

SAR TEST REPORT

Applicant CHUWI TECHNOLOGY

(ShenZhen) CO., LIMITED

FCC ID 2AHLZ-HEROBOOKPRO

Product Portable PC

Brand CHUWI

Model HeroBook Pro

Report No. R2203A0202-S1

Issue Date March 29, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992**, **IEEE C95.1**: **1991**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Fangying Wei

Approved by: Guangchang Fan

Guangchang fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Report No.: R2203A0202-S1

Table of Contents

1	Tes	st Laboratory	3
	1.1	Notes of the Test Report	3
	1.2	Test facility	3
	1.3	Testing Location	3
	1.4	Laboratory Environment	4
2	Sta	tement of Compliance	5
3	Des	scription of Equipment under Test	6
4	Tes	st Specification, Methods and Procedures	8
5	Ор	erational Conditions during Test	9
	5.1	Test Positions	9
	5.2	Measurement Variability	10
	5.3	Test Configuration	11
		5.2.1 Wi-Fi Test Configuration	11
6	SA	R Measurements System Configuration	13
	6.1	SAR Measurement Set-up	13
	6.2	DASY5 E-field Probe System	14
	6.3	SAR Measurement Procedure	15
7	Ма	in Test Equipment	17
8	Tis	sue Dielectric Parameter Measurements & System Verification	18
	8.1	Tissue Verification	18
	8.2	System Performance Check	19
	8.3	SAR System Validation	21
9	No	rmal and Maximum Output Power	22
	9.1	WLAN Mode	22
	9.2	Bluetooth Mode	25
1	0 Me	asured and Reported (Scaled) SAR Results	26
	10.1	Standalone SAR test exclusion considerations	26
	10.2	Measured SAR Results	27
	10.3	Simultaneous Transmission Analysis	28
1	1 Me	asurement Uncertainty	29
Α	NNEX	A: Test Layout	30
Α	NNEX	B: System Check Results	32
Α	NNEX	C: Highest Graph Results	35
Α	NNEX	D: Probe Calibration Certificate	37
Α	NNEX	E: D2450V2 Dipole Calibration Certificate	46
		F: D5GHzV2 Dipole Calibration Certificate	
Α	NNEX	G: DAE4 Calibration Certificate	68
A	NNEX	H: The EUT Appearance	73
Α	NNEX	I: Test Setup Photos	74

SAR Test Report

Report No.: R2203A0202-S1

Test Laboratory

Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein . Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Fan Guangchang

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

fanguangchang@ta-shanghai.com

Report No.: R2203A0202-S1

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ambient noise is checked and found very low and in compliance with requirement of stand			

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

	Highest Reported SAR (W/kg)
Mode	1g SAR Body (Separation 0mm)
Wi-Fi (2.4G)	0.859
Wi-Fi (5G)	0.774
Bluetooth	NA

Date of Testing: March 22, 2022 ~ March 24, 2022

Date of Sample Received: March 7, 2022

Note: 1. The device is in compliance with SAR for Uncontrolled Environment /General Population exposure limits (1.6 W/kg) specified in ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration	1g SAR Body (Separation 0mm)		
Highest Simultaneous Transmission SAR (W/kg)	1.156		
Note: The detail for simultaneous transmission consideration is described in chapter 10.3.			

3 Description of Equipment under Test

Client Information

Applicant	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Applicant address	F2, Building 3 , Li jincheng Industrial Park , Industrial east Road,
Applicant address	Longhua Street, Longhua District, Shen Zhen City, China
Manufacturer	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Manufacturar address	F2, Building 3 , Li jincheng Industrial Park , Industrial east Road,
Manufacturer address	Longhua Street, Longhua District, Shen Zhen City, China

General Technologies

Application Purpose	Original Grant			
EUT Stage	dentical Prototype			
Model	HeroBook Pro			
Lab internal SN	R2203A0202/S01			
Hardware Version	R510A			
Software Version	V1.0			
Antenna Type	Internal Antenna			
Device Class	С			
	EUT Accessory			
Battery	Manufacturer: DONGGUAN GANFENG ELECTRONICS CO LTD Model: 2965G5			
Note: The EUT is sent fro	om the applicant to TA and the information of the EUT is declared by the			
applicant.				

Report No.: R2203A0202-S1

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)		
Bluetooth	2.4G	Version 4	1.2 BR/EDR + LE	2402 ~2480		
	2.4G	DSSS, OFDM	802.11b/g/n HT20	2412 ~ 2462		
	2.46	OFDM	802.11n HT40	2422 ~ 2452		
Wi-Fi	Vi-Fi 5G	OFDM	802.11a/n HT20/ HT40/	5150 ~ 5250		
		OFDIVI	ac VHT20/ VHT40/ VHT80	5725 ~ 5850		
	Does this	device support MIMO	Yes ⊠No			

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992, IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

Reference Standards

KDB 248227 D01 802.11Wi-Fi SAR v02r02

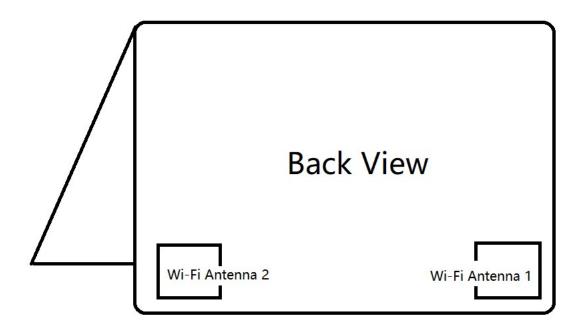
KDB 447498 D01 General RF Exposure Guidance v06

KDB 690783 D01 SAR Listings on Grants v01r03

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

KDB 941225 D06 Hotspot Mode v02r01


KDB 616217 D04 SAR for laptop and tablets v01r02

5 Operational Conditions during Test

5.1 Test Positions

The required minimum test separation distance for incorporating transmitters and antennas into laptop, notebook and netbook computer displays is determined with the display screen opened at an angle of 90 to the keyboard compartment. If a computer has other operating configurations that require a different or more conservative display to keyboard angle for normal use, a KDB inquiry should be submitted to determine the test requirements. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard. Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the keyboard and display screen of laptop computers are generally not required.

