

Report No. : EED32M00265302 Page 1 of 51

Product : Portable PC

Trade mark : CHUWI

Model/Type reference : CoreBook Pro

Serial Number : N/A

Report Number : EED32M00265302

FCC ID : 2AHLZ-COREBOOKPRO

Date of Issue : Oct. 29, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED 2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Sea

Swilight Sun

Sunlight Sun

San Clusery

Reviewed by:

lok Vand

Date:

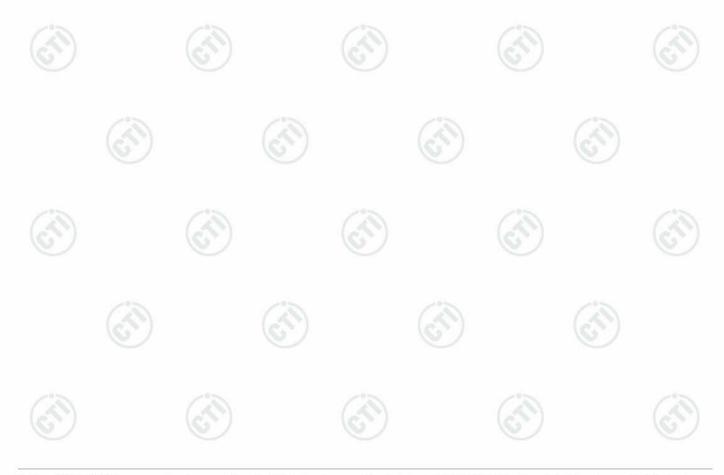
Oct. 29, 2020

Sam Chuang

Check No: 4762123665

2 Version

Version No.	Date	(6	Description	(3)
00	Oct. 29, 2020		Original	
	(5)	(25)		


3 Test Summary

o rest ourinitiary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

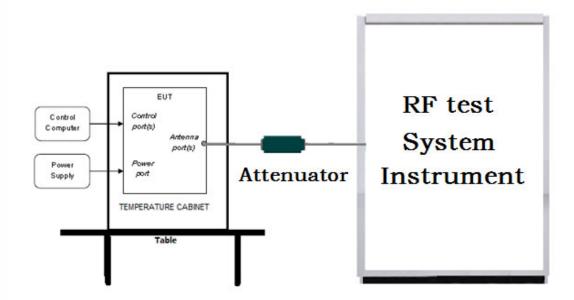
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 51 Report No.: EED32M00265302

4 Content

1 C	OVER PAGE		•••••		1
2 VE	RSION				
3 TE	ST SUMMARY		•••••		3
4 C	ONTENT			•••••	4
5 TE	ST REQUIREMENT				5
5	1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions te 5.1.3 For Conducted Emissions 2 TEST ENVIRONMENT	st setuptest setup			6
6 GI	ENERAL INFORMATION		•••••		
6 6 6 6 6 6 6	1 CLIENT INFORMATION	CTIVE TO THIS STANDARDS			
7 EC	QUIPMENT LIST			•••••	10
8 R	ADIO TECHNICAL REQUIREME				
	Appendix A): 6dB Occupied Bar Appendix B): Conducted Peak C Appendix C): Band-edge for RF Appendix D): RF Conducted Spr Appendix E): Power Spectral De Appendix F): Antenna Requirem Appendix G): AC Power Line Co Appendix H): Restricted bands a Appendix I) Radiated Spurious E	Output Power Conducted Emissions urious Emissions ensity nent nducted Emission around fundamental frequer	ncy (Radiated)		
PHC	TOGRAPHS OF TEST SETUP		••••••	•••••	48
PHC	TOGRAPHS OF EUT CONSTRU	JCTIONAL DETAILS		•••••	51



Report No. : EED32M00265302 Page 5 of 51

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

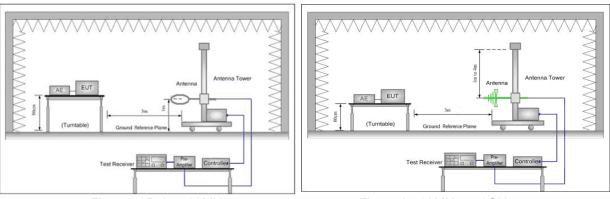


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

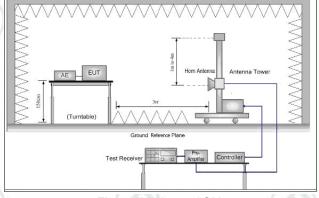
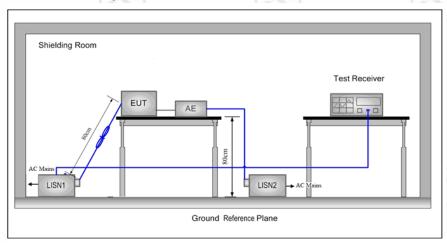
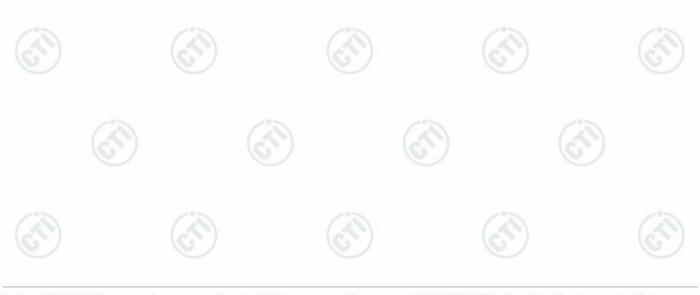



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(0)
Temperature:	24.0 °C		
Humidity:	54 % RH	160	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel	inel	
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.400.441 0.400.441	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	

6 General Information

6.1 Client Information

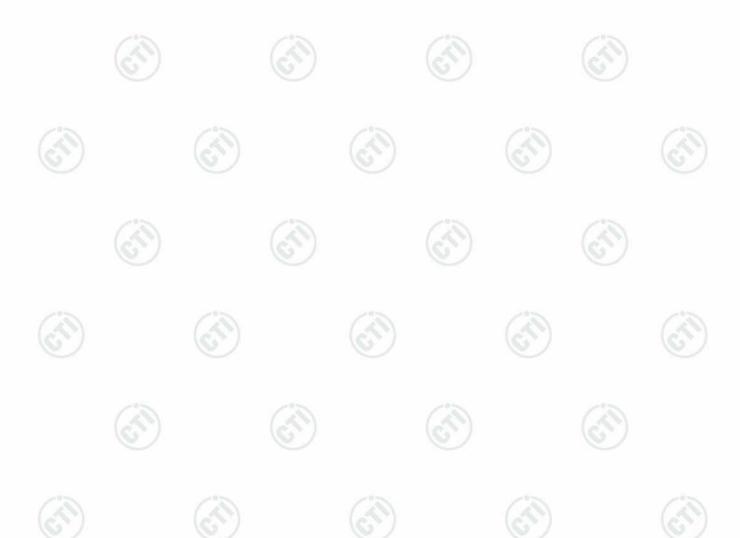
Applicant:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Applicant:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Manufacturer:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Manufacturer:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Factory:	JIANGSU LUCKYSTAR INTELLIGENT & TECHNOLOGY CO., LTD
Address of Factory:	Inelligent Terminal Pioneer Park (D),Yanlong Street Office,Yandu District,Yancheng City,Jiangsu Province

