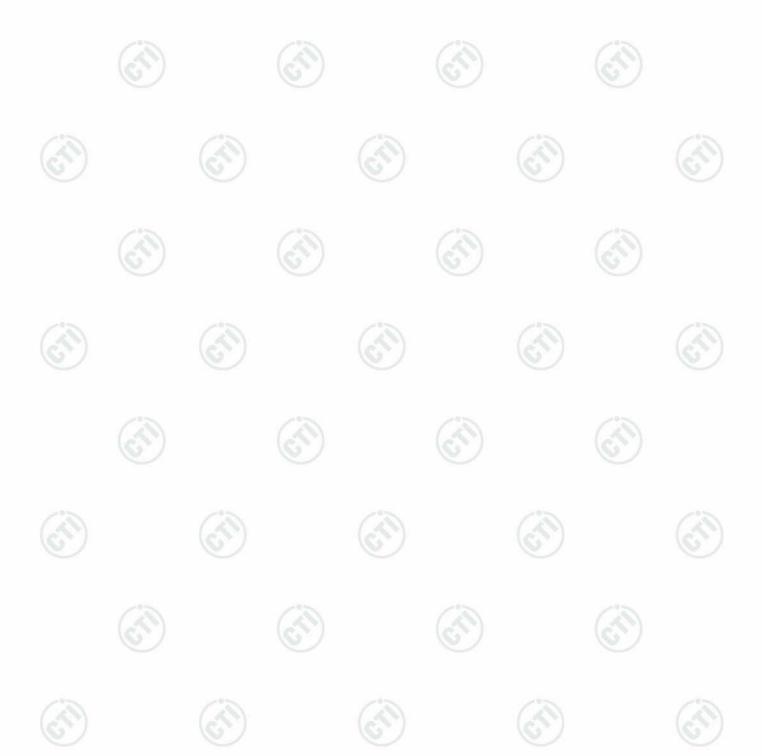


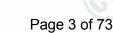
Page 1 of 73

TEST REPORT

	Product :	Yanshee	
	Trade mark :	UBTECH	
	Model/Type reference :	Yanshee	
	Serial Number :	N/A	
	Report Number :	EED32K00127802	
	FCC ID :	2AHJX-YANSHEE	
	Date of Issue :	Jul. 19, 2018	
	Test Standards :	47 CFR Part 15 Sub	part C
	Test result :	PASS	
	Prepar		
	UBTECH ROE	OTICS CORP	
	Nanshan District, Sher Prepare Centre Testing Interna Hongwei Industrial Zo Shenzhen, Gua TEL: +86-75 FAX: +86-75	ed by: ntional Group Co. ne, Bao'an 70 Dis ngdong, China	, Ltd.
Tested By: Reviewed by:	Tom chen (Test Project) Kevin vang (Reviewer)	Compiled by: Max I Approved by:	Liang (Project Engineer)
23	Kevin vang (Reviewer)	Report Seal Shee	ek Luo (Lab supervisor)
		Report Sear Siles	
Date:	Jul. 19, 2018		Check No.:3096333402