EUT Antenna locations

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.2.1 Wi-Fi Test Configuration

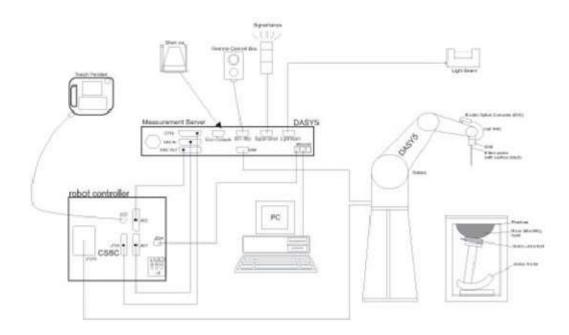
SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; These are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that
 exposure configuration and wireless mode combination within the frequency band or
 aggregated band. DSSS and OFDM configurations are considered separately according to
 the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ♦ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel


bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- > Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g) Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better 30%.

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz		
Maximum distance from closest				
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
probe sensors) to phantom surface				
Maximum probe angle from probe axis to				
phantom surface normal at the	30° ± 1°	20° ± 1°		
measurement location				
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm		
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm		
	When the x or y dimension of the test device, in			
Maximum area scan spatial resolution:	the measurement plane orientation, is smaller			
ΔxArea, ΔyArea	than the above, the m	neasurement resolution		
	must be ≤ the correspo	nding x or y dimension of		
	the test device with at least one measurem			
	point on the	e test device.		

Report No.: R2203A0202-S1

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz	
Maximum zoom		tial recolution: A v	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*	
Waximum 200m	i scan spa	tial resolution: $\triangle x_{zoom} \triangle y_{zoom}$	2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*	
Massiassass				3 – 4GHz: ≤4mm	
Maximum	U	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm	
zoom scan				5 – 6GHz: ≤2mm	
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm	
resolution,		points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm	
normal to	Graded	surface		5 – 6GHz: ≤2mm	
phantom	ntom grid face	△z _{zoom} (n>1): between	≤1.5•△z _{zoom} (n-1)		
Surface		subsequent points			
Minimum	nimum			3 – 4GHz: ≥28mm	
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm	
volume				5 – 6GHz: ≥22mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2021-05-15	2022-05-14
Dielectric Probe Kit	Agilent	85070E	US44020115	1	1
Power meter	Agilent	E4417A	GB41291714	2021-05-15	2022-05-14
Power sensor	Agilent	N8481H	MY50350004	2021-05-15	2022-05-14
Power sensor	Agilent	E9327A	US40441622	2021-05-15	2022-05-14
Dual directional coupler	UCL	UCL-DDC0 56G-S	20010600118	1	/
Amplifier	INDEXSAR	TPA-005060 G01	13030502		2022-05-14
E-field Probe	SPEAG	EX3DV4	3677	2021-08-12	2022-08-11
DAE	SPEAG	DAE4	1692	2021-10-04	2022-10-03
Validation Kit 2450MHz	SPEAG	D2450V2	786	2020-08-27	2023-08-26
Validation Kit 5GHz	SPEAG	D5GHzV2	1151	2020-02-27	2023-02-26
Temperature Probe	Tianjin jinming	JM222	381	2021-05-15	2022-05-14
Hygrothermograph	Anymetr	HTC - 1	TY2020A001	2021-05-15	2022-05-14
Twin SAM Phantom	Speag	ELI v4.0	1058	1	1
Software for Test	Speag	DASY52	1	1	1
Softwarefor Tissue	Agilent	85070	1	1	/

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

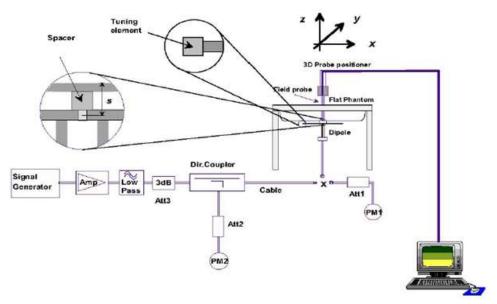
The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm\,2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 24 hours of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

Frequency (MHz)	٤ _r	σ(s/m)
2450	39.2	1.80
5250	35.9	4.71
5750	35.4	5.22

Measurements results

Frequency	Test Date	Temp		Dielectric neters		ielectric neters		nit n ±5%)
(MHz)	Test Date	ε,	٤r	σ(s/m)	٤ _r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
2450	2022/3/22	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
5250	2022/3/24	21.5	35.5	4.80	35.9	4.71	-1.11	1.91
5750	2022/3/24	21.5	34.9	5.21	35.4	5.22	-1.41	-0.19


Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo


Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
Dipole D2450V2	Head	8/27/2020	-26.9	/	54.5	1
SN: 786	Liquid	8/26/2021	-27.1	0.7	53.8	-0.7
Dipole D5GHzV2	lla a d	2/27/2020	-23.4	/	52.4	1
SN: 1151	Head	2/26/2021	-23.8	1.7	50.0	-2.4
(5250MHz)	Liquid	2/25/2022	-23.9	0.4	49.3	-0.7
Dipole D5GHzV2	lla a d	2/27/2020	-25.0	/	55.9	1
SN: 1151	Head	2/26/2021	-26.8	-1.8	52.5	-3.4
(5750MHz)	Liquid	2/25/2022	-27.1	1.1	52.1	-0.4

System Check results

Frequency (MHz)	Test Date	Temp ℃	250mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
2450	2022/3/22	21.5	13.70	54.80	52.30	4.78	1
5250	2022/3/24	21.5	7.87	78.70	78.00	0.90	2
5750	2022/3/24	21.5	7.66	76.60	77.40	-1.03	3
Note: Target	Values used de	erive fron	n the calibration	n certificate Dat	a Storage and	Evaluation.	

8.3 SAR System Validation

Per FCC KDB 865664 D02v01, SAR system verification is required to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles are used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point must be validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status, measurement frequencies, SAR probes, calibrated signal type(s) and tissue dielectric parameters has been included.

