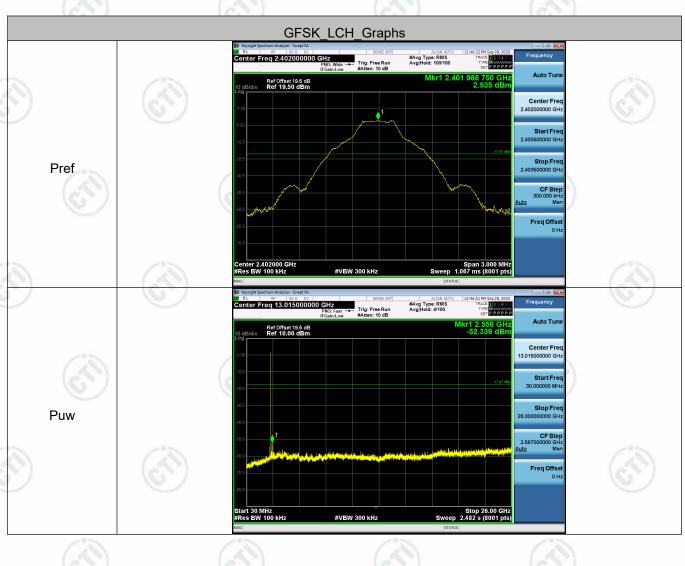
Test Procedure

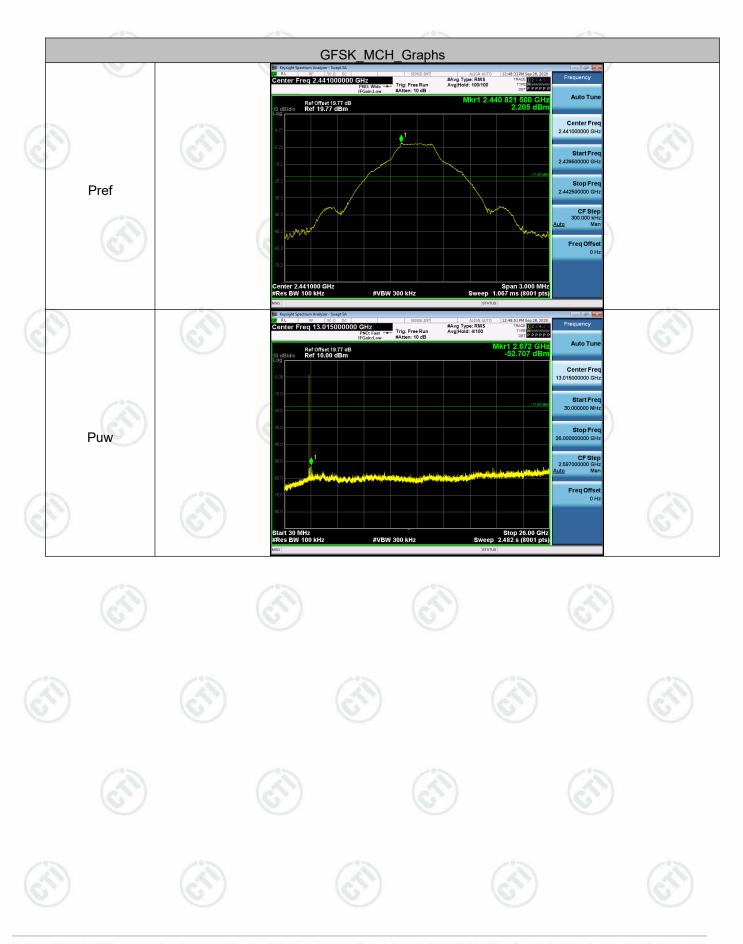
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

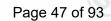
Test Setup

Result Table

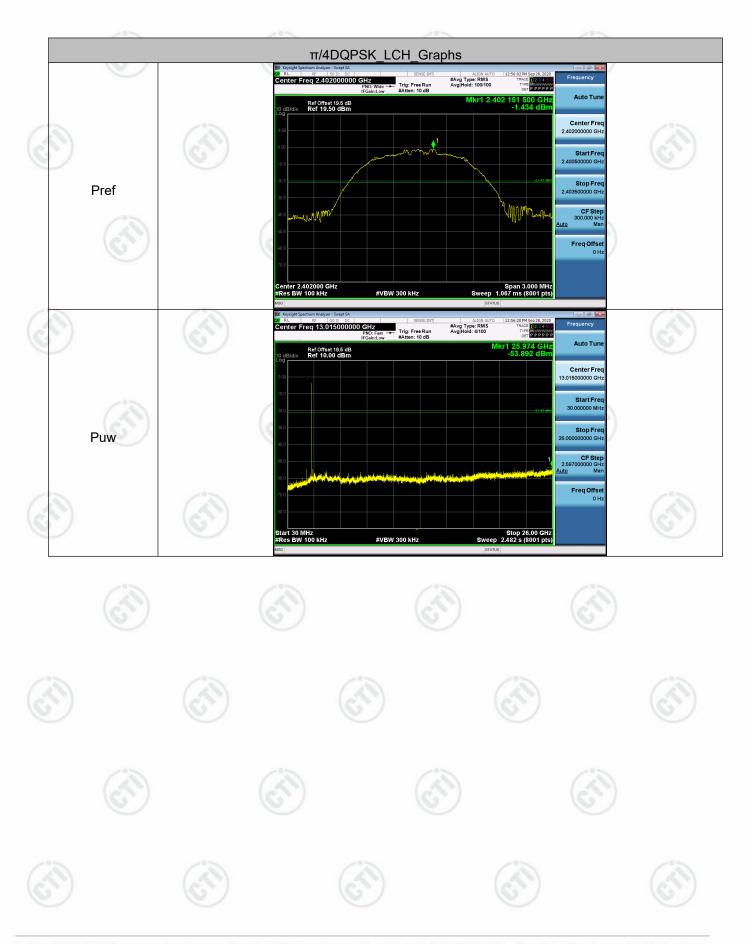
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	2.535	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	2.205	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	2.186	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-1.434	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	-1.622	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	-1.755	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-3.109	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-3.428	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	нсн	-3.789	<limit< td=""><td>PASS</td></limit<>	PASS