2 Version


Page 2 of 73

Version No.	Date	(Description)
00	Jul. 19, 2018		Original	
°) (1	S).		(23)	6

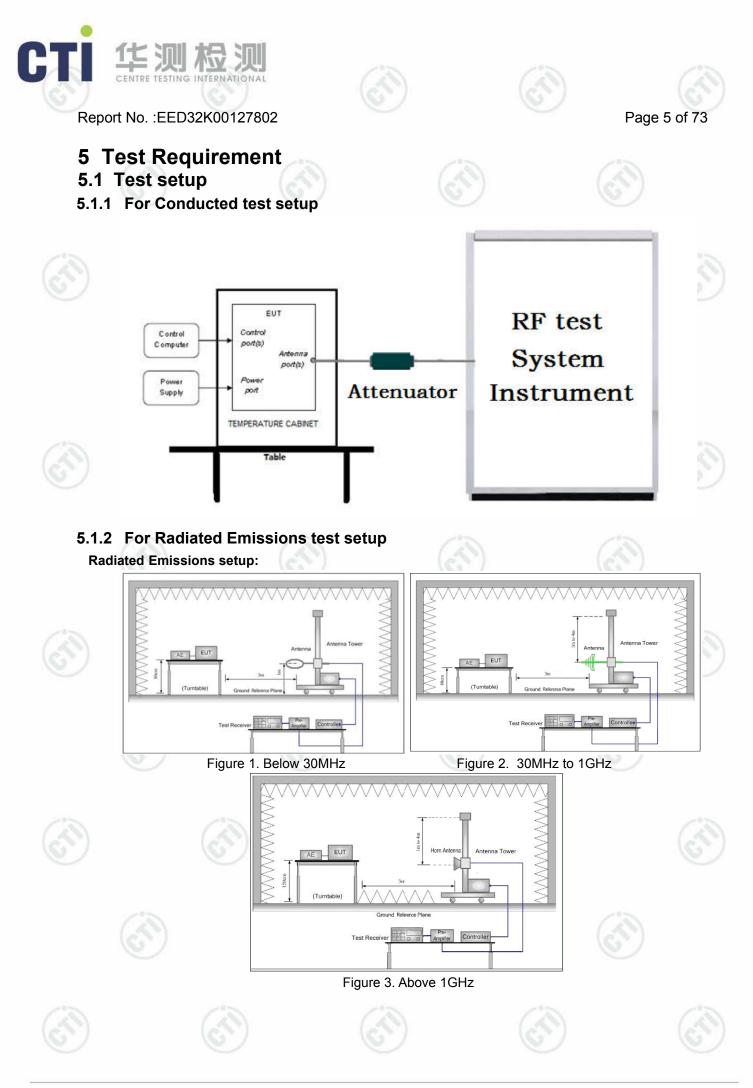
3 Test Summary

root ourmany				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

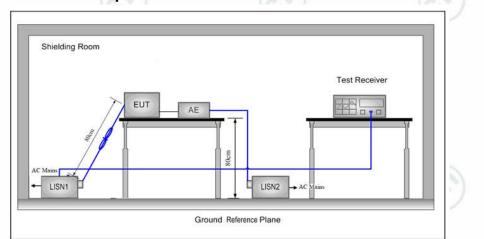
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.



1 COVER PAGE				1
2 VERSION				2
3 TEST SUMMARY				
4 CONTENT				4
5 TEST REQUIREMENT				
5.1 TEST SETUP				5
5.1.1 For Conducted test setup				
5.1.2 For Radiated Emissions test setup				
5.1.3 For Conducted Emissions test setup				
5.2 TEST ENVIRONMENT				
5.3 TEST CONDITION				
6 GENERAL INFORMATION			•••••	7
6.1 CLIENT INFORMATION				7
6.2 GENERAL DESCRIPTION OF EUT				
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STAND				
6.4 DESCRIPTION OF SUPPORT UNITS				
6.5 TEST LOCATION.				
6.6 DEVIATION FROM STANDARDS				8
6.7 ABNORMALITIES FROM STANDARD CONDITIONS				
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER				
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEV	/ELS, K =2)			
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEV 7 EQUIPMENT LIST				
		•••••		10
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATI	ON			10 12
7 EQUIPMENT LIST	ON			10 12 13
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation	ON			10 12
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time	ON	(3)		10 12
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number	ON	٢		10 12 13 17 21 25
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power	ON	6		10 12
7 EQUIPMENT LIST	ON	6		10 12
7 EQUIPMENT LIST	ON	3		10 12
7 EQUIPMENT LIST	ON	٢		10 12
7 EQUIPMENT LIST	ON	٢		10 12 13 17 21 25 27 31 36 43 44
7 EQUIPMENT LIST	ON			10 12 13 17 21 25 27 31 36 43 44 45
7 EQUIPMENT LIST	ON ons frequence frequency (Radia	ted)		10 12 13 17 21 25 27 31 36 43 44 45 48 62
7 EQUIPMENT LIST	ON ons frequence frequency (Radia	ted)		10 12 13 17 21 25 27 31 36 43 44 45 48 62

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:				C
Temperature:	24.8 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1010mbar			
10 M	0.3	0	AN	

5.3 Test Condition

Test Mode	Ти	RF Channel			
Test Mode	Tx	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3, DH5)	240210102 ~2400 10102	2402MHz	2441MHz	2480MHz	
TX mode: The EUT transmitted the continuous signal at the specific channel(s).					