Eroguenev		Drobo	Drobo	Probe Cal Point		Probe Cal Point		Probe Cal Point		DEDM	COND	CW Validation			
Frequency [MHz]	Date	Probe SN	Probe Type							Probe Cal Poin		PERM (Er)	COND (Σ)	Sensitivity	Probe
[IVIIIZ]		314	туре			(LI)	(2)	Sensitivity	Linearity	Isotropy					
2450	8/12/2021	3677	EX3DV4	2450	Head	38.19	1.83	PASS	PASS	PASS					
5250	8/12/2021	3677	EX3DV4	5250	Body	47.37	5.44	PASS	PASS	PASS					
5750	8/12/2021	3677	EX3DV4	5750	Body	46.02	6.23	PASS	PASS	PASS					

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5dB), such as OFDM according to KDB 865664.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 WLAN Mode

Wi-Fi 2.4G	Channal	Max	ximum Output Power (dBm)						
Ant 1	Channel /Frequency(MHz)	Tune-up	Meas.						
Mode	// requericy(ivii iz)	rune-up	ivicas.						
000 11h	1/2412	20.50	20.38						
802.11b (1M)	6/2437	20.50	20.00						
(TIVI)	11/2462	20.50	19.25						
000 44 ~	1/2412	20.00	19.23						
802.11g (6M)	6/2437	20.00	18.91						
(OIVI)	11/2462	20.00	18.46						
000 44= LIT00	1/2412	15.00	14.38						
802.11n-HT20 (MCS0)	6/2437	15.00	13.56						
(IVICSU)	11/2462	15.00	13.44						
000 44- 11740	3/2422	18.50	17.95						
802.11n-HT40 (MCS0)	6/2437	18.50	17.77						
(MCS0)	9/2452	18.50	17.67						
Note: Initial test config	Note: Initial test configuration is 802.11b mode.								

Wi-Fi 2.4G	Channal	Max	kimum Output Power (dBm)
Ant 2	Channel /Frequency(MHz)	Tune-up	Meas.
Mode	// requericy(ivii iz)	rune-up	ivieas.
000 11h	1/2412	20.50	19.91
802.11b (1M)	6/2437	20.50	19.74
(TIVI)	11/2462	20.50	19.21
000 44 ~	1/2412	19.50	18.90
802.11g (6M)	6/2437	19.50	18.73
(OWI)	11/2462	19.50	18.43
000 44 UT00	1/2412	19.50	18.86
802.11n-HT20 (MCS0)	6/2437	19.50	18.82
(101030)	11/2462	19.50	18.35
000 44m UT40	3/2422	18.50	17.86
802.11n-HT40 (MCS0)	6/2437	18.50	17.70
(IVICSU)	9/2452	18.50	17.46
Note: Initial test config	uration is 802.11b mod	le.	

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-003S

Page 22 of 74

Wi-Fi 5G (U-NII-1)	Channel	Max	kimum Output Power (dBm)
Ant 1 Mode	· /Frequency(MHz)	Tune-up	Meas.
202.44	36/5180	14.50	13.69
802.11a (6M)	40/5200	14.50	13.25
(OIVI)	48/5240	14.50	13.17
000.44 LITO0	36/5180	13.50	12.50
802.11n-HT20 (MCS0)	40/5200	13.50	12.12
(IVICSU)	48/5240	13.50	12.93
802.11n-HT40	38/5190	13.50	12.41
(MCS0)	46/5230	13.50	12.71
000.44	36/5180	13.50	12.59
802.11ac-VHT20	40/5200	13.50	11.85
(MCS0)	48/5240	13.50	12.64
802.11ac-VHT40	38/5190	12.50	11.56
(MCS0)	46/5230	12.50	11.88
802.11ac-VHT80 (MCS0)	42/5210	12.50	10.94
Note. Initial test config	uration is 802.11a mod	le, since the high	est maximum output power.

Wi-Fi 5G (U-NII-1)	Channel	Max	ximum Output Power (dBm)		
Ant 1	/Frequency(MHz)	Tune-up	Meas.		
Mode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rane ap			
902.116	36/5180	15.00	13.15		
802.11a (6M)	40/5200	15.00	14.11		
(OIVI)	48/5240	15.00	13.95		
000 44= LIT00	36/5180	13.00	11.47		
802.11n-HT20 (MCS0)	40/5200	13.00	12.33		
(101000)	48/5240	13.00	12.15		
802.11n-HT40	38/5190	14.00	12.34		
(MCS0)	46/5230	14.00	13.06		
000 44 \// IT00	36/5180	14.00	12.19		
802.11ac-VHT20 (MCS0)	40/5200	14.00	13.17		
(IVICSU)	48/5240	14.00	13.10		
802.11ac-VHT40	38/5190	13.00	11.45		
(MCS0)	46/5230	13.00	12.14		
802.11ac-VHT80 (MCS0)	42/5210	12.00	11.27		
Note. Initial test configu	uration is 802.11a mod	le, since the high	est maximum output power.		

Wi-Fi 5G (U-NII-3)		Max	kimum Output Power (dBm)
Ant 2 Mode	Channel /Frequency(MHz)	Tune-up	Meas.
000.44	149/5745	15.50	14.60
802.11a (6M)	157/5785	15.50	14.56
(OIVI)	165/5825	15.50	13.92
000 44 11700	149/5745	14.50	13.88
802.11n-HT20 (MCS0)	157/5785	14.50	13.84
(MC30)	165/5825	13.50	12.35
802.11n-HT40	151/5755	13.50	12.58
(MCS0)	159/5795	13.50	12.12
000 44 \// IT00	149/5745	14.50	13.81
802.11ac-VHT20 (MCS0)	157/5785	14.50	13.52
(IVICSU)	165/5825	13.50	11.88
802.11ac-VHT40	151/5755	14.50	13.52
(MCS0)	159/5795	14.50	13.05
802.11ac-VHT80 (MCS0)	155/5775	12.50	11.03

Note. Initial test configuration is 802.11a mode, since the highest maximum output power.