6.2 General Description of EUT

-						
Product Name:	Portable P	C				
Model No.(EUT):	CoreBook	Pro				
Trade mark:	CHUWI	CHUWI				
Frequency Range of Operation:	2400MHz	2400MHz to 2483.5MHz				
Power Supply:	Adapter	Model:A653-1903420D Input:100-240V~50/60Hz1.5A Output:19.0V==-3.42A 65.0W				
	Battery	Model Name:505979-3S1P 3ICP5/59/79 Rating:11.55V4000mAh 46.2 Wh				
Sample Received Date:	Aug. 28, 2020					
Sample tested Date:	Aug. 28, 2	020 to Oct.15, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(0)		(63)	
Bluetooth Version:	BLE				
Modulation Technique:	DSSS				
Modulation Type:	GFSK		/°5		- ° 5
Number of Channel:	40		(35)		(35)
Test Power Grade:	Default				
Test Software of EUT:	DRTU				
Antenna Type and Gain:	FPC antenna; 1.7 dBi	-05		~*	
Test Voltage:	Battery 11.55V	(35)		(3)	



Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Page 9 of 51 Report No.: EED32M00265302

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00265302 Page 10 of 51

7 Equipment List

1					
		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			(6, 7)
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d	·)	(E)	(
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128	1 (3)	(C.Z.)
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188		



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint E$

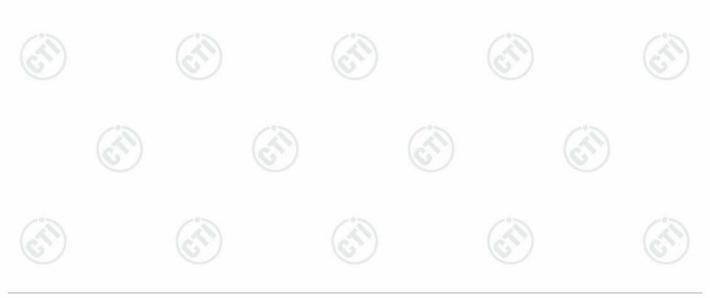
Page	11	of 51	
raue	- 1 1	01 0 1	

1.631	1.20	9.1	1 63	F	[KN]
	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(F)	i	(E)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	<u> </u>	
Cable line	Fulai(3M)	SF106	5217/6A	(44)	/

Page 12 of 51

		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		(ci)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(28)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M00265302 Page 13 of 51

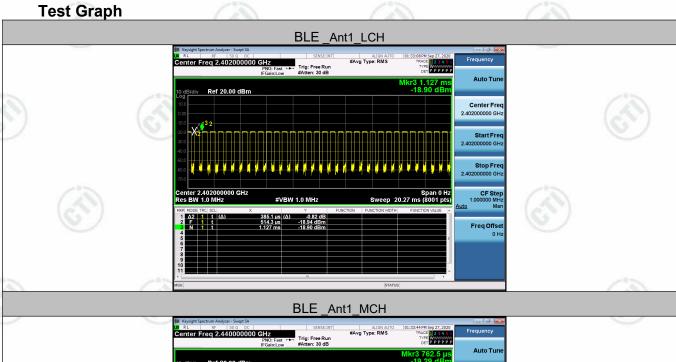

8 Radio Technical Requirements Specification

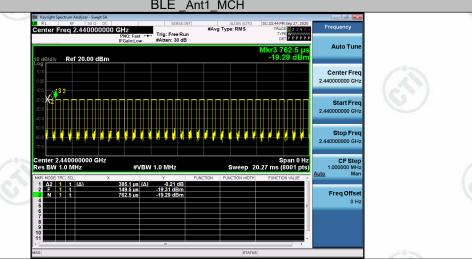
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

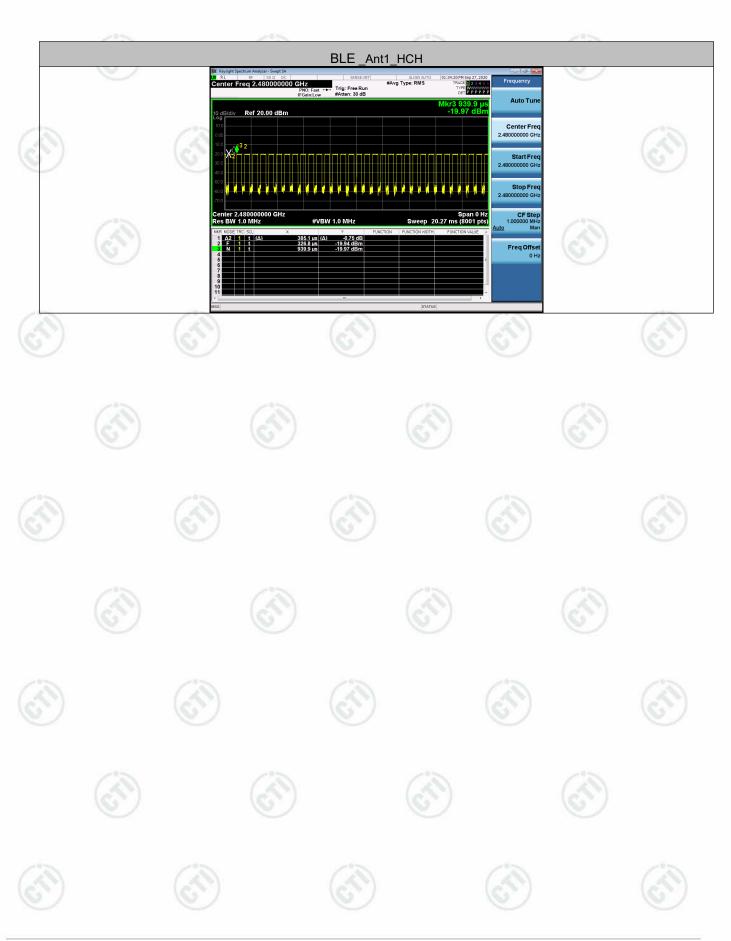



Page 14 of 51 Report No.: EED32M00265302

Duty Cycle

Result Table

Mode	Channel	Duty Cycle [%]	Limit	Verdict
BLE	LCH	62.81	/3	PASS
BLE	MCH	62.81	(63)	PASS
BLE	НСН	62.81		PASS



