

FCC Test Report

Report No.: RFBAOZ-WTW-P21060679A-3

FCC ID: 2AHKM-ARIA3411

Test Model: ARIA3411

Series Model: OS3411

Received Date: 2022/2/7

Test Date: 2022/2/8 ~ 2022/2/10

Issued Date: 2022/4/25

Applicant: Hitron Technologies Inc.

Address: No. 1-8, Li-Hsin 1st Rd. Hsinchu Science Park, Hsinchu 30078, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan. FCC Registration /

Designation Number: 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Repo	t Issue History Record of EUT	3
Relea	se Control Record	4
1	Certificate of Conformity	. 5
•		
2	Summary of Test Results	0
2.1	Measurement Uncertainty	6
2.2		0
3	General Information	7
3.1	General Description of EUT	7
3.2	Description of Test Modes	10
3.2.	1 Test Mode Applicability and Tested Channel Detail	13
3.3	Description of Support Units	14
3.3.	1 Configuration of System under Test	15
3.4	General Description of Applied Standard	16
4	Test Types and Results	17
4.1	Radiated Emission and Bandedge Measurement	17
4.1.	1 Limits of Radiated Emission and Bandedge Measurement	17
4.1.	2 Test Instruments	18
4.1.	3 Test Procedure	20
4.1.	4 Test Setup	21
4.1.	5 EUT Operating Condition	21
4.1.	6 Test Results	22
4.2	Transmit Power Measurement	24
4.2.	1 Limits of Transmit Power Measurement	24
4.2.	2 Test Setup	25
4.2.	3 Test Instruments	25
4.2.	4 Test Procedure	25
4.2.	5 EUT Operating Condition	26
4.2.	6 Test Result	27
4.3	Peak Power Spectral Density Measurement	28
4.3.	1 Limits of Peak Power Spectral Density Measurement	28
4.3.	2 Test Setup	28
4.3.	3 Test Instruments	28
4.3.	4 Test Procedure	29
4.3.	5 EUT Operating Condition	29
4.3.	6 Test Results	30
5	Pictures of Test Arrangements	31
Apper	ndix A– Information of the Testing Laboratories	32

Report Issue History Record of EUT

Attachment No.	Issue Date	Description
RFBAOZ-WTW-P21060679-3	2021/11/30	Original release.
RFBAOZ-WTW-P21060679A-3	2022/4/25	Add shielding & gasket.

Release Control Record

Issue No.	Description	Date Issued
RFBAOZ-WTW-P21060679A-3	Original release.	2022/4/25

1 Certificate of Conformity

Product:	Tri-band WiFi Extender	
Brand:	hitron	
Test Model:	ARIA3411	
Series Model:	OS3411	
Sample Status:	Engineering sample	
Applicant:	Hitron Technologies Inc.	
Test Date:	2022/2/8 ~ 2022/2/10	
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)	
	ANSI C63.10: 2013	

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vivian Huang / Specialist	_, Date:	2022/4/25	
Approved by:	Clark Lin / Technical Manager	, Date:	2022/4/25	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)					
FCC Test Item		Result	Remarks		
15.407(b)(8)	AC Power Conducted Emissions	NA	Refer to Note 1 below		
15.407(b)(5) (8) Radiated Emissions		PASS	Meet the requirement of limit. Minimum passing margin is -4.5dB at 53.85MHz.		
15.407(b)(6)	In-Band Emission (Mask)	NA	Refer to Note 1 below		
15.407(a) (4/5/6/7/8) Max Average Transmit Power		PASS	Meet the requirement of limit.		
15.407(a)(10)	7(a)(10) Emission Bandwidth Measurement		Refer to Note 1 below		
15.407(a) (4/5/6/7/8) Peak Power Spectral Density		PASS	Meet the requirement of limit.		
15.407 (d)(6)	Contention-based Protocol.	NA	Refer to Note 1 below		
15.407(g) Frequency Stability		NA	Refer to Note 1 below		
15.407(d) Operational restrictions for 6 GHz U-NII devices		NA	Refer to Note 1 below		
15.203 Antenna Requirement		PASS	Antenna connector is ipex(MHF) not a standard connector.		