Test Graph

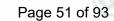


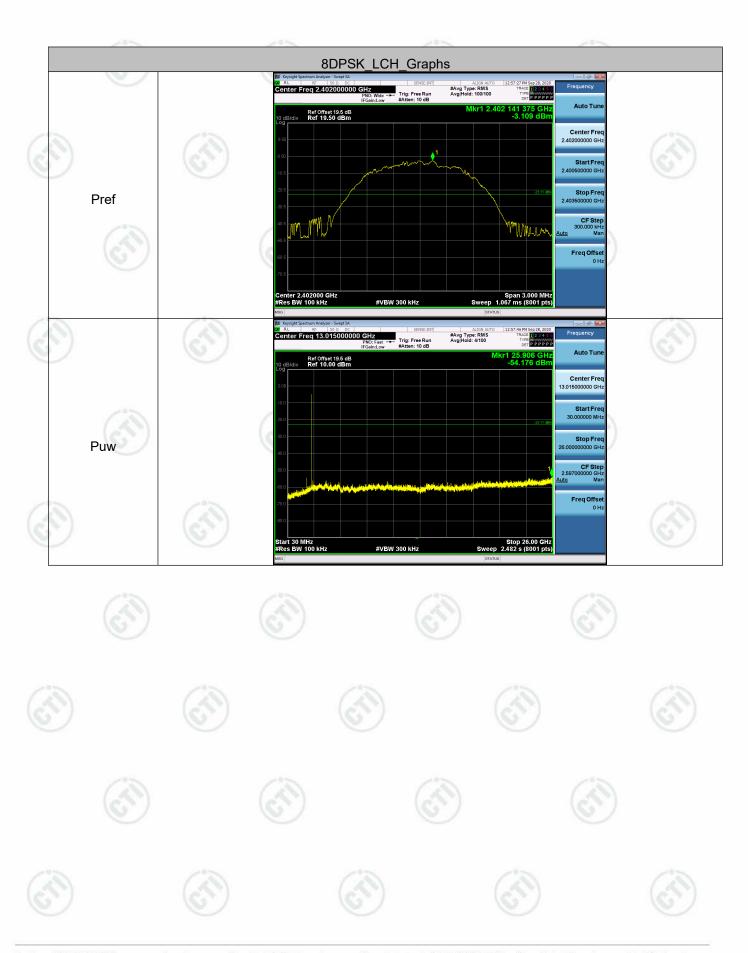




Page 48 of 93







Page 50 of 93

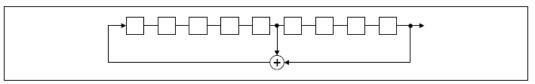
Page 52 of 93

Page 54 of 93

Appendix H) Pseudorandom Frequency Hopping Sequence

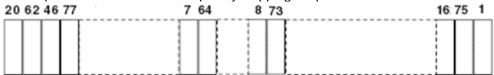
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

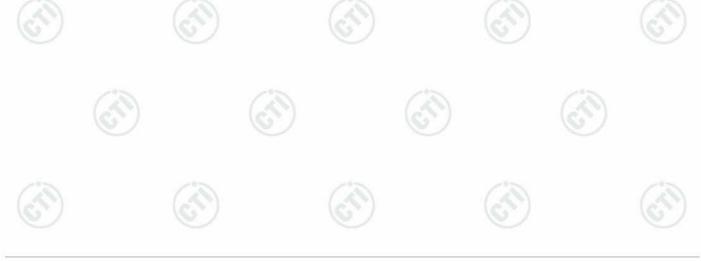
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

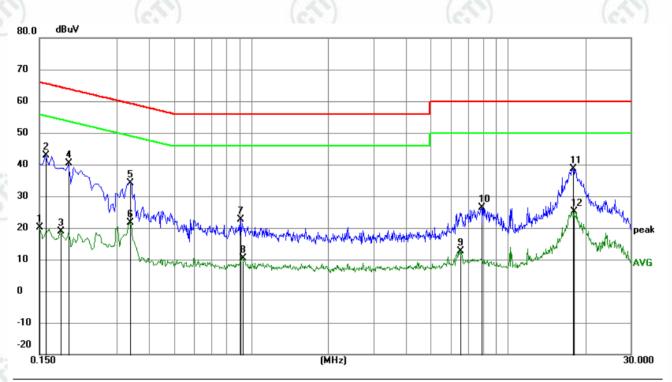
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:



The antenna is FPC antenna. The best case gain of the antenna is 2.14dBi.

Test Procedure:	Test frequency range :150KHz-	30MHz						
	1) The mains terminal disturba	nce voltage test was	conducted in a shie	lded room.				
/	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance							
(e)	Stabilization Network) which power cables of all other ur							
0	which was bonded to the gr							
	for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not							
	exceeded.							
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,							
	4) The test was performed with a vertical ground reference plane. The rear of the							
6	EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground							
(6)	reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a							
	ground reference plane for	LISNs mounted o	n top of the grou	nd referenc				
	plane. This distance was be	•						
	All other units of the EUT and LISN 2.	nd associated equipm	ient was at least 0.	8 m irom u				
	5) In order to find the maximum emission, the relative positions of equipment and							
0	all of the interface cables must be changed according to ANSI C63.10 on							
	conducted measurement.							
Limit:	Frequency range (MHz)	Limit (d	BuV)					
	requeries range (mi iz)	Quasi-peak	Average	(3)				
(6)	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15							
(67)								
	MHz to 0.50 MHz.							
	NOTE : The lower limit is applic		_					



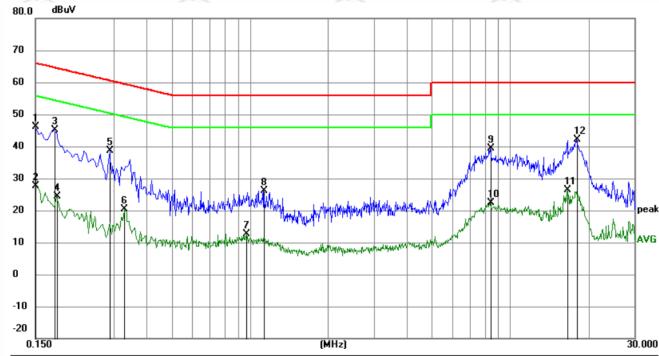
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure-	Limit	Margin		
INO. IVIK.	1 164.	Level	Factor	ment		Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	10.29	9.87	20.16	56.00	-35.84	AVG	
2	0.1590	33.06	9.87	42.93	65.52	-22.59	QP	
3	0.1815	8.92	9.87	18.79	54.42	-35.63	AVG	
4	0.1949	30.49	9.87	40.36	63.83	-23.47	QP	
5	0.3390	24.17	10.03	34.20	59.23	-25.03	QP	
6	0.3390	11.64	10.03	21.67	49.23	-27.56	AVG	
7	0.9105	12.76	9.85	22.61	56.00	-33.39	QP	
8	0.9240	0.44	9.85	10.29	46.00	-35.71	AVG	
9	6.4995	2.91	9.79	12.70	50.00	-37.30	AVG	
10	7.8765	16.66	9.79	26.45	60.00	-33.55	QP	
11 *	17.8890	28.75	9.95	38.70	60.00	-21.30	QP	
12	18.1050	15.26	9.95	25.21	50.00	-24.79	AVG	