Test mode:

Mode		GFSK	
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	-1.122	0.012	0.582
12	25	L L	123
Mode		π/4DQPSK	
packets	2-DH1	2-DH3	2-DH5
Power(dBm)	-1.522	-1.000	0.162
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
Power(dBm)	-1.780	-1.250	0.417

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.

Page 7 of 73

Report No. :EED32K00127802

General Information 6

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP		
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA		
Manufacturer:	UBTECH ROBOTICS CORP		
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA		
Factory:	UBTECH ROBOTICS CORP BAOAN BRANCH		
Address of Factory:	1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA		

6.2 General Description of EUT

Product Name:	Yanshee						
Model No.(EUT):	Yanshee	e					
Trade mark:	UBTECH	UBTECH					
EUT Supports Radios application:		ual mode, 2402MHz to 2480MHz /2.11b/g/n(HT20): 2412MHz to 2462MHz					
Power Supply:	Adapter	Model: HKA03609640-8A Input: 100-240V~50/60Hz, 1.5A Output: 9.6V4.0A					
	Battery	Rechargable Li-ion Battery 7.24V, 2750mAh, 19.91Wh					
Sample Received Date:	May 24, 2018	3					
Sample tested Date: May 24, 2018 to Jul. 19, 2018							
3 Product Specifi	cation sub	jective to this standard					
Operation Frequency:	2402MHz~24	80MHz					
Bluetooth Version:	3.0						
Modulation Technique:	Frequency He	opping Spread Spectrum(FHSS)					
Modulation Type:	GFSK, π/4D0	QPSK, 8DPSK					
Number of Channel:	79						
Hopping Channel Type:	Adaptive Free	quency Hopping systems					
Firmware version:	Linux 9(manu	ıfacturer declare)					
Hardware version:	V1.0(manufacturer declare)						
	Ceramic antenna						
Antenna Type:		nna					
		nna					

Page 8 of 73

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

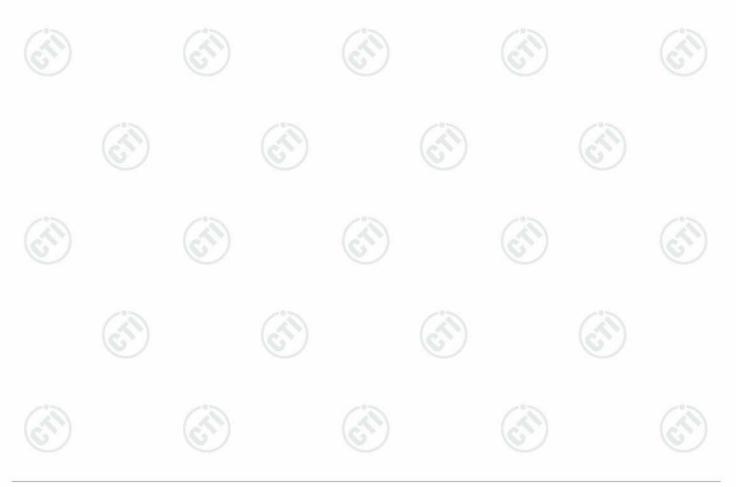
6.8 Other Information Requested by the Customer

None.

Page 9 of 73

6.9 Measurement Uncertainty (95% confidence levels, k=2)

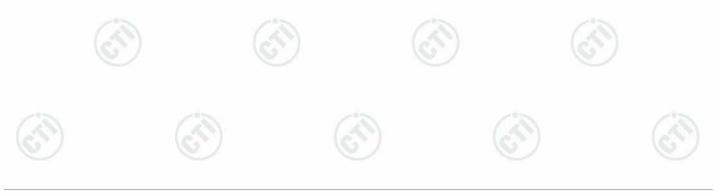
No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower, conducted	0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
3	Dedicted Sourious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction organism	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	



7 Equipment List

	Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019				
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019				
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019				

RF Conducted test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019			
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019			
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019			
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019			



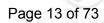
Page 11 of 73

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	03-29-2018	03-28-2019		
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-08-2021		
Double Ridge Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-07-2015 06-05-2018	06-05-2018 06-03-2021		
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019		
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019		
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019		
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019		
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019		
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019		
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019		
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019		
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002		01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001	<u></u>	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	<u> </u>	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	(01-10-2018	01-09-2019		

8 Radio Technical Requirements Specification

Reference documents for testing:

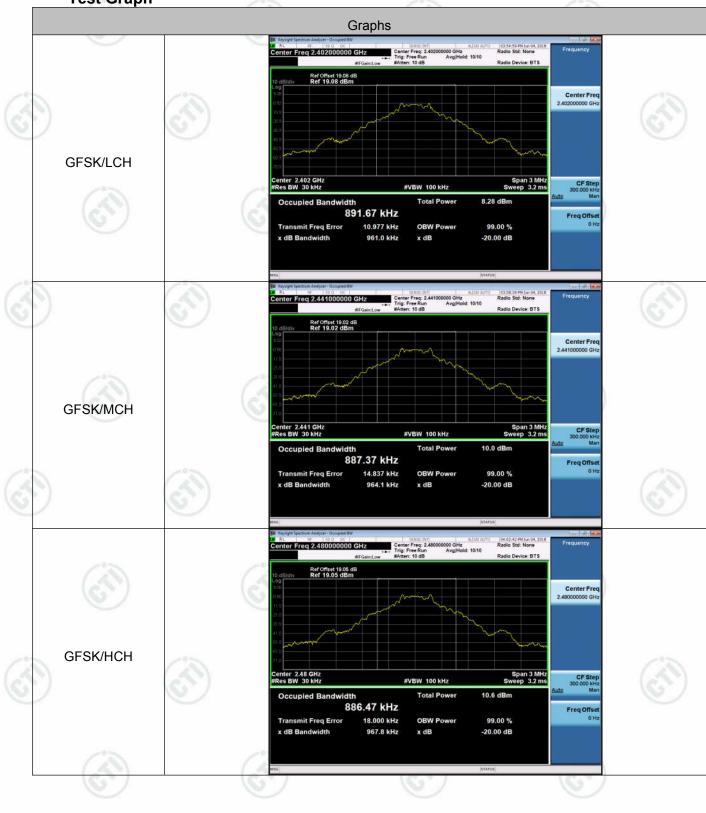
	No.	Identity	Document Title
	1	FCC Part 15C	Subpart C-Intentional Radiators
2	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices


Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L

Appendix A): 20dB Occupied Bandwidth

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9610	0.89167	PASS	10
GFSK	MCH	0.9641	0.88737	PASS	6
GFSK	НСН	0.9678	0.88647	PASS	
π/4DQPSK	LCH	1.326	1.2068	PASS	Deale
π/4DQPSK	МСН	1.329	1.2083	PASS	Peak
π/4DQPSK	НСН	1.329	1.2053	PASS	detector
8DPSK	LCH	1.314	1.2116	PASS	-
8DPSK	МСН	1.315	1.2143	PASS	
8DPSK	НСН	1.315	1.2135	PASS	12



Test Graph

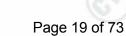
Page 15 of 73

Page 17 of 73

Appendix B): Carrier Frequency Separation

Result Tab	le 🔝	*) (AS*)	
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.916	PASS
GFSK	МСН	1.000	PASS
GFSK	НСН	1.000	PASS
π/4DQPSK	LCH	0.916	PASS
π/4DQPSK	МСН	1.002	PASS
π/4DQPSK	нсн	1.002	PASS
8DPSK	LCH	0.976	PASS
8DPSK	МСН	1.102	PASS
8DPSK	НСН	1.096	PASS