Note:

1. Radiated Emissions & Max Average Transmit Power & Peak Power Spectral Density were performed for this addendum. The others testing data refer to original test report.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB	
	30MHz ~ 1GHz	5.5 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Tri-band WiFi Extender			
Brand	hitron			
Test Model	ARIA3411			
Series Model	OS3411			
Status of EUT	Engineering sample			
Power Supply Rating	12 Vdc from power adapter			
Modulation Type	1024QAM for OFDMA in 11ax HE mode			
Modulation Technology	OFDM, OFDMA			
Transfer Rate	802.11ax: up to 4083.9 Mbps			
	6.115 ~ 6.415GHz, 6.435 ~ 6.525GHz, 6.525 ~ 6.875GHz, 6.875 ~			
Operating Frequency	7.095GHz			
	802.11ax (HE20): 50			
Number of Observal	802.11ax (HE40): 25			
Number of Channel	802.11ax (HE80): 12			
	802.11ax (HE160): 6			
	CDD Mode:			
	6.115 ~ 6.415GHz: 20.85 dBm (121.619 mW) EIRP			
	6.435 ~ 6.525GHz: 20.65 dBm (116.145 mW) EIRP			
	6.525 ~ 6.875GHz: 21.05 dBm (127.35 mW) EIRP			
Output Power	6.875 ~ 7.095GHz: 20.85 dBm (121.619 mW) EIRP			
	Beamforming Mode:			
	6.115 ~ 6.415GHz: 19.45 dBm (88.105 mW) EIRP			
	6.435 ~ 6. 525GHz: 18.95 dBm (78.524 mW) EIRP			
	6. 525 ~ 6.875GHz: 19.55 dBm (90.157 mW) EIRP			
	6.875 ~ 7.095GHz: 18.85 dBm (76.736 mW) EIRP			
EUT Category	Indoor Access Point + Subordinate Device			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Adapter x1			
Dete Ochle Courter	Yellow RJ45 Cable for ARIA3411 (Unshielded, 1.5M) x 1			
Data Cable Supplied	White RJ45 Cable for OS3411 (Unshielded, 1.5M) x 1			

Note:

- 1. This is a supplementary report of Report No.: RFBAOZ-WTW-P21060679-3. The differences between them are as below information:
 - Add shielding & gasket.
- 2. According to above conditions, only Radiated Emissions (below 1GHz) & Max Average Transmit Power & Peak Power Spectral Density need to be performed. And all data are verified to meet the requirements.

3. The EUT has two model names which are identical to each other in all aspects except for the followings:

Model Name	Difference
ARIA3411	with black housing
OS3411	with white housing
Node: Engine the other is used at the producted engine is a	want as a sure formed in mondal. ADIA2444 The seteme

Node: From the above models, the radiated emission worst case was found in **model: ARIA3411**. Therefore only the test data of the mode was recorded in this report.

4. Simultaneously transmission condition.

Condition

Technology WLAN 5GHz 1 WLAN 2.4GHz WLAN 6GHz Bluetooth

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

5. The EUT has below radios as following table:

Radio 1 Radio 2		Radio 3	Radio 4	
Bluetooth	WLAN 2.4GHz	WLAN 5GHz	WLAN 6GHz	

6. For radiated emissions, the EUT was pre-tested under the following table:

Test Mode	Description
Mode A	Yellow RJ45 Cable
Mode B	White RJ45 Cable

In the original report, for the above modes, the worst radiated emissions was found in Mode A. Therefore only the test data of the modes were recorded in this report.

7. The antennas provided to the EUT, please refer to the following table:

Antenna NO.	Model	Antenna Net Gain(dBi)	Frequency range (GHz)	Antenna Type	Connector Type	Cable Length
1	RFPCA252525IMLB901	2.63	2.4~2.4835	printed PCR	ipex(MHF)	24cm
1		4.02	5.15~5.85	printed PCB		
2	RFPCA282525IMLB901	2.6	2.4~2.4835	printed PCB	ipex(MHF)	24cm
2		3.81	5.15~5.85			
3	RFPCA212009IMMB901	3.59	5.85~7.125	printed PCB	ipex(MHF)	10cm
4	RFPCA221508IMMB901	4.71	5.85~7.125	printed PCB	ipex(MHF)	7.5cm
5	RFPCA221514IMMB901	4.7	5.85~7.125	printed PCB	ipex(MHF)	13.5cm
6	RFPCA212009IMMB902	4.59	5.85~7.125	printed PCB	ipex(MHF)	8.5cm
7 (for BT)	RFPCA381007IMAB301	4.77	2.4~2.4835	printed PCB	ipex(MHF)	6.5cm