Report No. : EED32M00265302 Page 16 of 51

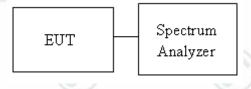
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limit	Shall be at least 500kHz	(0)

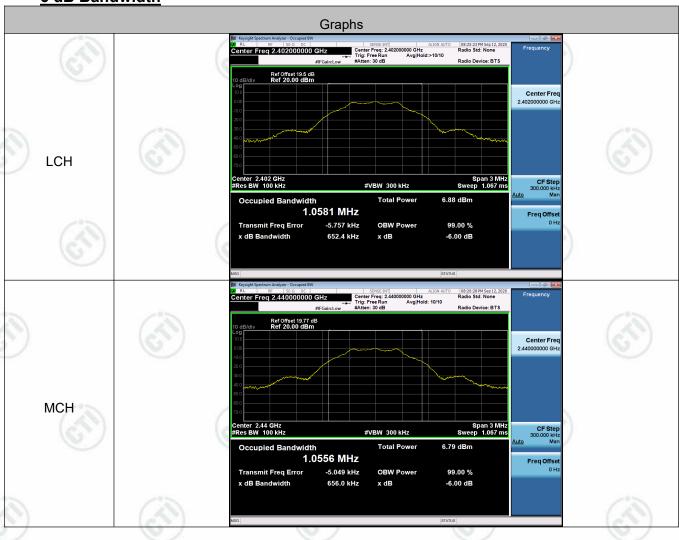

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

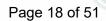


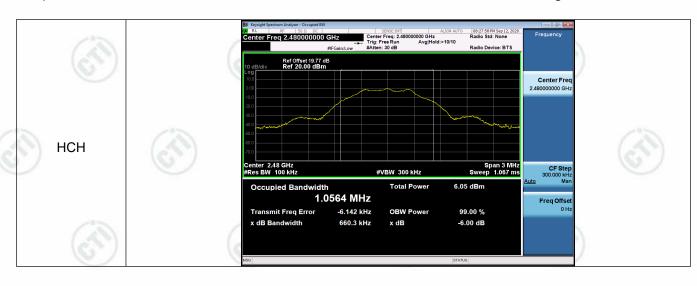
Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6524	1.0296	PASS
BLE	MCH	0.6560	1.0286	PASS
BLE	НСН	0.6603	1.0305	PASS

Test Graphs

6 dB Bandwidth





Report No.: EED32M00265302 Page 19 of 51

Occupied Bandwidth(99%)

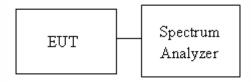
Report No. : EED32M00265302 Page 20 of 51

Appendix B): Conducted Peak Output Power Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


		(3)
Limit	☐ Antenna with DG greater than 6 dBi[Limit = 30 - (DG - 6)]☐ Point-to-point operation	0

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

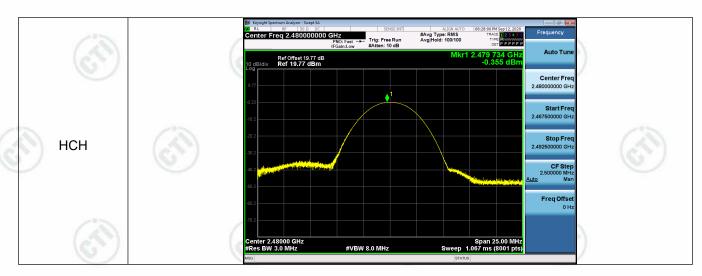


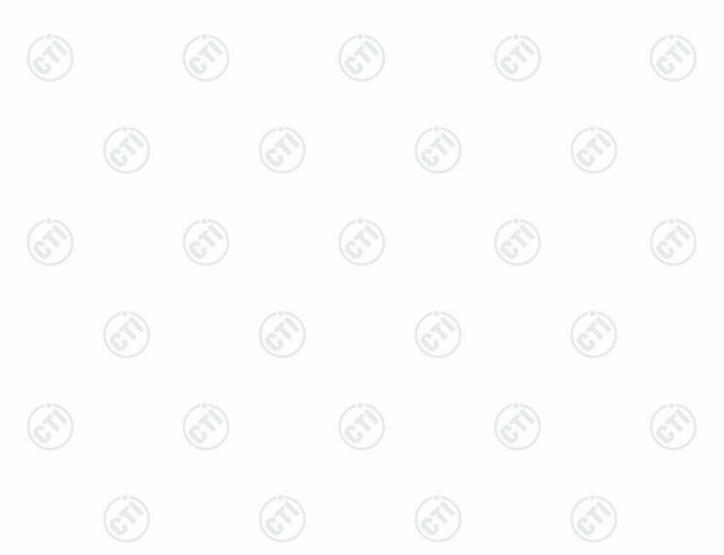
Report No. : EED32M00265302 Page 21 of 51

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	0.439	PASS
BLE	MCH	0.345	PASS
BLE	НСН	-0.355	PASS

Test Graphs





Report No. : EED32M00265302 Page 23 of 51

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

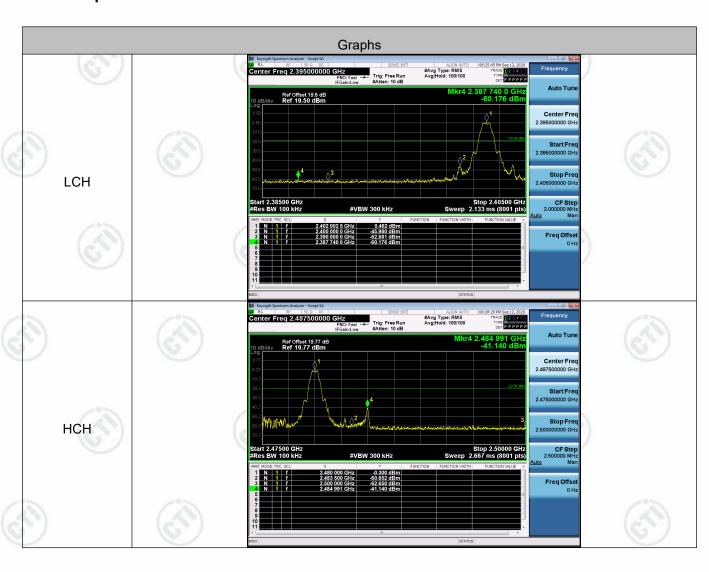
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 24 of 51