Test Graph



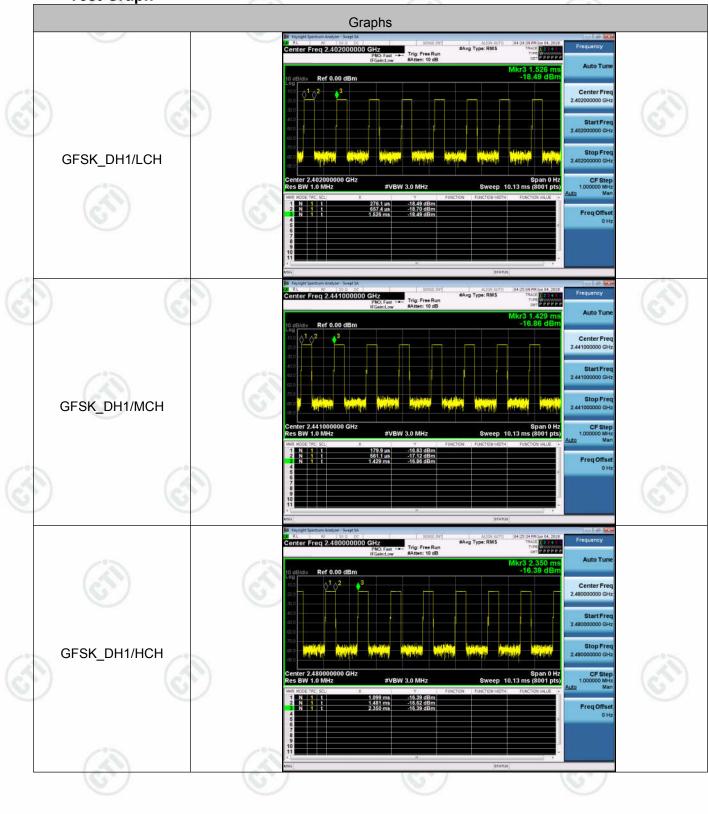


Page 20 of 73

Appendix C): Dwell Time

	Resu	It Table	(<u>()</u>			(\mathcal{A})	
	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
13	GFSK	DH1	LCH	0.381267	320	0.122	0.30	PASS
3	GFSK	DH1	МСН	0.381266	320	0.122	0.31	PASS
	GFSK	DH1	НСН	0.38126	320	0.122	0.30	PASS
	GFSK	DH3	LCH	1.637803	160	0.262	0.66	PASS
	GFSK	DH3	МСН	1.6378	160	0.262	0.66	PASS
	GFSK	DH3	НСН	1.63654	160	0.262	0.65	PASS
	GFSK	DH5	LCH	2.8704	106.7	0.306	0.77	PASS
	GFSK	DH5	МСН	2.8704	106.7	0.306	0.76	PASS
2	GFSK	DH5	НСН	2.8612	106.7	0.305	0.76	PASS