The EUT pow	er needs to be s	upplied from a power adapter, the information	on is as below table:
Brand	Model No.	Spec.	Description

Brand	Model No.	Spec.	Description
APD	WA-30P12FU	Input: 100-240 Vac, 0.9 A Max, 50-60 Hz Output: 12 Vdc, 2.5 A DC output cable (Unshielded, 1.5 m)	Black (for model: ARIA3411), White (for model: OS3411)

9. The EUT incorporates a MIMO function:

6GHz Band					
MODULATION MODE	TX & RX CONFIGURATION				
802.11ax (HE20)	4TX	4RX			
802.11ax (HE40)	4TX	4RX			
802.11ax (HE80)	4TX	4RX			
802.11ax (HE160)	4TX	4RX			

Note:

1. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

10. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

11. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

U-NII-5 (5925 ~ 6425MHz)

16 channels are provided for 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
33	6115 MHz	37	6135 MHz	41	6155 MHz	45	6175 MHz
49	6195 MHz	53	6215 MHz	57	6235 MHz	61	6255 MHz
65	6275 MHz	69	6295 MHz	73	6315 MHz	77	6335 MHz
81	6355 MHz	85	6375 MHz	89	6395 MHz	93	6415MHz

8 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
35	6125 MHz	43	6165 MHz	51	6205 MHz	59	6245 MHz
67	6285MHz	75	6325 MHz	83	6365 MHz	91	6405 MHz

4 channel is provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
39	6145 MHz	55	6225 MHz	71	6305 MHz	87	6385 MHz

2 channel is provided for 802.11ax (HE160):

Channel Frequency		Channel	Frequency	
47	6185 MHz	79	6345 MHz	

U-NII-6 (6425 ~ 6525MHz)

5 channels are provided for 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
97	6435 MHz	101	6455 MHz	105	6475 MHz	109	6495 MHz
113	6515 MHz						

3 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
99	6445 MHz	107	6485 MHz	*115	6525 MHz

1 channels is provided for 802.11ax (HE80):

Channel	Frequency
103	6465 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
*111	6505 MHz

U-NII-7 (6525 ~ 6875MHz)

18 channels are provided for 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
117	6535 MHz	121	6555 MHz	125	6575 MHz	129	6595 MHz
133	6615 MHz	137	6635 MHz	141	6655 MHz	145	6675 MHz
149	6695 MHz	153	6715 MHz	157	6735 MHz	161	6755 MHz
165	6775 MHz	169	6795 MHz	173	6815 MHz	177	6835 MHz
181	6855 MHz	*185	6875 MHz				

8 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
123	6565 MHz	131	6605 MHz	139	6645 MHz	147	6685 MHz
155	6725 MHz	163	6765 MHz	171	6805 MHz	179	6845 MHz

5 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
*119	6545 MHz	135	6625 MHz	151	6705 MHz	167	6785 MHz
*183	6865 MHz						

2 channels are provided for 802.11ax (HE160):

Channel	Frequency	Channel	Frequency
143	6665 MHz	175	*6825 MHz

U-NII-8 (6875 ~ 7125MHz)

11 channels are provided for 802.11ax (HE	20):
---	------

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
189	6895 MHz	193	6915 MHz	197	6935 MHz	201	6955 MHz
205	6975 MHz	209	6995 MHz	213	7015 MHz	217	7035 MHz
221	7055 MHz	225	7075 MHz	229	7095 MHz		

6 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
*187	6885 MHz	195	6925 MHz	203	6965 MHz
211	7005 MHz	219	7045 MHz	227	7085 MHz

2 channels is provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
199	6945 MHz	215	7025 MHz

1 channels are provided for 802.11ax (HE160):

Channel	Frequency
207	6985 MHz

Note: * mean this's straddle channel.