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	0.462	-60.176	-19.54	PASS
BLE	НСН	-0.300	-41.140	-20.3	PASS

Test Graphs

Report No. : EED32M00265302 Page 25 of 51

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

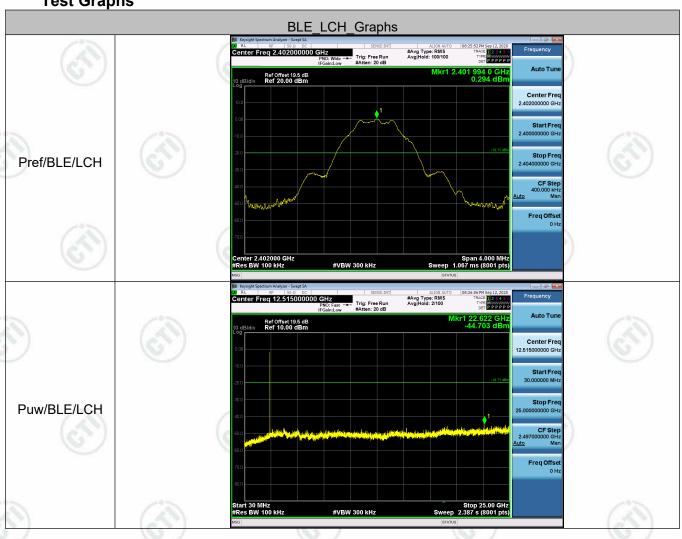
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 26 of 51

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.294	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.221	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-0.529	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No.: EED32M00265302 Page 29 of 51

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

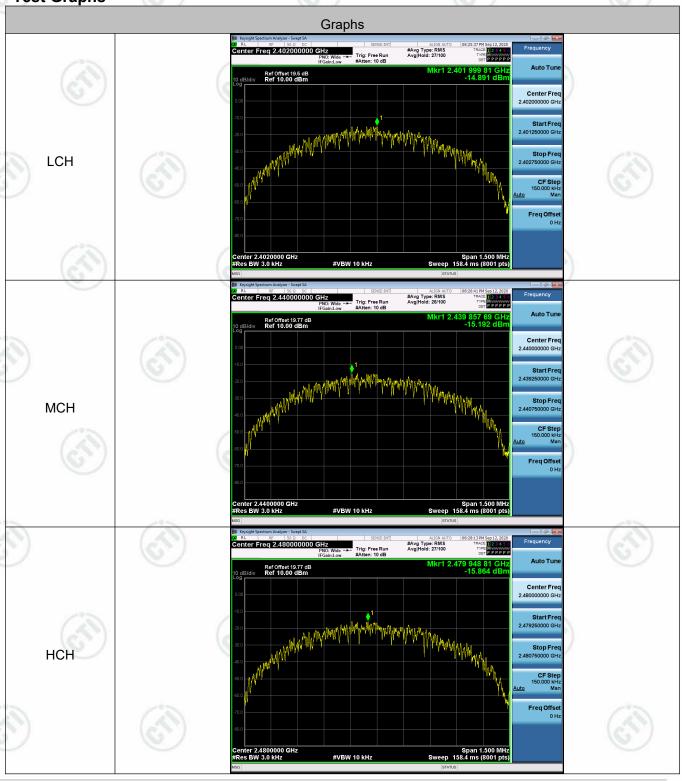
Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	i onit-to-point operation .

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup



Report No. : EED32M00265302 Page 30 of 51

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-14.891	PASS
BLE	MCH	-15.192	PASS
BLE	НСН	-15.864	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

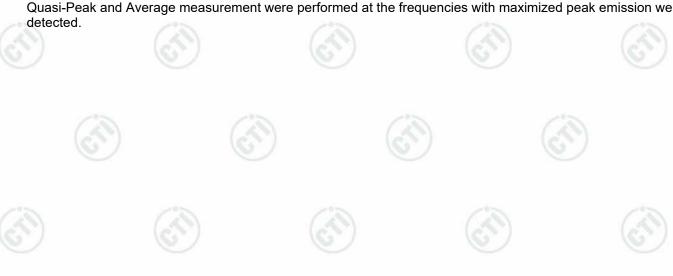
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

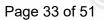
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

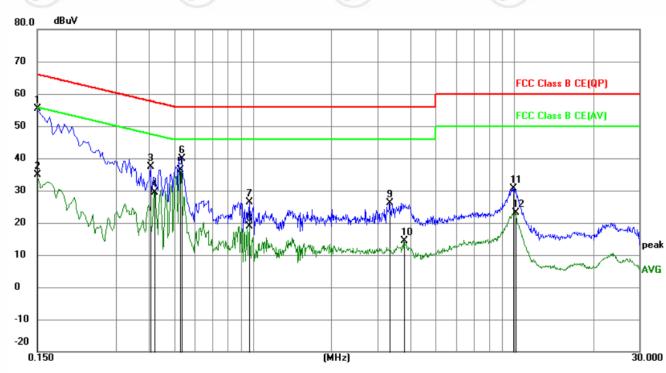
EUT Antenna:

The antenna is FPC antenna. The best case gain of the antenna is 1.7dBi.