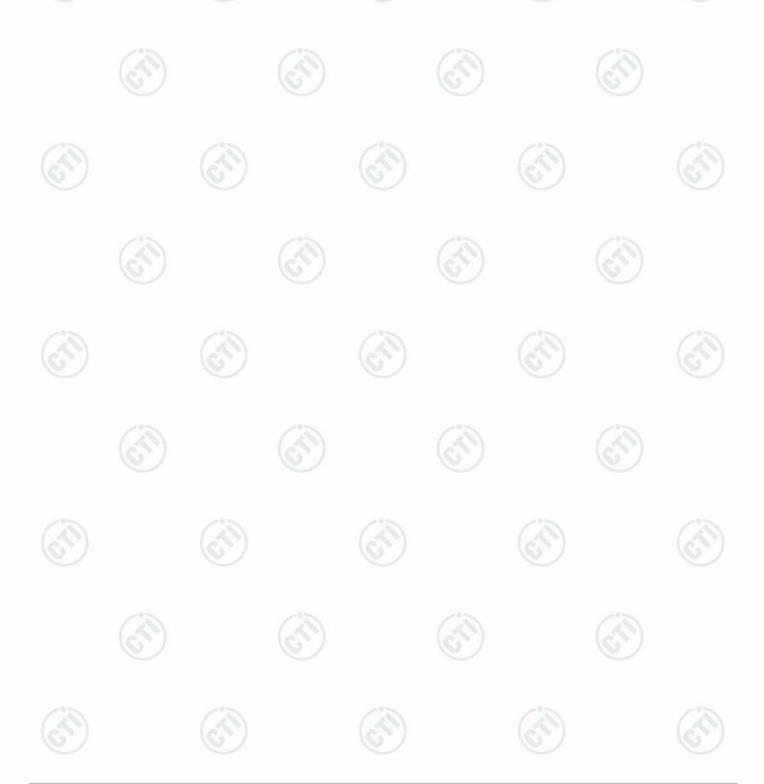
Page 21 of 73



Test Graph

Page 23 of 73

Page 24 of 73



Page 25 of 73

Appendix D): Hopping Channel Number

Result Tab	le 🔝) (28)	(25)
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

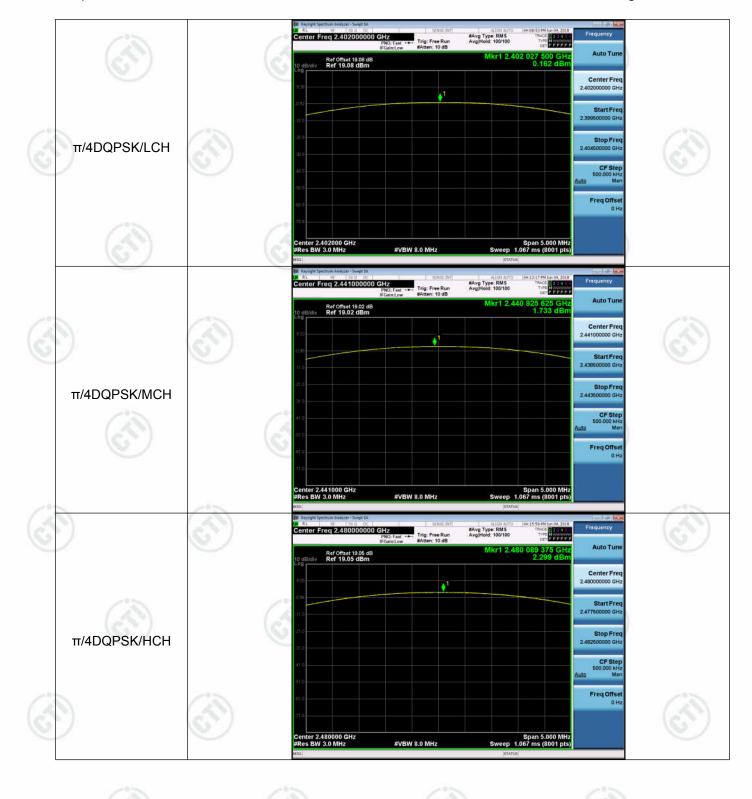
Test Graph

Page 27 of 73

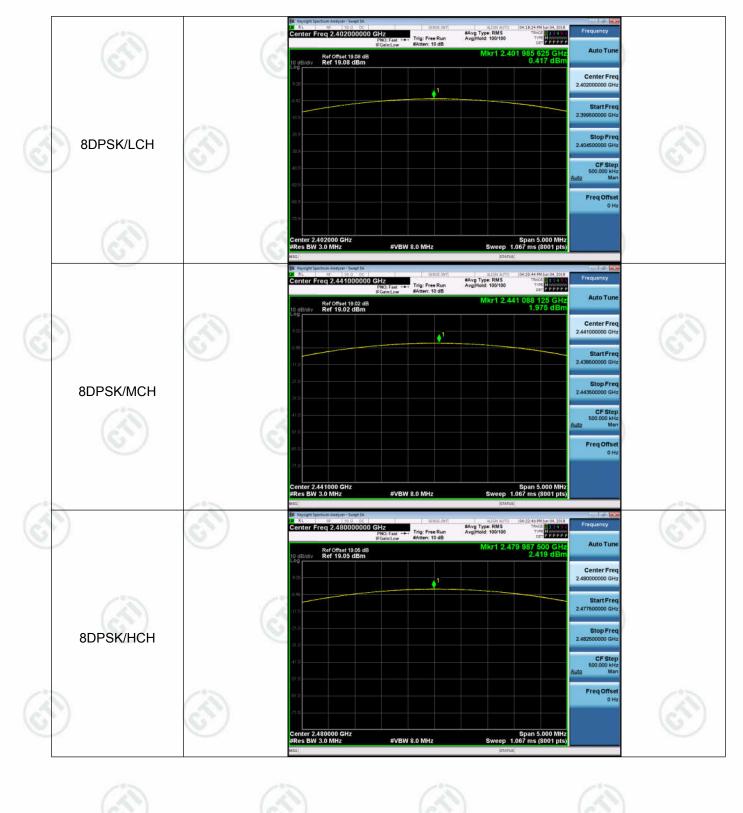
Appendix E): Conducted Peak Output Power

Result Tab	le 🔝		(5)
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	0.582	PASS
GFSK	MCH	2.245	PASS
GFSK	НСН	2.735	PASS
π/4DQPSK	LCH	0.162	PASS
π/4DQPSK	MCH	1.733	PASS
π/4DQPSK	НСН	2.299	PASS
8DPSK	LCH S	0.417	PASS
8DPSK	MCH	1.975	PASS
8DPSK	НСН	2.419	PASS