EUT Configure		Appli	cable To			Description	
Mode	RE<		TP/PSD				
-				\checkmark		-	
Where I	RE<1G: Radiated Er	mission below 10	GHz TP/PSD: Measure	:Transmit ement	Power / Power	Spectral Density	Radaited
Radiated Emis ☑ Pre-Scan h	sion Measuren	nent (Below '	1GHz): ine the worst	t-case m	ode from all p	ossible combinatio	ons
architecture	allable modulati e).	ons, data rate	es, XYZ axis	and ante	enna ports (if E	UT with antenna	diversity
Following c	hannel(s) was (v	vere) selected	d for the final	test as	listed below.		
			CDD Mode	e	1		1
Mode	FREQ. Band (MHz)	Available Channel	Tested Ch	annel	Modulation Technology	Modulation Type	Data Ra Parame
	5005 G405	47 to 79					
802.11ax (HE160 <u>ransmit Powe</u> ☐ This item in ☐ Pre-Scan h) 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct	111 143 to 175 207 tral Density value of the w ted to determ	111 Radaited Me orst channel ine the worst	easuren and the t-case m	OFDMA nent: channel's spe ode from all p	BPSK ctrum plot. ossible combinatio	MCSO
802.11ax (HE160 Transmit Powe This item in Pre-Scan h between av architecture Following c) 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation (). hannel(s) was (v	111 143 to 175 207 Etral Density value of the w ted to determ ons, data rate were) selected	111 Radaited M orst channel ine the worst es, XYZ axis d for the final	easuren and the t-case m and ante I test as	OFDMA nent: channel's spe ode from all p enna ports (if E listed below.	BPSK ctrum plot. ossible combinatio UT with antenna	MCS0 ons diversity
802.11ax (HE160 Transmit Powe This item in Pre-Scan h between av architecture Following c) 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation b). hannel(s) was (v	111 143 to 175 207 etral Density value of the w ted to determ ons, data rate were) selected	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final CDD Mode	easuren and the t-case m and ante I test as e	OFDMA nent: channel's spe ode from all pr enna ports (if E listed below.	BPSK ctrum plot. cossible combination UT with antenna	MCS0 ons diversity
802.11ax (HE160 Tansmit Powe This item in Pre-Scan h between av architecture Following c Mode) 5925-6425 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation). hannel(s) was (v FREQ. Band (MHz)	111 143 to 175 207 tral Density value of the w ted to determ ons, data rate were) selected Available Channel	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final <u>CDD Mode</u> Tested Ch	easuren and the t-case m and ante l test as e annel	OFDMA nent: channel's spe ode from all p enna ports (if E listed below. Modulation Technology	BPSK ctrum plot. ossible combinatio UT with antenna Modulation Type	MCS0 ons diversity Data Ra Parame
802.11ax (HE160 Fransmit Powe This item in Pre-Scan h between av architecture Following c Mode 802.11ax (HE160) 5925-6425 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation (). hannel(s) was (v FREQ. Band (MHz) 5925-6425 6425-6525 6425-6525 6525-6875 6875-7125	111 143 to 175 207 etral Density value of the w ted to determ ons, data rate were) selected Available Channel 47 to 79 111 143 to 175 207	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final <u>CDD Mode</u> Tested Ch	easuren and the t-case m and ante I test as e annel	OFDMA nent: channel's spe ode from all pre- enna ports (if E listed below. Modulation Technology OFDMA	BPSK ctrum plot. pssible combinatio UT with antenna Modulation Type BPSK	Data Ra Parame MCS0
802.11ax (HE160 Transmit Powe This item in Pre-Scan h between av architecture Following c Mode 802.11ax (HE160 Eest Condition) 5925-6425 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation hannel(s) was (v FREQ. Band (MHz) 5925-6425 6425-6525 6525-6875 6875-7125 :	111 143 to 175 207 etral Density value of the w ted to determ ons, data rate were) selected Available Channel 47 to 79 111 143 to 175 207	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final <u>CDD Mode</u> Tested Ch 143	easuren and the t-case m and ante I test as e annel	OFDMA nent: channel's spe ode from all pe enna ports (if E listed below. Modulation Technology OFDMA	BPSK by BPSK Description BPSK BPSK	Data Ra Parame MCS0
802.11ax (HE160 ransmit Powe This item in Pre-Scan h between av architecture Following c Mode 802.11ax (HE160 est Condition Applicable To) 3925-0425 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation (MHz) 5925-6425 6425-6525 6525-6875 6875-7125 Enviro	111 143 to 175 207 etral Density value of the w ted to determ ons, data rate were) selected Available Channel 47 to 79 111 143 to 175 207	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final CDD Mode Tested Ch 143 143	easuren and the t-case m and ante I test as e annel	OFDMA nent: channel's spe ode from all pe enna ports (if E listed below. Modulation Technology OFDMA nput Power	BPSK ctrum plot. pssible combination UT with antenna Modulation Type BPSK BPSK	MCS0 Dns diversity Parame MCS0 By
802.11ax (HE160 <u>ransmit Powe</u> This item in Pre-Scan h between av architecture Following c <u>Mode</u> 802.11ax (HE160 <u>est Condition</u> <u>Applicable To</u> <u>RE<1G</u>) 3925-6425 6425-6525 6525-6875 6875-7125 er / Power Spec cludes the test v as been conduct ailable modulation hannel(s) was (v FREQ. Band (MHz) 5925-6425 6425-6525 6525-6875 6875-7125 : Enviro 21	111 143 to 175 207 etral Density value of the w ted to determ ons, data rate were) selected Available Channel 47 to 79 111 143 to 175 207	111 Radaited Me orst channel ine the worst es, XYZ axis d for the final CDD Mode Tested Ch 143 143	easuren and the t-case m and ante I test as annel	OFDMA nent: channel's spe ode from all pe enna ports (if E listed below. Modulation Technology OFDMA nput Power 20Vac, 60Hz	BPSK besible combination UT with antenna Modulation Type BPSK BPSK	MCSC Dns diversity Data Ra Parame MCSC