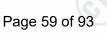


Page 58 of 93

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	36.36	9.87	46.23	66.00	-19.77	QP	
2	0.1500	17.84	9.87	27.71	56.00	-28.29	AVG	
3	0.1770	35.17	9.87	45.04	64.63	-19.59	QP	
4	0.1815	14.48	9.87	24.35	54.42	-30.07	AVG	
5	0.2895	28.66	10.05	38.71	60.54	-21.83	QP	
6	0.3300	10.25	10.04	20.29	49.45	-29.16	AVG	
7	0.9735	2.81	9.84	12.65	46.00	-33.35	AVG	
8	1.1310	16.42	9.82	26.24	56.00	-29.76	QP	
9	8.3895	29.58	9.79	39.37	60.00	-20.63	QP	
10	8.3895	12.65	9.79	22.44	50.00	-27.56	AVG	
11	16.5795	16.38	9.94	26.32	50.00	-23.68	AVG	
12 *	17.9880	32.25	9.95	42.20	60.00	-17.80	QP	

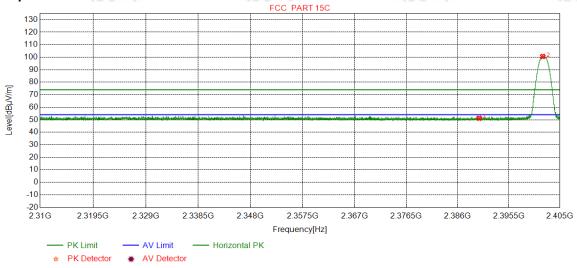
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Appendix K) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark						
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak						
		Ab 2112 40115	Peak	1MHz	3MHz	Peak	120					
9	(Above 1GHz	Peak	1MHz	10Hz	Average	(3)					
	Test Procedure:	Below 1GHz test procedu a. The EUT was placed o										
		 at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 										
		bands. Save the spectr	um analyzer plot									
		bands. Save the spectr for lowest and highest of the spectral	um analyzer plot channel Ire as below: The is the test site, ber and change the distance is 1 rowest channel, ments are perforred found the X axis.	t. Repeat f , change fr form table meter and the Highes med in X, s positioni	or each po om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Ch to 1.5 metre).	dulatio					
	Limit:	bands. Save the spectr for lowest and highest of the spectral	um analyzer plot channel Ire as below: The is the test site, ber and change the distance is 1 rowest channel, the ments are perforred found the X axions until all frequence.	t. Repeat f change fr form table meter and the Highes med in X, s positioni encies me	or each po om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Ch to 1.5 metre).	dulatio					
	Limit:	bands. Save the spectr for lowest and highest of the spectral	um analyzer plot channel Ire as below: The is the test site, ber and change the distance is 1 rowest channel, ments are performed found the X axions until all frequences until (dBuV/r	t. Repeat f , change fr form table neter and the Highes med in X, s positioni encies me	or each poor om Semi- 0.8 metre table is 1.5 st channel Y, Z axis programmed was red was Rer	Anechoic Ch to 1.5 metre). positioning for t is worse cas as complete.	dulatio ambei					
	Limit:	bands. Save the spectr for lowest and highest of the for lowest and highest of the for lowest and highest of lowest and highest of the formal street and t	um analyzer plot channel re as below: re is the test site, ber and change ne distance is 1 r owest channel, ments are perfor d found the X axi res until all frequ Limit (dBuV/r 40.0	t. Repeat f , change fr form table meter and the Highes med in X, is positioni encies me m @3m)	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark	dulatio ambei					
	Limit:	bands. Save the spectr for lowest and highest of the spectra for lowest fill fill fill for lowest fill fill fill fill fill fill fill fil	um analyzer plot channel are as below: re is the test site, ber and change ne distance is 1 r owest channel, ments are perfor d found the X axi res until all frequires Limit (dBuV/r 40.0 43.5	t. Repeat f , change fr form table meter and the Highes med in X, s positioni encies me m @3m)	or each poor om Semi- 0.8 metre table is 1.5 st channel Y, Z axis programmed was red was Rer Quasi-pe	Anechoic Ch to 1.5 metre). positioning for t is worse cas as complete. mark eak Value	dulatio ambel					
	Limit:	bands. Save the spectr for lowest and highest of lowest and lowest	um analyzer plot channel re as below: re is the test site, ber and change ne distance is 1 r owest channel, ments are perform d found the X axis res until all freque Limit (dBuV/r 40.0 43.5 46.0	t. Repeat f , change fr form table meter and the Highes med in X, s positioni encies me m @3m)	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch to 1.5 metre). oositioning for t is worse cas as complete. mark eak Value eak Value	ambe					
	Limit:	bands. Save the spectr for lowest and highest of the spectra for lowest fill fill fill for lowest fill fill fill fill fill fill fill fil	um analyzer plot channel Ire as below: re is the test site, ber and change ne distance is 1 r owest channel, ments are perfor d found the X axi res until all freque Limit (dBuV/r 40.0 43.5 46.0 54.0	t. Repeat f , change fr form table meter and the Highes med in X, is positioni encies me m @3m)	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark cak Value cak Value cak Value	dulatio ambel					
	Limit:	bands. Save the spectr for lowest and highest of lowest and lowest	um analyzer plot channel re as below: re is the test site, ber and change ne distance is 1 r owest channel, ments are perform d found the X axis res until all freque Limit (dBuV/r 40.0 43.5 46.0	t. Repeat f , change fr form table meter and the Highes med in X, s positioni encies me m @3m)	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	Anechoic Ch to 1.5 metre). oositioning for t is worse cas as complete. mark eak Value eak Value	dulatio ambei					