Wi-Fi 5G (U-NII-3)	Channel	Maximum Output Power (dBm)					
Ant 2 Mode	/Frequency(MHz)	Tune-up	Meas.				
222.11	149/5745	16.00	14.97				
802.11a	157/5785	16.00	15.30				
(6M)	165/5825	16.00	15.34				
000 44 LITO0	149/5745	14.50	13.23				
802.11n-HT20 (MCS0)	157/5785	14.50	13.77				
(IVICSU)	165/5825	14.50	13.67				
802.11n-HT40	151/5755	13.50	12.72				
(MCS0)	159/5795	13.50	13.26				
000 44 \// IT00	149/5745	14.50	13.45				
802.11ac-VHT20 (MCS0)	157/5785	14.50	13.79				
(IVICSO)	165/5825	14.50	13.87				
802.11ac-VHT40	151/5755	14.50	13.42				
(MCS0)	159/5795	14.50	13.82				
802.11ac-VHT80 (MCS0)	155/5775	13.50	12.29				

vote. Initial test configuration is 602. Tra mode, since the highest maximum output power.

9.2 Bluetooth Mode

	C	Conducted Power(dBm	1)	Tura un limit	
Bluetooth	C	hannel/Frequency(MH	lz)	Tune-up Limit (dBm)	
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz	(авті)	
GFSK	7.34	7.00	5.76	8.50	
π/4DQPSK	6.23	5.86	4.62	8.00	
8DPSK	6.20	5.84	4.56	8.00	
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)	
GFSK	5.52	4.93	3.82	7.00	

10 Measured and Reported (Scaled) SAR Results

10.1 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR

- ➤ f(GHz) is the RF channel transmit frequency in GHz
- > Power and distance are rounded to the nearest mW and mm before calculation
- > The result is rounded to one decimal place for comparison

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth	Distance (mm)	MAXPower (dBm)	Frequency (MHz)	Ratio	Evaluation
Body	5	8.50	2480	2.23	No

10.2 Measured SAR Results

Note: 1.The value with blue color is the maximum SAR Value of each test band.

Band	Antenna	Test Position	Dist. (mm)	Mode	Duty Cycle	Ch./Freq.	Tune-up (dBm)	Measured power (dBm)	Measured SAR1g (W/kg)	Power Drift (dB)	Scaling Factor	Report SAR1g (W/kg)	Plot No.
2.4G	ANT1	Back Side	0	802.11b	99.6%	1/2412	20.50	20.38	0.745	0.009	1.15	0.859	4
2.46	ANT2	Back Side	0	802.11b	99.6%	1/2412	20.50	19.91	0.424	-0.028	1.15	0.489	1
U-NII-1	ANT1	Back Side	0	802.11a	100.0%	36/5180	14.50	13.69	0.144	0.024	1.21	0.174	1
U-INII-1	ANT2	Back Side	0	802.11a	100.0%	40/5200	15.00	14.11	0.330	0.089	1.21	0.398	1
U-NII-3	ANT1	Back Side	0	802.11a	100.0%	149/5745	15.50	14.60	0.115	0.087	1.23	0.141	1
U-INII-3	ANT2	Back Side	0	802.11a	100.0%	165/5825	16.00	15.34	0.629	-0.020	1.23	0.774	5

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth	Body	2480	8.50	5	0.297

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below. (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR.

10.3 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Body		
Wi-Fi + Bluetooth	Yes		

General Note:

- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,

2.MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

- i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.
 - ii) SPLSR = $(SAR1 + SAR2)^{\Lambda^{1.5}}$ / (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$, where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.

About Bluetooth and Wi-Fi Antenna

SAR _{1g} (W/kg) Test Position		Wi-Fi 2.4G	Wi-Fi 5G		Diverse esti-	MAY FOAD		
			U-NII-1	U-NII-3	Bluetooth	MAX. ΣSAR _{1g}		
Body	Back Side	0.859	0.398	0.774	0.297	1.156		
Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value.								

MAX. Σ SAR_{1g} =1.156W/kg<1.6W/kg, so the Simultaneous transimition SAR with volum scan are not required for Bluetooth and Wi-Fi Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.

*****END OF REPORT *****

Report No.: R2203A0202-S1


ANNEX A: Test Layout

Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3.

Picture 3: Liquid depth in the flat Phantom

ANNEX B: System Check Results

Plot 1 System Performance Check at 2450 MHz TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 786

Date: 2022/3/22

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.81 S/m; ε_r = 38.6; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12

Electronics: DAE4 SN1692; Calibrated: 2021/10/4

Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

Maximum value of SAR (measured) = 15.6 mW/g

SAR Test Report Report Report No.: R2203A0202-S1

Plot 2 System Performance Check at 5250 MHz TSL

DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: 1151

Date: 2022/3/24

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 4.80 S/m; ε_r = 35.5; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.45, 5.45, 5.45); Calibrated: 2021/8/12

Electronics: DAE4 SN1692; Calibrated: 2021/10/4

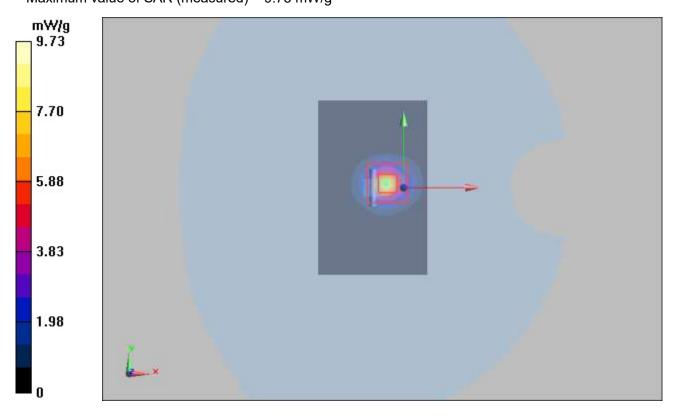
Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 9.14 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 33.6 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 52.2 W/kg

SAR(1 g) = 7.87 mW/g; SAR(10 g) = 2.25 mW/g

Maximum value of SAR (measured) = 9.73 mW/g

Plot 3 System Performance Check at 5750 MHz TSL

DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: 1151

Date: 2022/3/24

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; $\sigma = 5.21 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 2021/8/12