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	Lenovo	20U5S01X00 L14	PF-1ANPYA	N/A	Provided by Lab
В.	Switch	D-Link	DGS-1005D	DR8WC92000523	NA	Provided by Lab
C.	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.5	No	0	Supplied by client
2.	RJ-45 Cable	1	1.5	No	0	Supplied by client
3.	RJ-45 Cable	1	10	No	0	Provided by Lab
4.	RJ-45 Cable	1	10	No	0	Provided by Lab
5.	RJ-45 Cable	1	10	No	0	Provided by Lab

3.4 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 987594 D02 EMC Measurement v01r01 KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Frequencies (MHz)	EIRP Limit	Equivalent Field Strength at 3m
	Peak:-7 (dBm/MHz)	88.2(dBµV/m)
592510112 > F > 712510112	Average: -27 (dBm/MHz)	68.2(dBµV/m)

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$

4.1.2 Test Instruments

For Radiated emission test:

DESCRIPTION &	MODEL NO	SERIAL NO	CALIBRATED	CALIBRATED	
MANUFACTURER			DATE	UNTIL	
Test Receiver Agilent	N9038A	MY51210202	2021/11/19	2022/11/18	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA	
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23	
LOOP ANTENNA Electro-Metrics	EM-6879	264	2021/3/5	2022/3/4	
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5	
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5	
Pre_Amplifier EMCI	EMC330N	980701	2021/3/10	2022/3/9	
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-406	2021/10/27	2022/10/26	
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2021/3/17	2022/3/16	
RF Coaxial Cable COMMATE/PEWC	8D	966-4-2	2021/3/17	2022/3/16	
RF Coaxial Cable COMMATE/PEWC	8D	966-4-3	2021/3/17	2022/3/16	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2022/1/10	2023/1/9	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 4.

3. Tested Date: 2022/2/10

For other test:						
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL		
Spectrum Analyzer R&S	FSV40	101516	2021/3/8	2022/3/7		
Power Meter Anritsu	ML2495A	1529002	2021/6/21	2022/6/20		
Pulse Power Sensor Anritsu	MA2411B	1339443	2021/5/31	2022/5/30		
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2021/4/13	2022/4/12		
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA		
AC Power Source GOOD WILL	6905S	1991551	NA	NA		
Temperature & Humidity Chamber Giant Force	GTH-150-40-SP-AR	MAA0812-008	2022/1/14	2023/1/13		
True RMS Clamp Meter Fluke	325	31130711WS	2021/6/2	2022/6/1		

NOTE: 1. The test was performed in Oven room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/2/8

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Test Setup

b. Controlling software (qdart_conn.win.1.0_installer_00076.1) has been activated to set the EUT under transmission condition continuously.