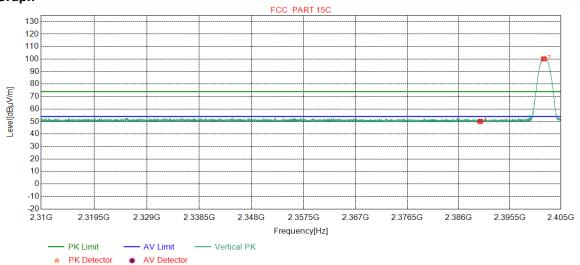


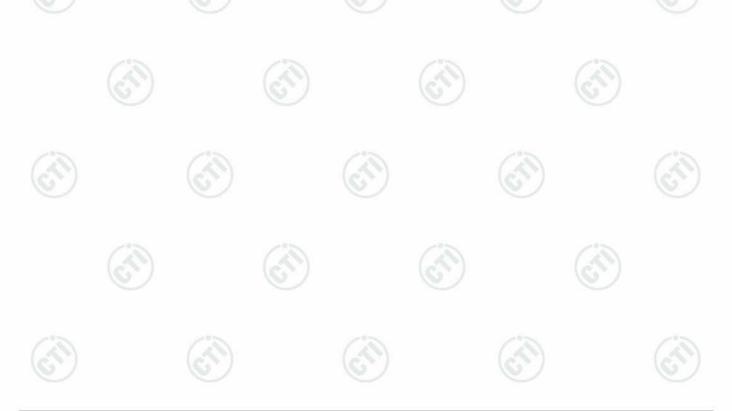
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.72	51.22	74.00	22.78	Pass	Horizontal
2	2401.8141	32.26	13.31	-43.12	98.11	100.56	74.00	-26.56	Pass	Horizontal

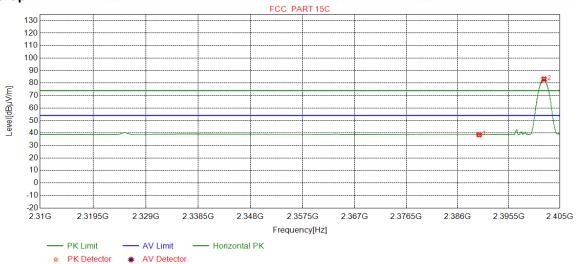


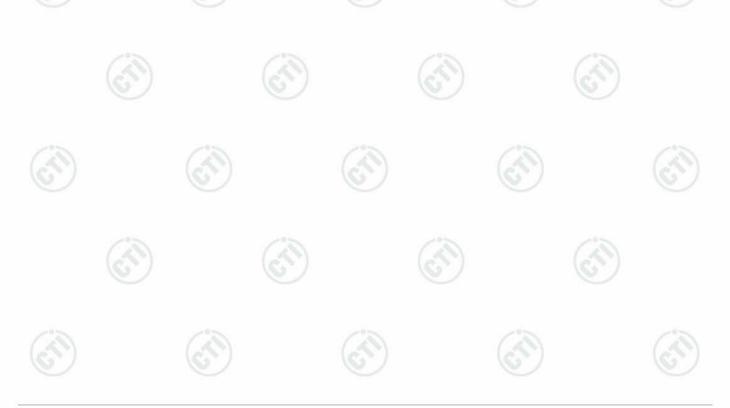


Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

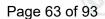
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.57	50.07	74.00	23.93	Pass	Vertical
2	2401.8268	32.26	13.31	-43.12	97.78	100.23	74.00	-26.23	Pass	Vertical

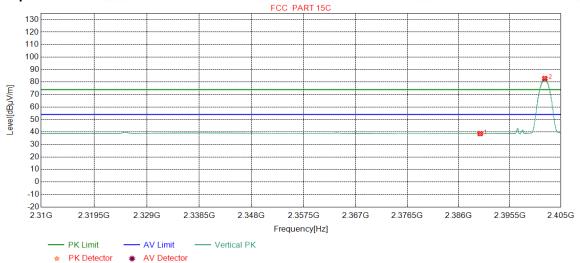


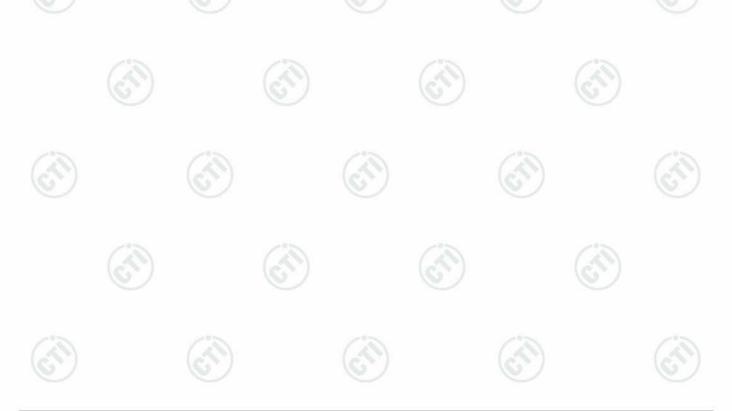


Mode:	GFSK Transmitting	Channel:	2402
emark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.17	38.67	54.00	15.33	Pass	Horizontal
2	2402.0421	32.26	13.31	-43.12	80.72	83.17	54.00	-29.17	Pass	Horizontal

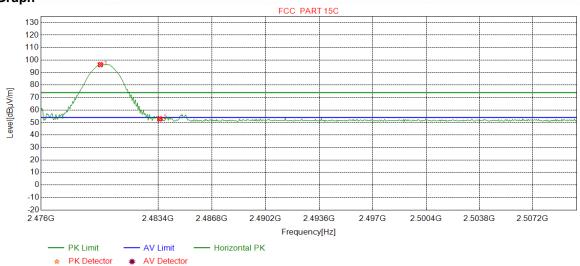


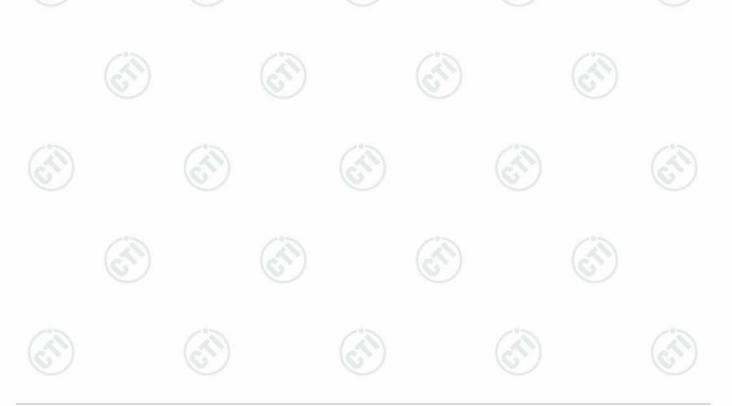


Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. Factor NO Result **Polarity** loss gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -43.12 36.20 38.70 54.00 15.30 **Pass** Vertical Pass 2 2402.0041 32.26 13.31 -43.12 80.37 82.82 54.00 -28.82 Vertical