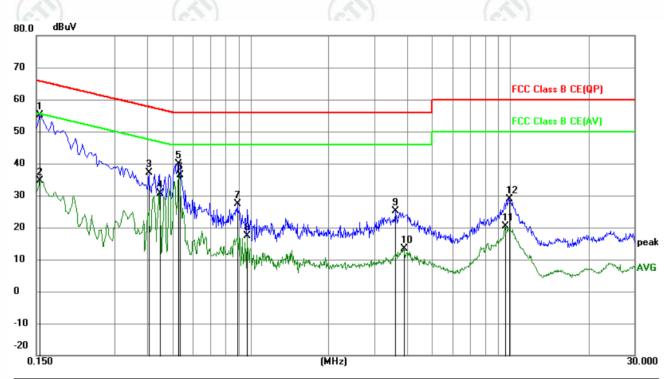

Page 32 of 51 Report No.: EED32M00265302

Annendix G): AC Power Line Conducted Emission


	Test frequency range :150KHz-	30MHz		
	1)The mains terminal disturban	ce voltage test was c	onducted in a shiel	ded room.
	The EUT was connected to Stabilization Network) whice power cables of all other use which was bonded to the graph.	n provides a 50Ω/50μ nits of the EUT were	ıH + 5Ω linear imp connected to a se	oedance. The cond LISN 2
	for the unit being measured multiple power cables to a sexceeded.	d. A multiple socket o	outlet strip was use	ed to connec
	3)The tabletop EUT was place reference plane. And for floorizontal ground reference	or-standing arrangem		
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t ground reference plane for plane. This distance was be	e vertical ground refer d to the horizontal gro he boundary of the u r LISNs mounted or	ence plane. The vo bund reference pla nit under test and n top of the grou	ertical ground ne. The LISN bonded to a nd reference
	All other units of the EUT a LISN 2.	nd associated equipm	ent was at least 0	.8 m from th
	5) In order to find the maximum of the interface cables in conducted management.			
Limit				
Limit:	of the interface cables n conducted measurement.		ccording to ANS	
Limit:	of the interface cables n	nust be changed a	ccording to ANS	
Limit:	of the interface cables n conducted measurement.	nust be changed a	BμV)	
Limit:	of the interface cables in conducted measurement. Frequency range (MHz)	nust be changed a Limit (d Quasi-peak	BµV) Average	
Limit:	of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (d Quasi-peak 66 to 56*	BμV) Average 56 to 46*	
Limit:	of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with the county of the count	Limit (d Quasi-peak 66 to 56* 56 60 vith the logarithm of the	BμV) Average 56 to 46* 46 50 The frequency in the	C63.10 oi
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was a conducted measurement.	Limit (d Quasi-peak 66 to 56* 56 60 vith the logarithm of the	BμV) Average 56 to 46* 46 50 The frequency in the	C63.10 oi
Measurement Data	of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with the county of the count	Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of the	BμV) Average 56 to 46* 46 50 the frequency in the frequency	C63.10 oi
Measurement Data An initial pre-scan wa	of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition ones with peak detectors.	BμV) Average 56 to 46* 46 50 the frequency in the frequency	i C63.10 or

Live line:

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	45.44	9.87	55.31	66.00	-10.69	QP	
2	0.1500	24.94	9.87	34.81	56.00	-21.19	AVG	
3	0.4065	27.34	9.97	37.31	57.72	-20.41	QP	
4	0.4200	19.33	9.97	29.30	47.45	-18.15	AVG	
5 *	0.5280	26.32	9.98	36.30	46.00	-9.70	AVG	
6	0.5325	30.01	9.99	40.00	56.00	-16.00	QP	
7	0.9735	16.61	9.84	26.45	56.00	-29.55	QP	
8	0.9735	9.16	9.84	19.00	46.00	-27.00	AVG	
9	3.3315	16.41	9.79	26.20	56.00	-29.80	QP	
10	3.7860	4.57	9.78	14.35	46.00	-31.65	AVG	
11	9.8925	20.82	9.78	30.60	60.00	-29.40	QP	
12	10.0770	13.30	9.78	23.08	50.00	-26.92	AVG	



Page 34 of 51

Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	45.33	9.87	55.20	65.75	-10.55	QP	
2	0.1545	24.76	9.87	34.63	55.75	-21.12	AVG	
3	0.4065	27.10	9.97	37.07	57.72	-20.65	QP	
4	0.4470	20.60	9.96	30.56	46.93	-16.37	AVG	
5	0.5280	29.86	9.98	39.84	56.00	-16.16	QP	
6 *	0.5325	26.39	9.99	36.38	46.00	-9.62	AVG	
7	0.8925	17.42	9.85	27.27	56.00	-28.73	QP	
8	0.9735	7.57	9.84	17.41	46.00	-28.59	AVG	
9	3.6105	15.44	9.78	25.22	56.00	-30.78	QP	
10	3.8895	3.67	9.78	13.45	46.00	-32.55	AVG	
11	9.5100	10.70	9.78	20.48	50.00	-29.52	AVG	
12	9.8969	19.01	9.78	28.79	60.00	-31.21	QP	

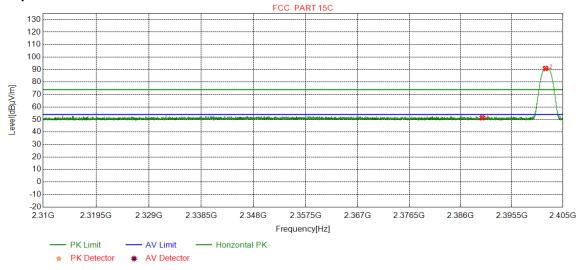
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32M00265302 Page 35 of 51

Appendix H): Restricted bands around fundamental frequency (Radiated)