Test Graph



Page 29 of 73




Page 30 of 73

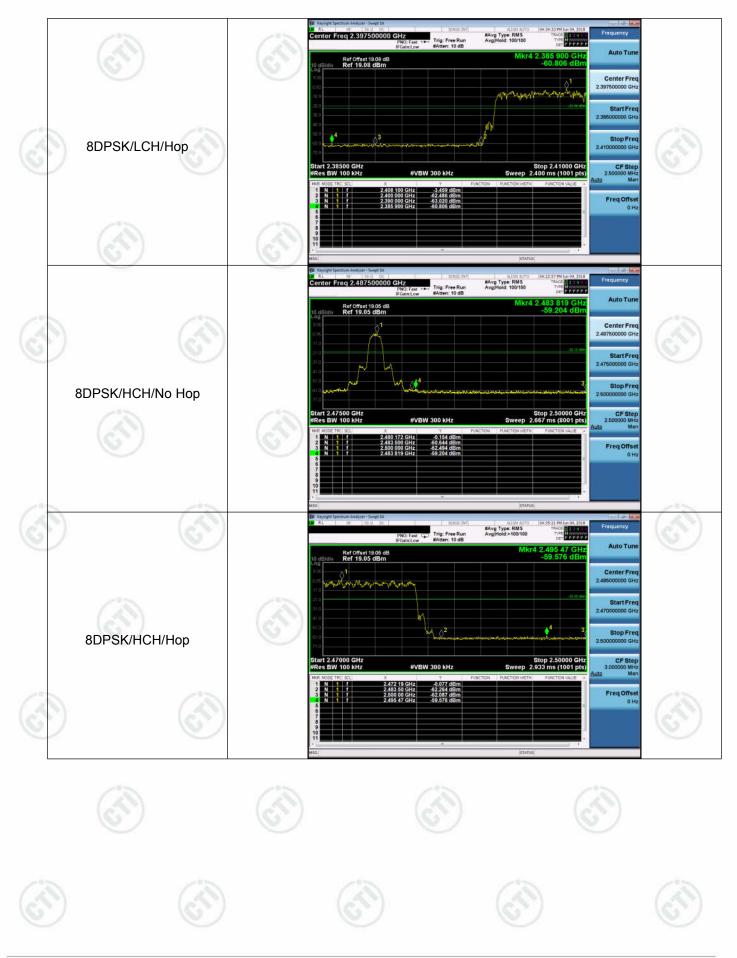
Appendix F): Band-edge for RF Conducted Emissions

	Result T	able	(3)		(\mathcal{A})		<u>()</u>	
(E	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
N.	OFOK		2402	0.431	Off	-61.866	-19.57	PASS
	GFSK	LCH	2402	0.519	On	-61.135	-19.48	PASS
	GFSK HCH		2480	2.580	Off	-57.998	-17.42	PASS
		НСН		2.651	On	-60.499	-17.35	PASS
	π/4DQPSK	LCH	2402	-2.217	Off	-60.412	-22.22	PASS
				-4.001	On	-61.224	-24	PASS
12	115 0 5 0 K			-0.087	Off	-59.614	-20.09	PASS
G	π/4DQPSK	НСН	2480	-0.155	On	-59.727	-20.16	PASS
				-2.262	Off	-60.501	-22.26	PASS
	8DPSK	LCH	2402	-3.459	On	-60.806	-23.46	PASS
				-0.154	Off	-59.204	-20.15	PASS
	8DPSK	HCH	2480	-0.077	On	-59.576	-20.08	PASS