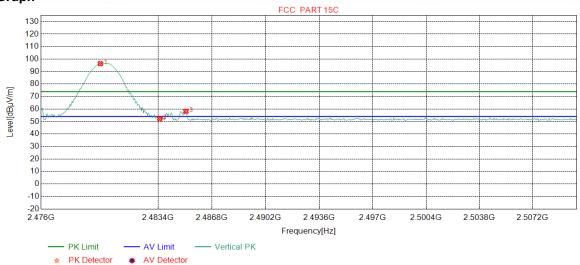


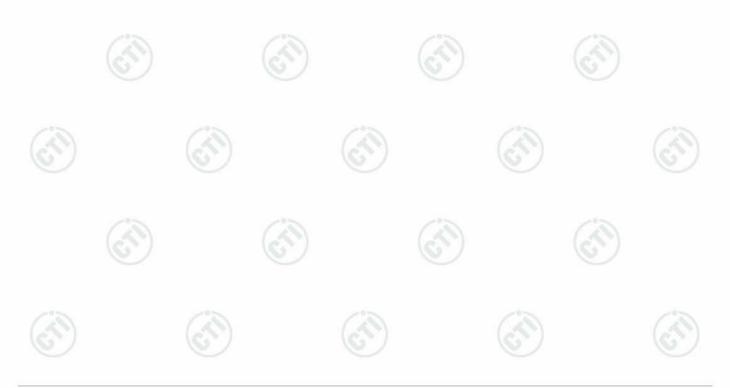


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.71	96.37	74.00	-22.37	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.25	52.90	74.00	21.10	Pass	Horizontal

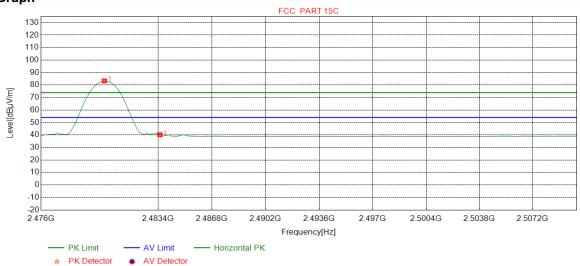


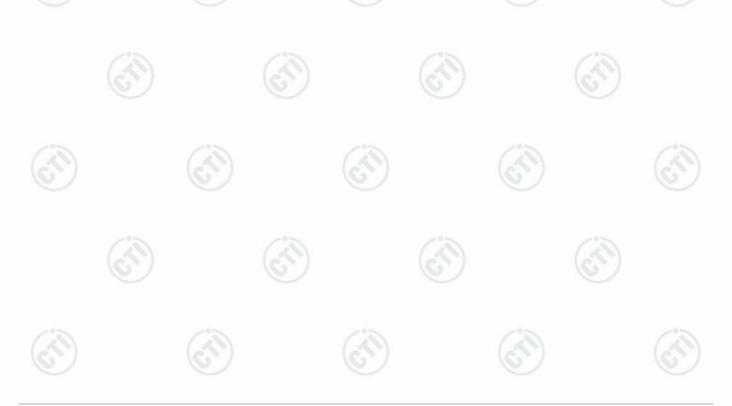


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.71	96.37	74.00	-22.37	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.75	52.40	74.00	21.60	Pass	Vertical
3	2485.1489	32.38	13.37	-43.11	55.53	58.17	74.00	15.83	Pass	Vertical

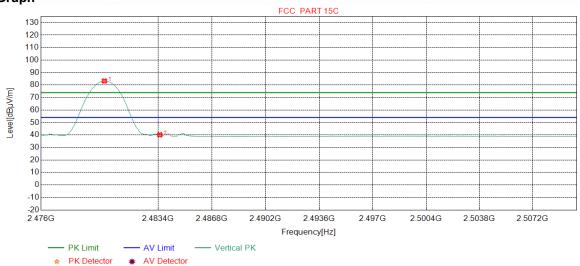


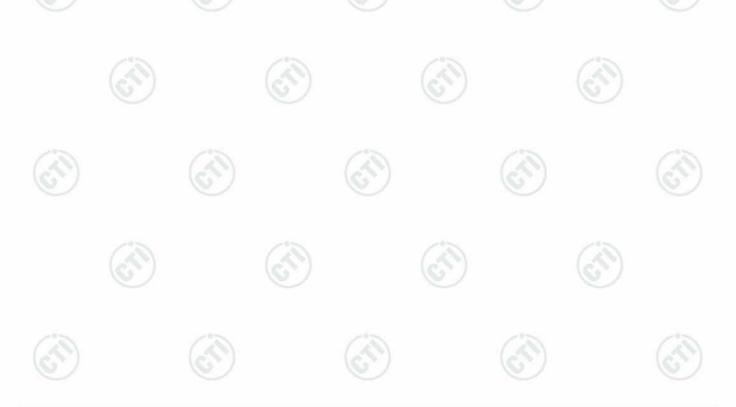


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

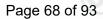
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	80.72	83.38	54.00	-29.38	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	37.62	40.27	54.00	13.73	Pass	Horizontal

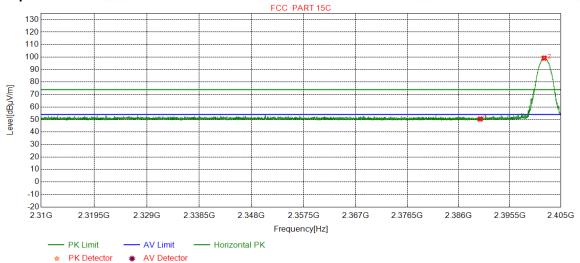


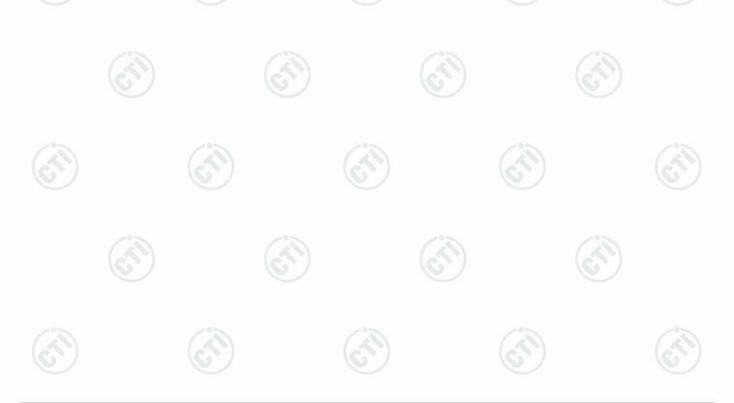


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	80.64	83.30	54.00	-29.30	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.55	40.20	54.00	13.80	Pass	Vertical