Electronics: DAE4 SN1692; Calibrated: 2021/10/4

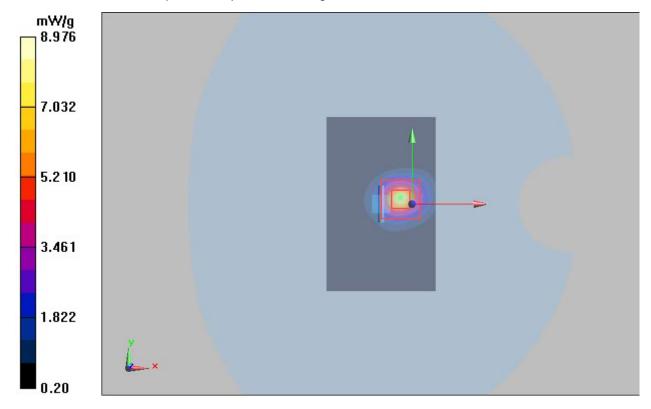
Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.31 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 23.1 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 7.66 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 8.976 mW/g

ANNEX C: Highest Graph Results

Plot 4 802.11b Back Side Middle (ANT 1, Distance 0mm)

Date: 2022/3/22

Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 37.737$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12

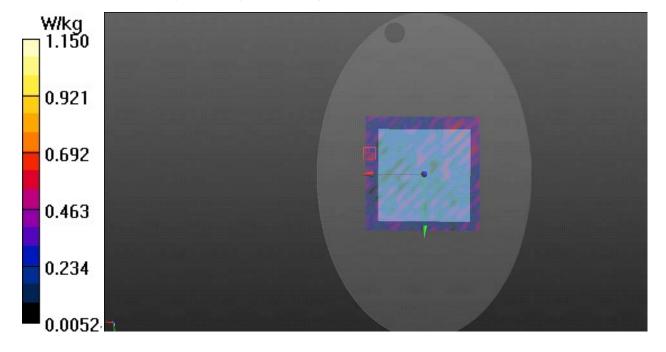
Electronics: DAE4 SN1692; Calibrated: 2021/10/4

Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side Middle/Area Scan (14x14x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.01 W/kg


Back Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.447 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.745 W/kg; SAR(10 g) = 0.349 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

Plot 5 U-NII-3 802.11a Back Side Middle (ANT 2, Distance 0mm)

Date: 2022/3/24

Communication System: UID 0, 802.11a (0); Frequency: 5825 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5825 MHz; $\sigma = 5.31$ S/m; $\epsilon_r = 35.186$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 2021/8/12

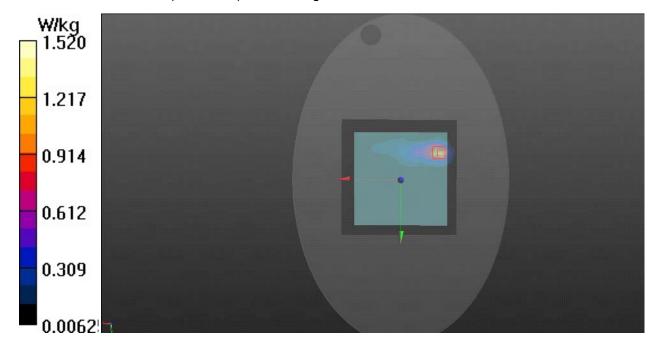
Electronics: DAE4 SN1692; Calibrated: 2021/10/4

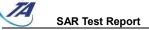
Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side High/Area Scan (18x18x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.49 W/kg


Back Side High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 2.105 V/m; Power Drift = -0.020dB

Peak SAR (extrapolated) = 3.28 W/kg

SAR(1 g) = 0.629 W/kg; SAR(10 g) = 0.235 W/kg

Maximum value of SAR (measured) = 1.52 W/kg

ANNEX D: Probe Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Client

TA(Shanghai)

Certificate No: Z21-60285

Report No.: R2203A0202-S1

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 3677

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

August 12, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2		101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-2	291	101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-2	291	101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Reference 10dBAtter	nuator	18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22
Reference 20dBAtter	nuator	18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22
Reference Probe EX	3DV4	SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21) Jan-22
DAE4		SN 1556	15-Jan-21(SPEAG, No.DAE4-1556_Jan2	
Secondary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG	3700A	6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
Network Analyzer E5	071C	MY46110673	21-Jan-21(CTTL, No.J20X00515)	Jan-22
	Na	ne	Function	Signature
Calibrated by:	Yu	Zongying	SAR Test Engineer	A mos
Reviewed by:	Lir	Hao	SAR Test Engineer	献治
Approved by:	Qi	Dianyuan	SAR Project Leader	20
			Issued: August	14, 2021

Certificate No: Z21-60285

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

S P e a g

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A,B,C,D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A,B,C,D Polarization Φ

Φ rotation around probe axis

Polarization θ

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60285

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.41	0.46	0.40	±10.0%
DCP(mV) ^B	99.3	101.9	101.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	Х	0.0	0.0	1.0	0.00	158.2	±2.0%	
		Y	0.0	0.0	1.0		170.4	
	7.0	Z	0.0	0.0	1.0		156.9	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:Z21-60285