(1144141414)	16.7	1,300,700				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	k
	AL 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Test method Refer as KDI a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to	3 558074 D01 , S on the top of a rot choic camber. Th of the highest ra eters away from th op of a variable-h	tating table te table wa diation. he interfer eight antel	e 0.8 meter as rotated 3 ence-recei nna tower.	360 degrees	to a, whic
	c. The antenna height is determine the maximulus polarizations of the and d. For each suspected e the antenna was tuned.	im value of the fie tenna are set to r mission, the EUT	eld strengtl make the n was arran 1 meter to	n. Both hor neasuremenged to its v	rizontal and rent. worst case a and the rotal	vertical and theatable
	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict mpliance. Also meanum analyzer plo	ak Detect ted band c easure any	Function a closest to the emissions	nd Specified ne transmit s in the restr	l icted
	e. The test-receiver systems andwidth with Maxim f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict mpliance. Also metrum analyzer plotechannel ure as below: ve is the test site, and table owest channel, the meter and table owest channel, the ments are performed found the X axi	ted band of easure any t. Repeat to table 0.8 e is 1.5 me he Highest med in X, is positioni	Function a closest to the commissions for each portion for each portion fo	nd Specified ne transmit is in the restrower and modern	icted dulatio hamber pove or ase.
Limit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict impliance. Also meatrum analyzer plotechannel ure as below: we is the test site imber change form a 1 meter and table owest channel, the ments are performed found the X axioures until all frequence.	ted band of easure any t. Repeat for table 0.8 e is 1.5 me the Highest med in X, is positionis encies me	Function a closest to the commissions for each portion for each portion for each portion meter to 1 ter). t channel Y, Z axis portion ing which increased was	nd Specified ne transmit is in the restrower and modern	icted dulatio hambe pove or ase.
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict mpliance. Also metrum analyzer plotechannel ure as below: the test site, and table owest channel, the ments are performed found the X axioures until all frequence. Limit (dBµV/n)	ted band of easure any t. Repeat for table 0.8 eris 1.5 me the Highest med in X, is positioning tencies med m @3m)	Function a closest to the community of t	nd Specified ne transmit s in the restr ower and mo Anechoic Cl .5 meter(Ab cositioning for t is worse ca as complete.	icted dulation hamber pove or ase.
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict mpliance. Also metrum analyzer plotechannel ure as below: the test site of the site of the test site of t	ted band of easure any t. Repeat for table 0.8 e is 1.5 me the Highest med in X, is positioning tencies med m @3m)	Function a closest to the community of t	nd Specified ne transmit s in the restr ower and mo Anechoic Cl .5 meter(Ab cositioning for t is worse ca as complete. mark eak Value	icted dulation hamber pove or ase.
.imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict mpliance. Also metrum analyzer plotechannel ure as below: we is the test site mater change form an analyzer and table owest channel, the ments are performed found the X axioures until all frequility. Limit (dBµV/140.043.5	ted band of easure any t. Repeat for table 0.8 to is 1.5 me the Highest med in X, is positioning tencies med in (a) and (a) an	Function a closest to the community of t	nd Specified ne transmit is in the restrower and modern	icted dulation hamber pove or ase.
Limit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict impliance. Also metrum analyzer plotechannel ure as below: eve is the test site, imber change form in 1 meter and table owest channel, the ments are performed found the X axioures until all frequences. Limit (dBµV/iii) 40.0 43.5 46.0	ted band of easure any t. Repeat for table 0.8 eris 1.5 me the Highest med in X, is positioning encies med m @3m)	Function a closest to the community of t	nd Specified ne transmit is in the restrower and modern	icted dulation hamber pove or ase.
Limit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict impliance. Also metrum analyzer plotechannel ure as below: we is the test site imber change form an analyzer and table owest channel, the ments are performed found the X axioures until all frequences. Limit (dBµV/r) 40.0 43.5 46.0 54.0	ted band of easure any t. Repeat for table 0.8 to table 1.5 me the Highest med in X, is positioning the median (a) and	Function a closest to the control of	nd Specified ne transmit is in the restrower and modern	icted dulation hamber pove or ase.
_imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxin f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	grees to 360 degreem was set to Peanum Hold Mode. end of the restrict impliance. Also metrum analyzer plotechannel ure as below: eve is the test site, imber change form in 1 meter and table owest channel, the ments are performed found the X axioures until all frequences. Limit (dBµV/iii) 40.0 43.5 46.0	ted band of easure any t. Repeat for table 0.8 to is 1.5 me the Highest med in X, is positioning the med in X and the med in X are positioning the X are positioning the med in X are position	Function a closest to the community of t	nd Specified ne transmit is in the restrower and modern	icted dulatio hamber pove or ase.



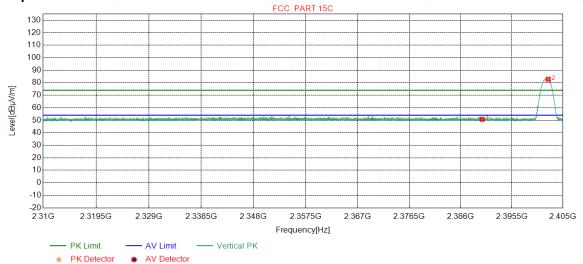
Page 36 of 51

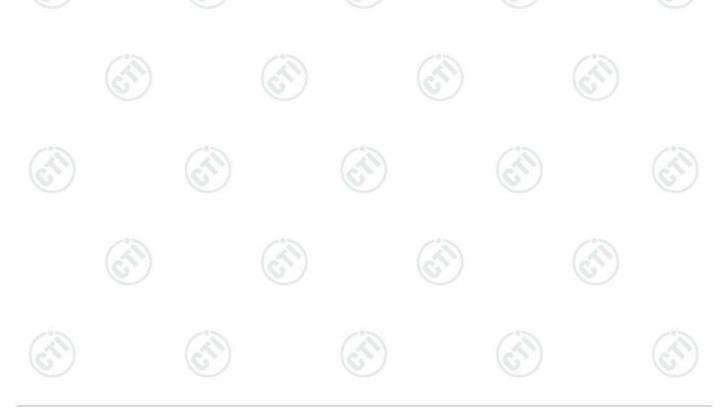
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		(0.)

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
ſ	1	2390.0000	32.25	13.37	-43.12	48.91	51.41	74.00	22.59	Pass	Horizontal
Γ	2	2401.7761	32.26	13.31	-43.12	88.49	90.94	74.00	-16.94	Pass	Horizontal

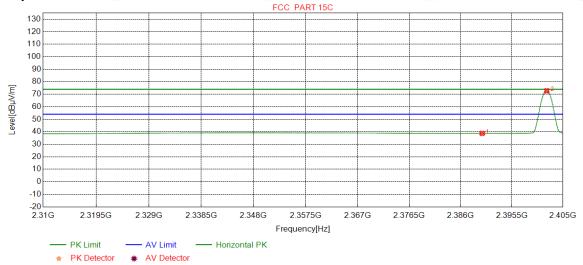


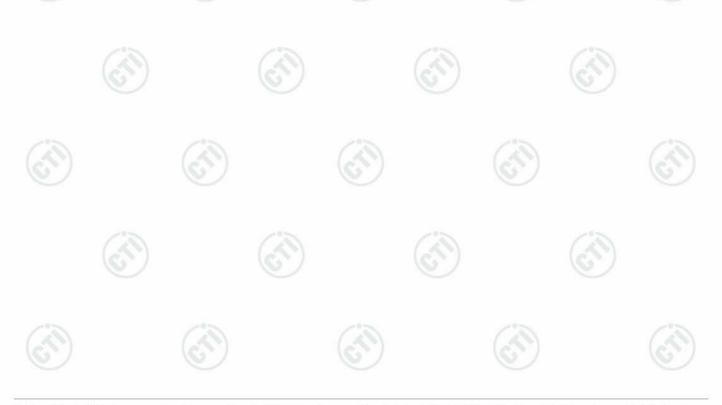

Page 37 of 51	Page	37	of	51	
---------------	------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.25	50.75	74.00	23.25	Pass	Vertical
2	2402.2575	32.26	13.31	-43.12	80.31	82.76	74.00	-8.76	Pass	Vertical