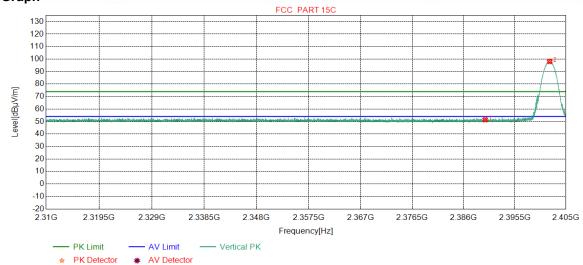


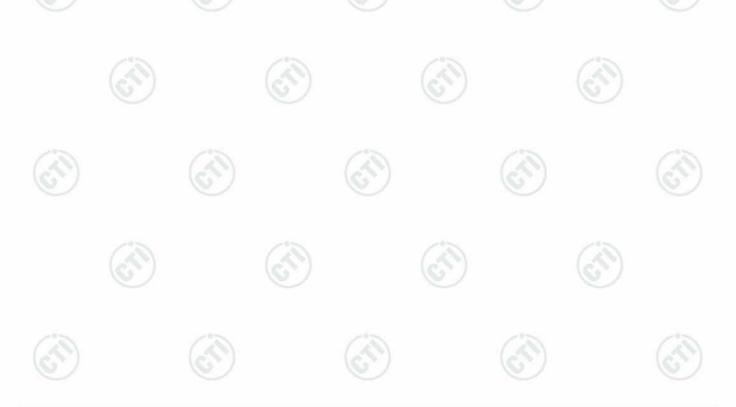


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

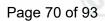
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.90	50.40	74.00	23.60	Pass	Horizontal
2	2401.8901	32.26	13.31	-43.12	96.70	99.15	74.00	-25.15	Pass	Horizontal



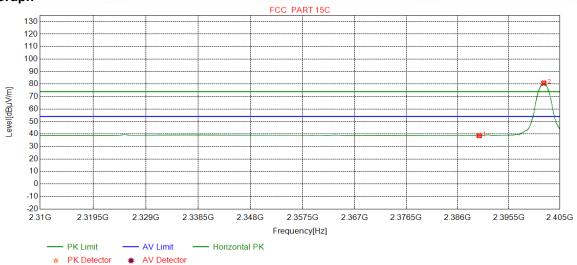


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph



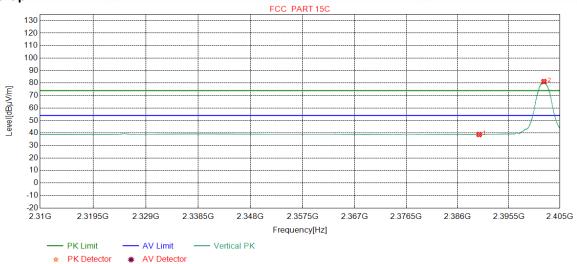
Ant Cable Pream Reading Level Limit Margin Freq. Factor NO Result **Polarity** loss gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -43.12 48.91 51.41 74.00 22.59 **Pass** Vertical Pass 2 2401.9851 32.26 13.31 -43.12 95.60 98.05 74.00 -24.05 Vertical

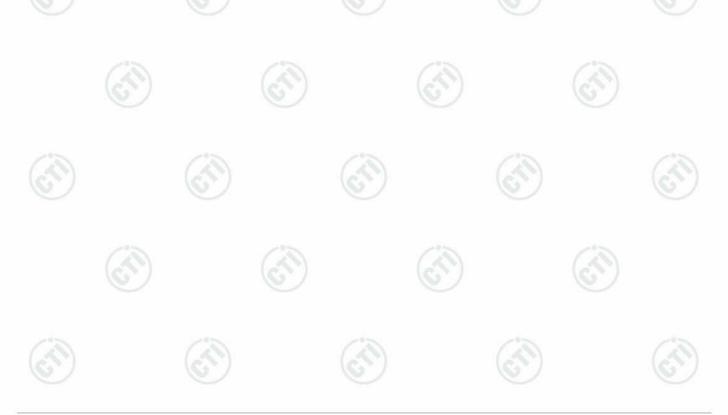


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.23	38.73	54.00	15.27	Pass	Horizontal
2	2401.9978	32.26	13.31	-43.12	78.32	80.77	54.00	-26.77	Pass	Horizontal

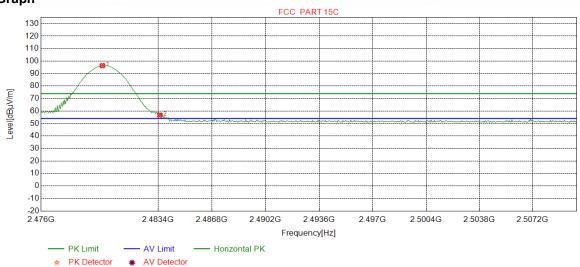


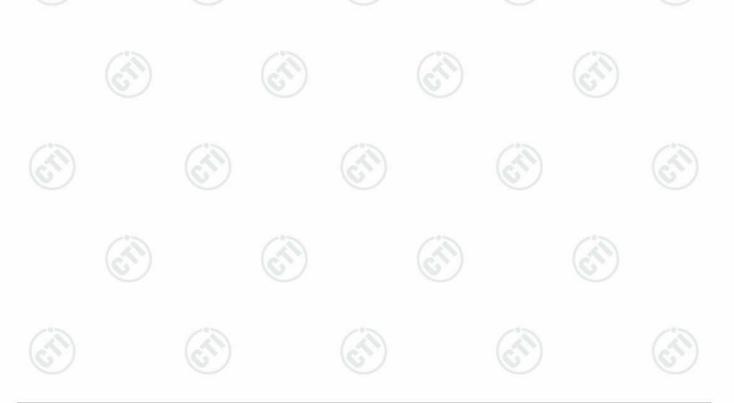


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. Factor NO Result **Polarity** loss gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -43.12 36.34 38.84 54.00 15.16 **Pass** Vertical Pass 2 2402.0358 32.26 13.31 -43.12 78.76 81.21 54.00 -27.21 Vertical

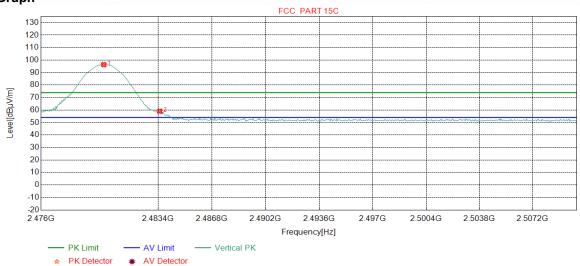


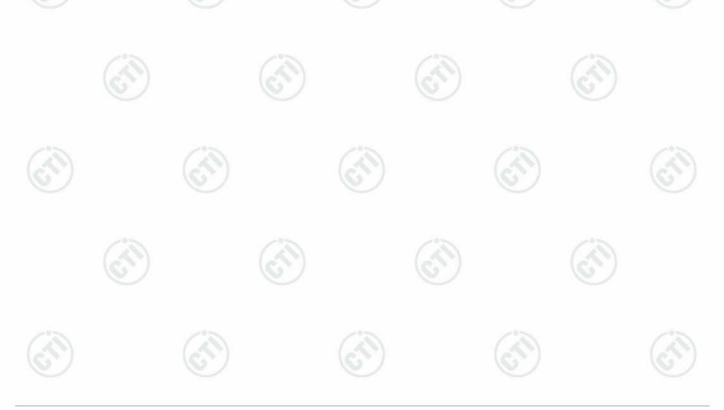


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

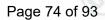
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8723	32.37	13.39	-43.10	93.70	96.36	74.00	-22.36	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	54.07	56.72	74.00	17.28	Pass	Horizontal