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

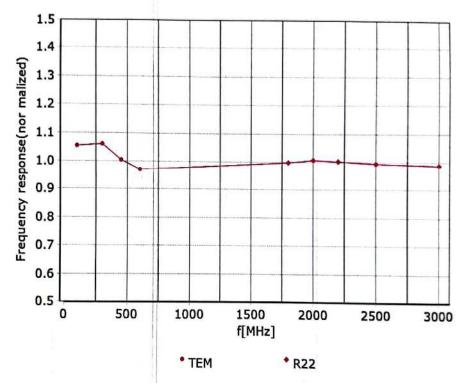
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.64	9.64	9.64	0.40	0.80	±12.1%
835	41.5	0.90	9.30	9.30	9.30	0.16	1.29	±12.1%
1750	40.1	1.37	8.22	8.22	8.22	0.24	1.00	±12.1%
1900	40.0	1.40	7.88	7.88	7.88	0.24	1.10	±12.1%
2000	40.0	1.40	7.96	7.96	7.96	0.21	1.17	±12.1%
2300	39.5	1.67	7.67	7.67	7.67	0.66	0.68	±12.1%
2450	39.2	1.80	7.50	7.50	7.50	0.66	0.70	±12.1%
2600	39.0	1.96	7.25	7.25	7.25	0.62	0.73	±12.1%
3300	38.2	2.71	7.00	7.00	7.00	0.45	0.94	±13.3%
3500	37.9	2.91	6.92	6.92	6.92	0.45	0.98	±13.3%
3700	37.7	3.12	6.71	6.71	6.71	0.45	1.04	±13.3%
3900	37.5	3.32	6.62	6.62	6.62	0.40	1.25	±13.3%
4100	37.2	3.53	6.66	6.66	6.66	0.30	1.38	±13.3%
4400	36.9	3.84	6.43	6.43	6.43	0.35	1.35	±13.3%
4600	36.7	4.04	6.35	6.35	6.35	0.50	1.13	±13.3%
4800	36.4	4.25	6.30	6.30	6.30	0.45	1.25	±13.3%
4950	36.3	4.40	6.13	6.13	6.13	0.45	1.25	±13.3%
5250	35.9	4.71	5.45	5.45	5.45	0.50	1.30	±13.3%
5600	35.5	5.07	5.00	5.00	5.00	0.60	1.15	±13.3%
5750	35.4	5.22	5.04	5.04	5.04	0.55	1.26	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:Z21-60285

Page 4 of 9

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

E-mail: cttl@chinattl.com

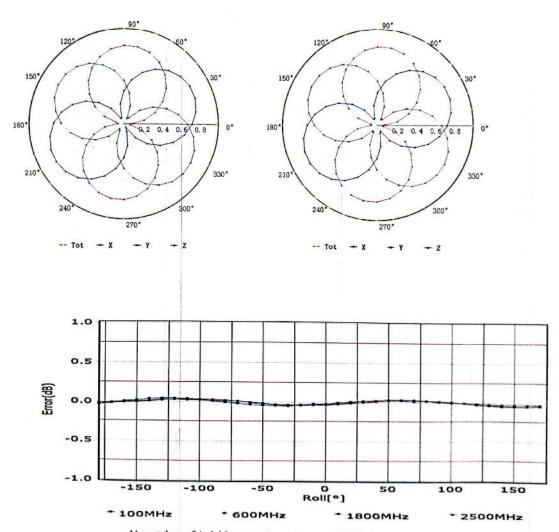
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z21-60285

Page 5 of 9



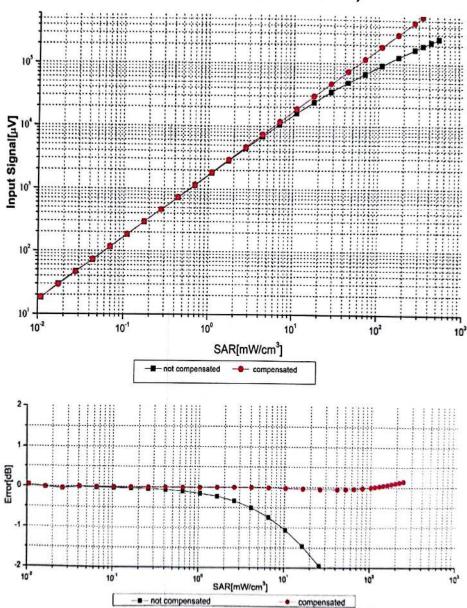
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Receiving Pattern (Φ), θ =0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)


Certificate No:Z21-60285

Page 6 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

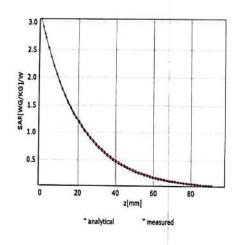
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

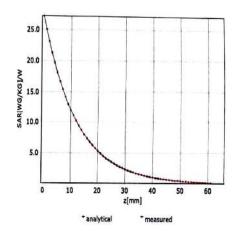
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No:Z21-60285

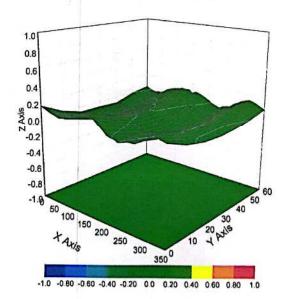
Page 7 of 9

R Test Report No.: R2203A0202-S1




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60285

Page 8 of 9

In Collaboration with

S D E A G

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60285

Page 9 of 9

ANNEX E: D2450V2 Dipole Calibration Certificate

Certificate No:

Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Z20-60298

TA(Shanghai)

CALIBRATION CERTIFICATE

D2450V2 - SN: 786

Calibration Procedure(s)

Client

Object

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: August 27, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	12-May-20 (CTTL, No.J20X02965)	May-21
Power sensor NRP6A	101369	12-May-20 (CTTL, No.J20X02965)	May-21
Reference Probe EX3DV4	SN 3617	30-Jan-20(SPEAG,No.EX3-3617_Jan20)	Jan-21
DAE4	SN 771	10-Feb-20(CTTL-SPEAG,No.Z20-60017)	Feb-21
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
NetworkAnalyzer E5071C	MY46107873	10-Feb-20 (CTTL, No.J20X00515)	Feb-21

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	10 8 2 1 S
Reviewed by:	Lin Hao	SAR Test Engineer	3年种。1
Approved by:	Qi Dianyuan	SAR Project Leader	Liter Town
			1774

Issued: September 2, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60298

Page 1 of 8

In Collaboration with

p e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx, v, z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60298

Page 2 of 8

In Collaboration with

s p e a CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions DASY system configuration, as

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	1999	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 18.7 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 18.7 % (k=2)

Page 3 of 8

In Collaboration with

e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5Ω+ 1.44 jΩ	
Return Loss	- 26.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9Ω+ 5.09 jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

FI1115-1	K. MILMORESCO.	
Electrical Delay (one direction)	1.018 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	00540
Manufactured by	SPEAG

Certificate No: Z20-60298

Page 4 of 8

Date: 08.27.2020

In Collaboration with

e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.en

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.787 \text{ S/m}$; $\varepsilon_r = 39.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