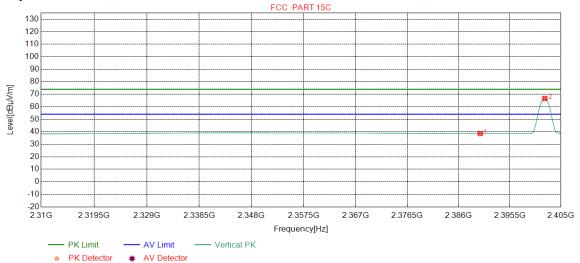


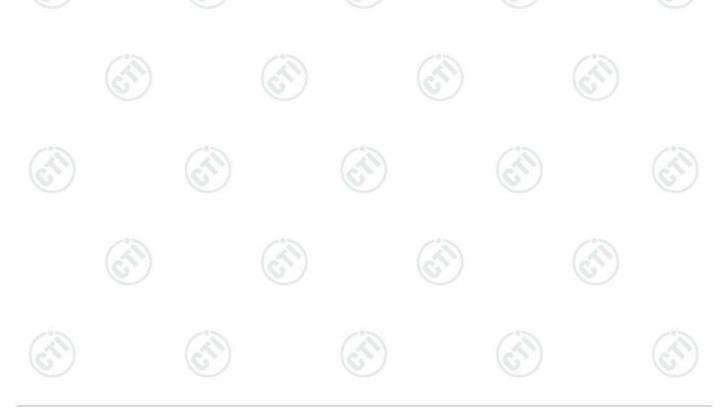

Page	38	of	51	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.21	38.71	54.00	15.29	Pass	Horizontal
2	2401.9915	32.26	13.31	-43.12	70.32	72.77	54.00	-18.77	Pass	Horizontal

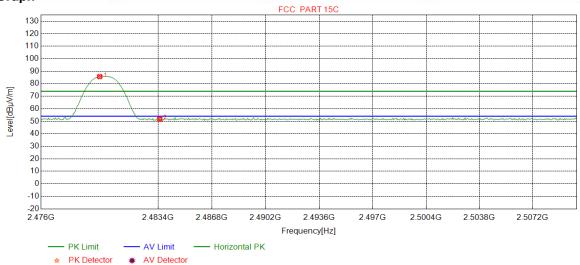


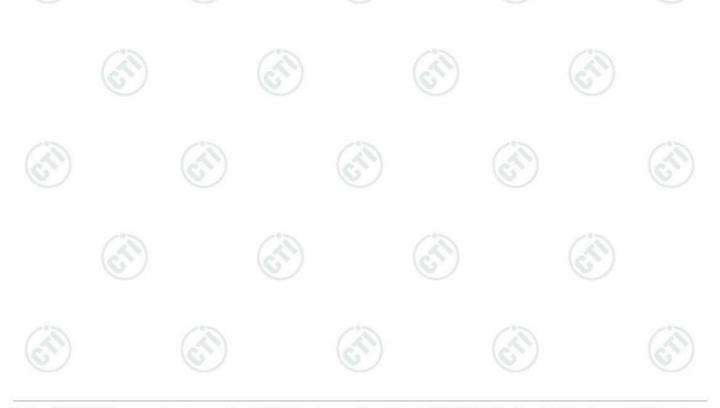

i age oo oi o i	Page	39	of	51	
-----------------	------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	64.18	66.63	54.00	-12.63	Pass	Vertical

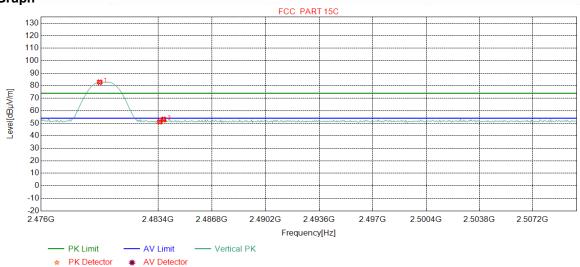


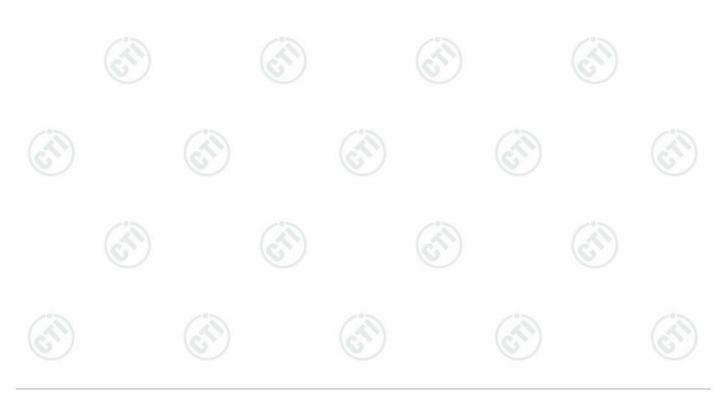

Page 40 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2479.7021	32.37	13.39	-43.10	83.04	85.70	74.00	-11.70	Pass	Horizontal
2	2	2483.5000	32.38	13.38	-43.11	49.08	51.73	74.00	22.27	Pass	Horizontal

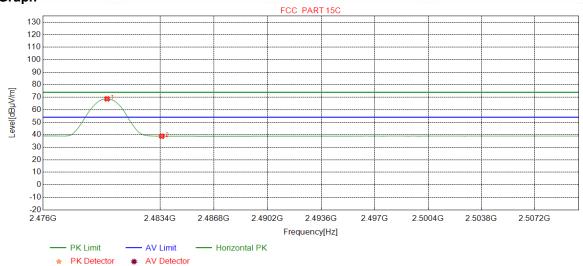


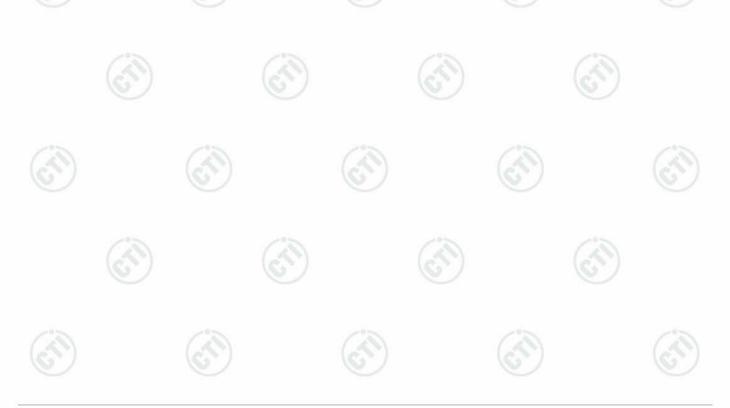

Page 41 of 51	Page	e 41	of	51
---------------	------	------	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	80.17	82.83	74.00	-8.83	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.50	51.15	74.00	22.85	Pass	Vertical
3	2483.7447	32.38	13.37	-43.10	50.52	53.17	74.00	20.83	Pass	Vertical