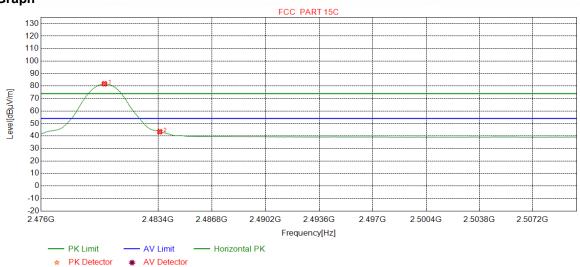


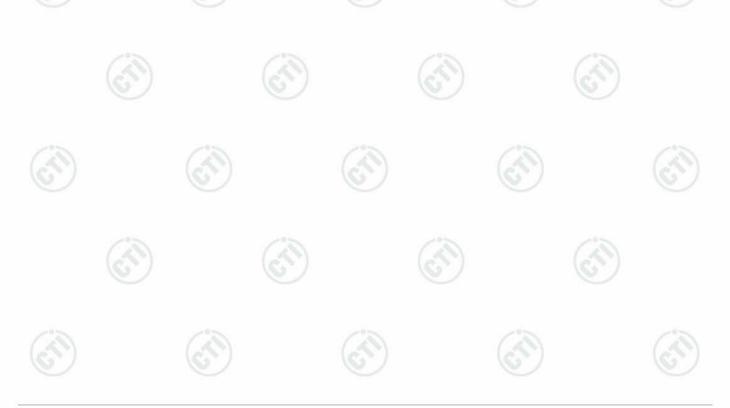


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

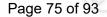

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	93.70	96.36	74.00	-22.36	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	56.41	59.06	74.00	14.94	Pass	Vertical

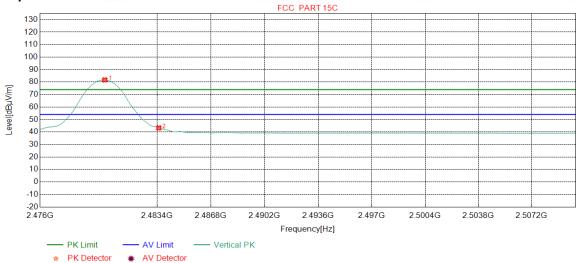




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

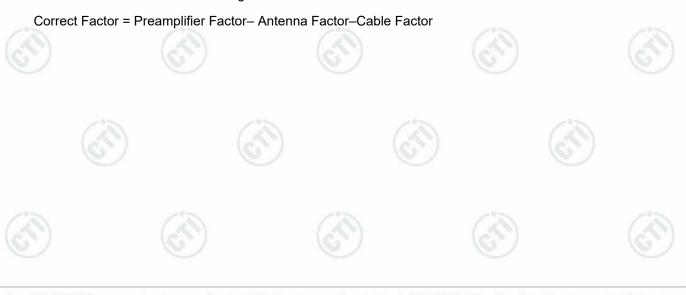

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	79.15	81.81	54.00	-27.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.78	43.43	54.00	10.57	Pass	Horizontal



Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	79.08	81.74	54.00	-27.74	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.65	43.30	54.00	10.70	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Appendix L) Radiated Spurious Emissions						
Receiver Setup:						

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Limit:

Below 1GHz test procedure as below:

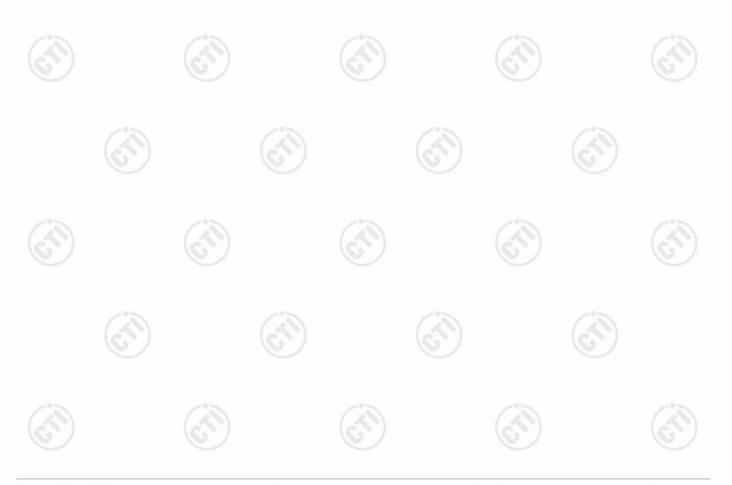
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

 Coddino difficial inequalities inedestred was complete.											
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)							
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300							
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30							
1.705MHz-30MHz	30	-	-	30							
30MHz-88MHz	100	40.0	Quasi-peak	3							
88MHz-216MHz	150	43.5	Quasi-peak	3							
216MHz-960MHz	200	46.0	Quasi-peak	3							
960MHz-1GHz	500	54.0	Quasi-peak	3							
Above 1GHz	500	54.0	Average	3							

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2441MHz was selected as the worst condition. The test data of the worstcase condition was recorded in this report.