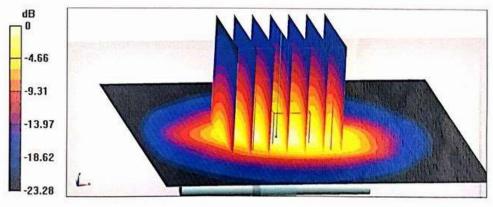
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 102.7 V/m; Power Drift = -0.04 dB

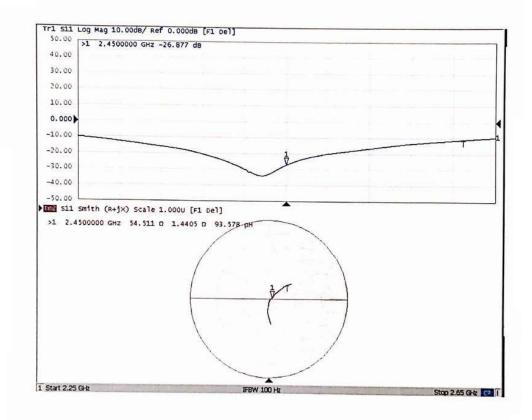

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.99 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 47%

Maximum value of SAR (measured) = 22.0 W/kg


0 dB = 22.0 W/kg = 13.42 dBW/kg

Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 6 of 8

Date: 08.27.2020

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/achinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.938 \text{ S/m}$; $\varepsilon_t = 52.06$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

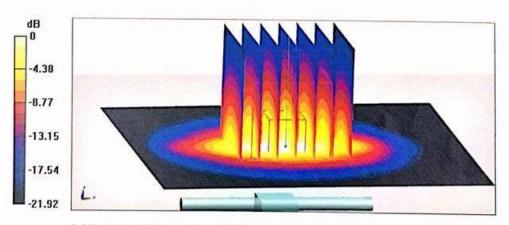
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

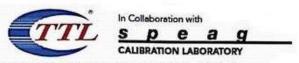
dy=5mm, dz=5mm

Reference Value = 102.9 V/m; Power Drift = -0.03 dB

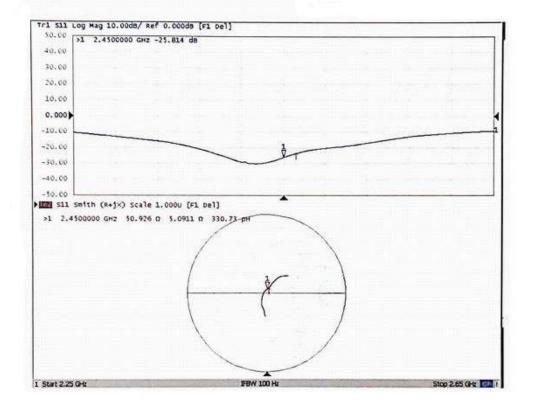

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm


Ratio of SAR at M2 to SAR at M1 = 49.9%

Maximum value of SAR (measured) = 21.8 W/kg


0 dB = 21.8 W/kg = 13.38 dBW/kg

Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.ehinattl.en

Impedance Measurement Plot for Body TSL

Certificate No: Z20-60298

Page 8 of 8

SAR Test Report Report No.: R2203A0202-S1

ANNEX F: D5GHzV2 Dipole Calibration Certificate

Client

TA(Shanghai)

Certificate No:

Z20-60080

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1151

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

Feburary 27, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
SN 3846	25-Mar-19(CTTL-SPEAG,No.Z19-60064)	Mar-20
SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	10-Feb-20 (CTTL, No.J20X00516)	Feb-21
MY46110673	10-Feb-20 (CTTL, No.J20X00515)	Feb-21
	106276 101369 SN 3846 SN 1555 ID # MY49071430	106276 11-Apr-19 (CTTL, No.J19X02605) 101369 11-Apr-19 (CTTL, No.J19X02605) SN 3846 25-Mar-19(CTTL-SPEAG,No.Z19-60064) SN 1555 22-Aug-19(CTTL-SPEAG,No.Z19-60295) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 10-Feb-20 (CTTL, No.J20X00516)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	学的
Approved by:	Qi Dianyuan	SAR Project Leader	The state of the s

Issued: Feburary 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60080

Page 1 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60080

Page 2 of 14

In Collaboration with

S P E a g

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		4000

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

*	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	5.12 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	(Section)	

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.27 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.74 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 24.2 % (k=2)

Certificate No: Z20-60080

Page 5 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	10000	-

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.4Ω - 6.47jΩ
Return Loss	- 23.4dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.0Ω - 3.86jΩ
Return Loss	- 22.6dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.9Ω + 0.16jΩ
Return Loss	- 25.0dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.6Ω - 5.33jΩ
Return Loss	- 25.3dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.6Ω - 2.15jΩ
Return Loss	- 22.7dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	55.4Ω + 1.94jΩ	
Return Loss	- 25.2dB	

Certificate No: Z20-60080

Page 7 of 14

In Collaboration with

S P E a G

CALIBRATION LABORATORY

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.066 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	WATER MISSON PARTY AND ADDRESS OF THE PARTY AN

Certificate No: Z20-60080

Page 8 of 14

Date: 02.24.2020

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.592 S/m; ϵ_r = 36.91; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.963 S/m; ϵ_r = 36.29; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.123 S/m; ϵ_r = 36.06; ρ = 1000 kg/m3,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.4, 5.4, 5.4) @ 5250 MHz; ConvF(4.64, 4.64, 4.64) @ 5600 MHz; ConvF(4.92, 4.92, 4.92) @ 5750 MHz; Calibrated: 2019-03-25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.07 dB
Peak SAR (extrapolated) = 33.7 W/kg
SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg
Smallest distance from peaks to all points 3 dB below = 7.0 measurement

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63% Maximum value of SAR (measured) = 18.7 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.02 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 36.2 W/kg
SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.29 W/kg
Smallest distance from peaks to all points 3 dB below = 7.2 mm
Ratio of SAR at M2 to SAR at M1 = 61.4%

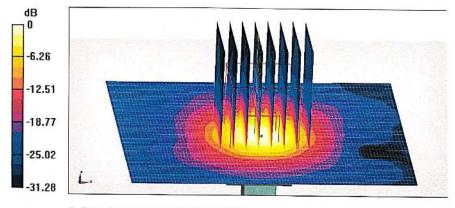
Certificate No: Z20-60080 Page 9 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.01 V/m; Power Drift = -0.08 dB