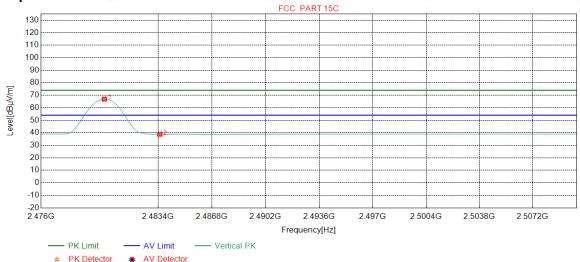



Page 42 of 51	
---------------	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

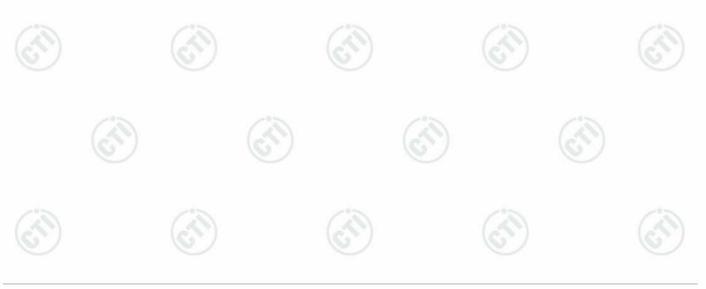
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	66.06	68.72	54.00	-14.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.20	38.85	54.00	15.15	Pass	Horizontal



	Page	43	of	51	
--	------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	64.22	66.88	54.00	-12.88	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.16	38.81	54.00	15.19	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00265302 Page 44 of 51

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
Λ.	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(c1)	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

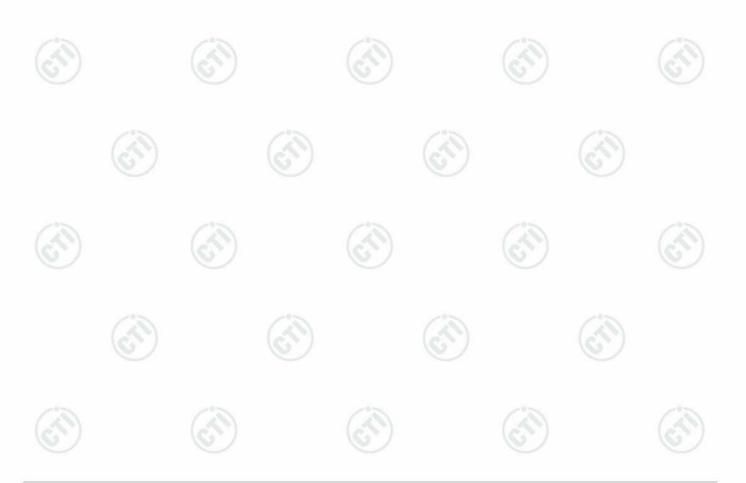
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

		٠.	
	m	١t	•
_,		Hι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(33)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	52.80	33.30	40.00	6.70	Pass	Н	PK
2	45.5216	13.20	0.76	-31.76	48.90	31.10	40.00	8.90	Pass	Н	PK
3	116.5327	9.79	1.28	-32.07	50.13	29.13	43.50	14.37	Pass	Н	PK
4	240.0260	11.94	1.84	-31.90	47.89	29.77	46.00	16.23	Pass	Н	PK
5	304.0524	13.29	2.07	-31.60	48.53	32.29	46.00	13.71	Pass	Н	PK
6	600.0290	19.00	2.96	-31.50	45.55	36.01	46.00	9.99	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	54.01	34.51	40.00	5.49	Pass	V	PK
8	45.7156	13.20	0.76	-31.77	48.94	31.13	40.00	8.87	Pass	V	PK
9	120.0250	9.20	1.30	-32.07	51.18	29.61	43.50	13.89	Pass	V	PK
10	195.0135	10.43	1.64	-31.94	50.62	30.75	43.50	12.75	Pass	V	PK
11	304.0524	13.29	2.07	-31.60	50.82	34.58	46.00	11.42	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	45.58	36.04	46.00	9.96	Pass	V	PK

Page 46 of 51

Transmitter Emission above 1GHz

Mode:			BLE GFS	SK Transm	itting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2007.3007	31.71	3.48	-43.20	51.07	43.06	74.00	30.94	Pass	Н	PK
2	3193.0129	33.28	4.64	-43.10	50.74	45.56	74.00	28.44	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	47.15	43.40	74.00	30.60	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	47.17	47.13	74.00	26.87	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.52	48.69	74.00	25.31	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.06	51.07	74.00	22.93	Pass	Н	PK
7	2069.3069	31.80	3.57	-43.19	51.73	43.91	74.00	30.09	Pass	V	PK
8	4261.0841	34.17	4.49	-42.90	51.25	47.01	74.00	26.99	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	46.46	42.71	74.00	31.29	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.79	46.75	74.00	27.25	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.96	49.13	74.00	24.87	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.92	51.93	74.00	22.07	Pass	V	PK

Mode	Mode:		BLE GF	SK Transr	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2112.1112	31.86	3.60	-43.18	50.62	42.90	74.00	31.10	Pass	Н	PK
2	2922.5923	33.08	4.39	-43.10	51.25	45.62	74.00	28.38	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	46.78	43.28	74.00	30.72	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	45.90	46.03	74.00	27.97	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.76	49.09	74.00	24.91	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.24	51.43	74.00	22.57	Pass	Н	PK
7	2167.9168	31.94	3.65	-43.17	50.63	43.05	74.00	30.95	Pass	V	PK
8	4252.0835	34.15	4.51	-42.90	51.75	47.51	74.00	26.49	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	46.88	43.38	74.00	30.62	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.45	46.58	74.00	27.42	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	46.74	49.07	74.00	24.93	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.96	51.15	74.00	22.85	Pass	V	PK

Mode:			BLE GF	SK Transm	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2026.1026	31.74	3.52	-43.20	50.87	42.93	74.00	31.07	Pass	Н	PK
2	4390.0927	34.35	4.54	-42.85	50.28	46.32	74.00	27.68	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.81	45.33	74.00	28.67	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.05	46.33	74.00	27.67	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.84	49.30	74.00	24.70	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.76	52.26	74.00	21.74	Pass	Н	PK
7	2097.3097	31.84	3.58	-43.19	50.83	43.06	74.00	30.94	Pass	V	PK
8	4257.0838	34.16	4.49	-42.89	50.21	45.97	74.00	28.03	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.97	44.49	74.00	29.51	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	46.41	46.69	74.00	27.31	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.14	48.60	74.00	25.40	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.42	51.92	74.00	22.08	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP On Page 48-50

PHOTOGRAPHS OF EUT Constructional Details On Page 51