4.1.6 Test Results

Below 1GHz Data:					
RF Mode	TX 802.11ax (HE160)	Channel	CH 111:6505 MHz		
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)		
Input Power	120 Vac, 60 Hz	Environmental Conditions	25 °C, 70 % RH		
Tested By	Ryan Du				

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	30.38	25.2 QP	40.0	-14.8	1.00 H	261	38.8	-13.6
2	109.23	31.1 QP	43.5	-12.4	3.00 H	249	46.4	-15.3
3	134.45	30.1 QP	43.5	-13.4	1.50 H	299	43.0	-12.9
4	170.23	29.3 QP	43.5	-14.2	1.50 H	278	41.9	-12.6
5	233.59	32.3 QP	46.0	-13.7	1.00 H	145	46.2	-13.9
6	692.09	33.4 QP	46.0	-12.6	2.00 H	261	34.3	-0.9

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX 802.11ax (HE160)	Channel	CH 111 ÷ 6505 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Input Power	120 Vac, 60 Hz	Environmental Conditions	25 °C, 70 % RH
Tested By	Ryan Du		

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	53.85	35.5 QP	40.0	-4.5	1.00 V	274	48.2	-12.7
2	64.55	33.7 QP	40.0	-6.3	1.00 V	39	47.6	-13.9
3	110.63	27.5 QP	43.5	-16.0	1.50 V	309	42.7	-15.2
4	248.74	30.3 QP	46.0	-15.7	1.50 V	147	43.1	-12.8
5	403.06	29.1 QP	46.0	-16.9	1.00 V	244	37.0	-7.9
6	692.62	34.0 QP	46.0	-12.0	2.00 V	251	34.8	-0.8

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 **Transmit Power Measurement**

4.2.1 Limits of Transmit Power Measurement

Operation		Limit	
Band	EUT Calegory	Max Average Power	
U-NII-5			
U-NII-6	Indeer AP / Suberdinate Device	FIRD 30 dBm	
U-NII-7	Indoor AF / Subordinate Device		
U-NII-8			

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT}; Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} \ge 5.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.2.2 Test Setup Ant. Tower 1-4m Variable EUT& 3m Support Units Turn Table Absorber 150cm Ο \mathbf{O} Ground Plane Spectrum Analyzer 0 0 0 0 ٨ 0 0 0 \sim

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

- 4.2.4 Test Procedure
- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP level.
- e. Follow ANSI 63.10 and KDB 412172 D01 v01r01, EIRP Value (dBm) = Field Strength Value (dBµV/m) + Correction Factor @ 3m.
- f. Correction Factor (dB) @ 3m = 20log(D) 104.7; where D is the measurement distance @3m=-95.15dB

Note: Spectrum analyzer setting as below:

Method SA-1

- 1. Set span to encompass the entire 99% occupied bandwidth of the signal.
- 2. Set RBW =1MHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Number of points in sweep \geq 2 Span / RBW.
- 5. Sweep time = auto.
- 6. Set trigger to free run (duty cycle ≥ 98 percent) ; Set video trigger (duty cycle < 98 percent)
- 7. Detector = RMS.
- 8. Trace average at least 100 traces in power averaging mode
- 9. Compute power by integrating the spectrum across the 99% occupied bandwidth of the signal.

4.2.5 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.6 Test Result

CDD Mode

802.11ax (HE160)

Chan.	Chan. Freq. (MHz)	Field Strength (dBuV/m)	Correction Factor (dB)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Pass / Fail
143	6665	116.00	-95.15	121.619	20.85	30	Pass

4.3 Peak Power Spectral Density Measurement

4.3.1 Limits of Peak Power Spectral Density Measurement

Operation		Limit
Band	EUT Category	Peak Power Density (EIRP)
U-NII-5		
U-NII-6	Indeen AD / Outendinete Device	
U-NII-7	Indoor AP / Subordinate Device	5 dBm/MHz
U-NII-8		

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP level.
- e. Follow ANSI 63.10 and KDB 412172 D01 v01r01, EIRP Value (dBm) = Field Strength Value (dBμV/m) + Correction Factor @ 3m.
- f. Correction Factor (dB) @ 3m = 20log(D) 104.7; where D is the measurement distance @3m=-95.15dB

Note: Spectrum analyzer setting as below:

Method SA-1

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3. Sweep time = auto, trigger set to "free run" (duty cycle ≥ 98 percent) ; Set video trigger (duty cycle < 98 percent).
- 4. Trace average at least 100 traces in power averaging mode.
- 5. Record the max value
- 4.3.5 EUT Operating Condition

Same as Item 4.3.6.

4.3.6 Test Results

802.11ax (HE160)

Chan.	Chan. Freq. (MHz)	Field Strength (dBuV/m)	Correction Factor (dB)	EIRP PSD (dBm/MHz)	EIRP PSD Limit (dBm/MHz)	Pass / Fail
143	6665	100.091	-95.15	4.94	5.00	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix A- Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----