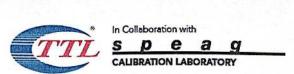

Peak SAR (extrapolated) = 37.0 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

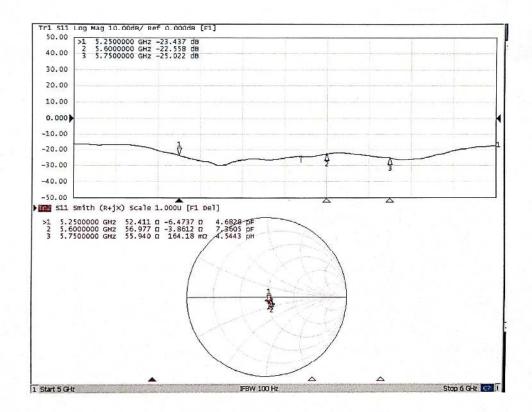
Ratio of SAR at M2 to SAR at M1 = 59.9%

Maximum value of SAR (measured) = 19.2 W/kg


0 dB = 19.2 W/kg = 12.83 dBW/kg

Certificate No: Z20-60080

Page 10 of 14



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z20-60080

Page 11 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.en

DASY5 Validation Report for Body TSL

Date: 02.27.2020

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.267 S/m; ϵ r = 48.1; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.736 S/m; ϵ r = 47.44; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.963 S/m; ϵ r = 47.11; ρ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.01, 5.01, 5.01) @ 5250 MHz; ConvF(4.29, 4.29, 4.29) @ 5600 MHz; ConvF(4.32, 4.32, 4.32) @ 5750 MHz; Calibrated: 2019-03-25,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.50 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.09 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.9%

Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.00 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.21 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 18.6 W/kg

Certificate No: Z20-60080

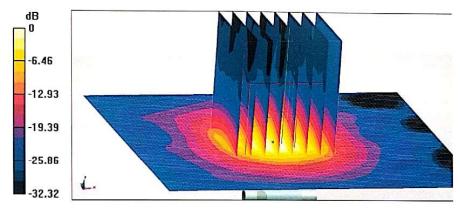
Page 12 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.en

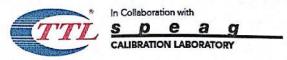
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.00 V/m; Power Drift = -0.02 dB

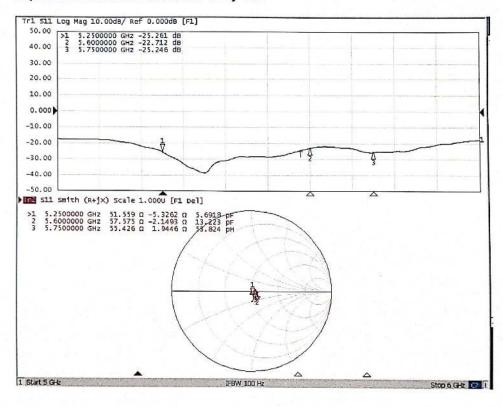

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.07 W/kg


Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 61.1%

Maximum value of SAR (measured) = 17.8 W/kg



0 dB = 17.8 W/kg = 12.50 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z20-60080

Page 14 of 14

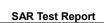
ANNEX G: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: R2203A0202-S1

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates


Client TA-SH (Auden) Accreditation No.: SCS 0108

Certificate No: DAE4-1692_Oct21

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BO - SN: 1692 Object Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 04, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 31-Aug-21 (No:31368) Aug-22 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-21 (in house check) In house check: Jan-22 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-21 (in house check) In house check: Jan-22 Name Function Signature Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: October 4, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1692_Oct21

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: R2203A0202-S1

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1692 Oct21	Page 2 of 5	
Certificate No. DAE4-1092 OCIZI	Page 2 of 5	

AR Test Report No.: R2203A0202-S1

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	x	Y	Z
High Range	404.451 ± 0.02% (k=2)	404.531 ± 0.02% (k=2)	404.388 ± 0.02% (k=2)
		4.00333 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	334.5 ° ± 1 °
	334.5 I

Certificate No: DAE4-1692_Oct21

Page 3 of 5

R Test Report No.: R2203A0202-S1

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	199998.31	2.10	0.00
Channel X + Input	20004.35	2.07	0.01
Channel X - Input	-19997.45	4.22	-0.02
Channel Y + Input	199996.63	0.87	0.00
Channel Y + Input	20001.14	-1.08	-0.01
Channel Y - Input	-20002.28	-0.47	0.00
Channel Z + Input	199998.12	1.98	0.00
Channel Z + Input	20002.54	0.26	0.00
Channel Z - Input	-20001.19	0.53	-0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.64	0.32	0.02
Channel X + Input	202.20	0.58	0.29
Channel X - Input	-197.54	0.78	-0.39
Channel Y + Input	1999.35	-1.87	-0.09
Channel Y + Input	200.36	-1.25	-0.62
Channel Y - Input	-199.29	-0.98	0.49
Channel Z + Input	2000.89	-0.32	-0.02
Channel Z + Input	200.91	-0.59	-0.29
Channel Z - Input	-199.57	-1.16	0.58

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	15.85	13.56
	- 200	-12.16	-14.19
Channel Y	200	21.51	20.97
	- 200	-24.04	-24.35
Channel Z	200	-6.87	-7.13
	- 200	6.28	5.75

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	200	-0.88	-2.39
Channel Y	200	6.27	•	2.31
Channel Z	200	8.86	3.02	

Certificate No: DAE4-1692_Oct21

Page 4 of 5

R Test Report No.: R2203A0202-S1

4. AD-Converter Values with Inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15949	15587
Channel Y	15899	16465
Channel Z	15625	15999

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.24	-0.39	2.50	0.44
Channel Y	-0.70	-1.86	0.77	0.48
Channel Z	-0.23	-1.42	0.54	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-0

Certificate No: DAE4-1692_Oct21

Page 5 of 5

ANNEX H: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX I: Test Setup Photos

The Test Setup Photos are submitted separately.