Radiated Emission below 1GHz

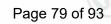
Mode	:		GFSK T	ransmitting	9			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	19190.607	38.96	0.00	-63.31	71.94	47.59	74.00	26.41	Pass	Н	PK
2	20571.342	38.77	0.00	-63.39	70.51	45.89	74.00	28.11	Pass	Н	PK
3	21121.004	38.58	0.00	-63.27	70.30	45.61	74.00	28.39	Pass	Н	PK
4	22925.117	38.80	0.00	-63.60	68.81	44.01	74.00	29.99	Pass	Н	PK
5	23974.879	40.14	0.00	-60.58	66.49	46.05	74.00	27.95	Pass	Н	PK
6	24721.108	40.56	0.00	-60.38	66.17	46.35	74.00	27.65	Pass	Н	PK
7	19365.614	38.96	0.00	-62.97	70.69	46.68	74.00	27.32	Pass	V	PK
8	19835.193	38.97	0.00	-62.49	70.16	46.64	74.00	27.36	Pass	V	PK
9	21535.141	38.45	0.00	-63.29	70.89	46.05	74.00	27.95	Pass	V	PK
10	22617.384	38.64	0.00	-62.98	69.08	44.74	74.00	29.26	Pass	V	PK
11	23561.862	39.59	0.00	-61.58	67.48	45.49	74.00	28.51	Pass	V	PK
12	24681.067	40.54	0.00	-60.37	66.68	46.85	74.00	27.15	Pass	V	PK

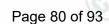
www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Transmitter Emission above 1GHz

Mode	э:		GFSK 7	Γransmitti	ng			Channel:		2402	Polarity Remark H PK H PK H PK H PK		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1363.0363	28.26	2.84	-42.71	51.93	40.32	74.00	33.68	Pass	Н	PK		
2	3930.0620	33.74	4.34	-43.01	50.14	45.21	74.00	28.79	Pass	Н	PK		
3	4804.0000	34.50	4.55	-42.80	47.31	43.56	74.00	30.44	Pass	Н	PK		
4	7206.0000	36.31	5.81	-42.16	45.90	45.86	74.00	28.14	Pass	Н	PK		
5	9608.0000	37.64	6.63	-42.10	46.66	48.83	74.00	25.17	Pass	Н	PK		
6	12010.000	39.31	7.60	-41.90	47.03	52.04	74.00	21.96	Pass	Н	PK		
7	1341.8342	28.24	2.81	-42.74	51.26	39.57	74.00	34.43	Pass	V	PK		
8	3036.0024	33.21	4.86	-43.10	50.02	44.99	74.00	29.01	Pass	V	PK		
9	4804.0000	34.50	4.55	-42.80	46.93	43.18	74.00	30.82	Pass	V	PK		
10	7206.0000	36.31	5.81	-42.16	46.33	46.29	74.00	27.71	Pass	V	PK		
11	9608.0000	37.64	6.63	-42.10	46.41	48.58	74.00	25.42	Pass	V	PK		
12	12010.000	39.31	7.60	-41.90	45.88	50.89	74.00	23.11	Pass	V	PK		

Mode	э:		GFSK T	Transmitti	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1708.2708	29.77	3.20	-42.65	54.30	44.62	74.00	29.38	Pass	Н	PK
2	3420.0280	33.37	4.51	-43.10	52.34	47.12	74.00	26.88	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	46.59	43.10	74.00	30.90	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	47.46	47.60	74.00	26.40	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.55	48.87	74.00	25.13	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	45.51	50.71	74.00	23.29	Pass	Н	PK
7	1789.2789	30.31	3.30	-42.70	51.12	42.03	74.00	31.97	Pass	V	PK
8	3080.0053	33.23	4.76	-43.09	50.16	45.06	74.00	28.94	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	48.41	44.92	74.00	29.08	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.47	46.61	74.00	27.39	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.84	49.16	74.00	24.84	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	46.15	51.35	74.00	22.65	Pass	V	PK
1 - 00	7		200		1 -0%		17.0	49. V.)		11.00	9.1





Mode	9:		GFSK T	Fransmitti	ng			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1708.0708	29.77	3.20	-42.66	53.42	43.73	74.00	30.27	Pass	Н	PK
2	4178.0785	34.05	4.49	-42.93	52.53	48.14	74.00	25.86	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	47.29	43.81	74.00	30.19	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.64	46.92	74.00	27.08	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.33	47.79	74.00	26.21	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	47.65	53.15	74.00	20.85	Pass	Н	PK
7	1925.6926	31.21	3.42	-43.02	52.17	43.78	74.00	30.22	Pass	V	PK
8	3758.0505	33.61	4.35	-43.05	51.43	46.34	74.00	27.66	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.09	44.61	74.00	29.39	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	48.84	49.12	74.00	24.88	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.08	48.54	74.00	25.46	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	46.10	51.60	74.00	22.40	Pass	V	PK

Mode	e :		8DPSK	Transmit	ting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1366.6367	28.27	2.85	-42.72	55.02	43.42	74.00	30.58	Pass	Н	PK
2	3561.0374	33.45	4.42	-43.09	52.03	46.81	74.00	27.19	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	47.70	43.95	74.00	30.05	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	45.49	45.45	74.00	28.55	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	45.86	48.03	74.00	25.97	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.55	51.56	74.00	22.44	Pass	Н	PK
7	1801.6802	30.39	3.32	-42.71	51.32	42.32	74.00	31.68	Pass	V	PK
8	2980.5981	33.17	4.49	-43.10	51.06	45.62	74.00	28.38	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.18	43.43	74.00	30.57	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.08	46.04	74.00	27.96	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.02	49.19	74.00	24.81	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.54	51.55	74.00	22.45	Pass	V	PK

Mode	e:		8DPSK	Transmit	ting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2050.1050	31.77	3.56	-43.19	54.37	46.51	74.00	27.49	Pass	Н	PK
2	3187.0125	33.27	4.63	-43.10	51.00	45.80	74.00	28.20	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	47.04	43.55	74.00	30.45	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.96	47.10	74.00	26.90	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.30	49.62	74.00	24.38	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	45.80	51.00	74.00	23.00	Pass	Н	PK
7	1281.4281	28.18	2.72	-42.80	51.70	39.80	74.00	34.20	Pass	Н	AV
8	3352.0235	33.34	4.52	-43.10	50.27	45.03	74.00	28.97	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	46.19	42.70	74.00	31.30	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.28	46.42	74.00	27.58	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	47.04	49.36	74.00	24.64	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	45.40	50.60	74.00	23.40	Pass	V	PK

Mod	le:		8DPSK	Transmit	ting			Channel:		2480	
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.8189	28.09	2.67	-42.91	54.76	42.61	74.00	31.39	Pass	Н	PK
2	1634.0634	29.28	3.12	-42.82	54.25	43.83	74.00	30.17	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	46.77	43.29	74.00	30.71	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.32	46.60	74.00	27.40	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.12	47.58	74.00	26.42	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.48	51.98	74.00	22.02	Pass	Н	PK
7	1594.8595	29.03	3.07	-42.92	51.72	40.90	74.00	33.10	Pass	V	PK
8	2928.1928	33.09	4.39	-43.10	51.30	45.68	74.00	28.32	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.12	44.64	74.00	29.36	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	46.88	47.16	74.00	26.84	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.82	49.28	74.00	24.72	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.60	52.10	74.00	21.90	Pass	V	PK

Note

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.