Test Graph

Page 33 of 73



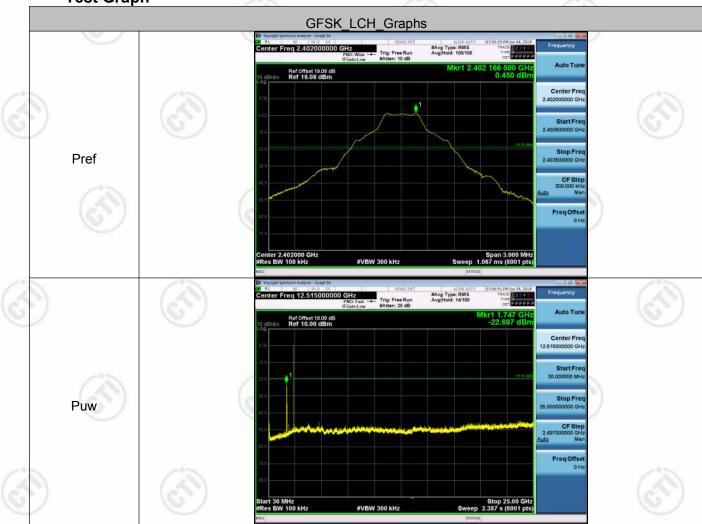


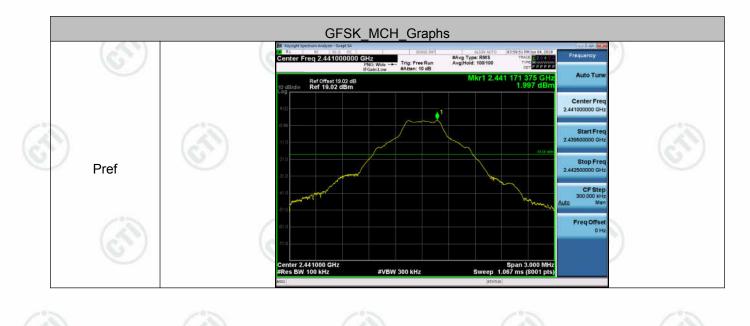
Page 35 of 73

Page 36 of 73

Appendix G): RF Conducted Spurious Emissions

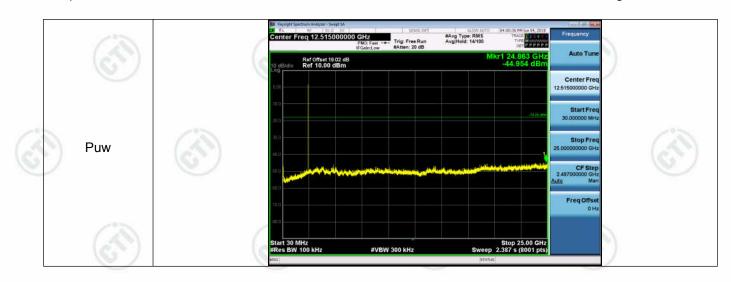
Result Tab	le 🔝) (<i>2</i>			
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict	
GFSK	LCH	0.45	<limit< td=""><td>PASS</td></limit<>	PASS	
GFSK	МСН	1.997	<limit< td=""><td>PASS</td></limit<>	PASS	
GFSK	НСН	2.495	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	LCH	-2.288	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	МСН	-0.645	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	НСН	-0.041	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	LCH	-2.347	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	МСН	-0.612	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	НСН	-0.219	<limit< td=""><td>PASS</td></limit<>	PASS	





Page 37 of 73

Test Graph



Page 38 of 73

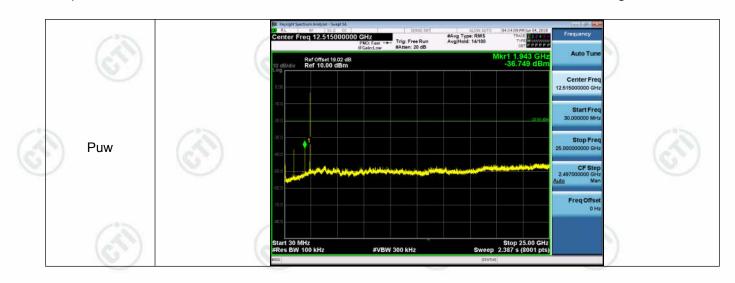
CFS

Freq

Span 3.000 MHz Sweep 1.067 ms (8001 pts

Page 39 of 73

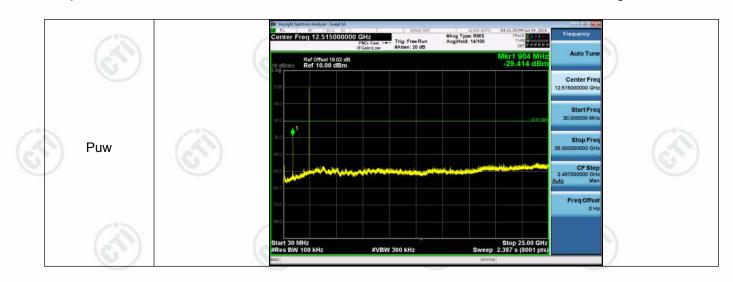
#VBW 300 kHz


2.441000 GHz 3W 100 kHz

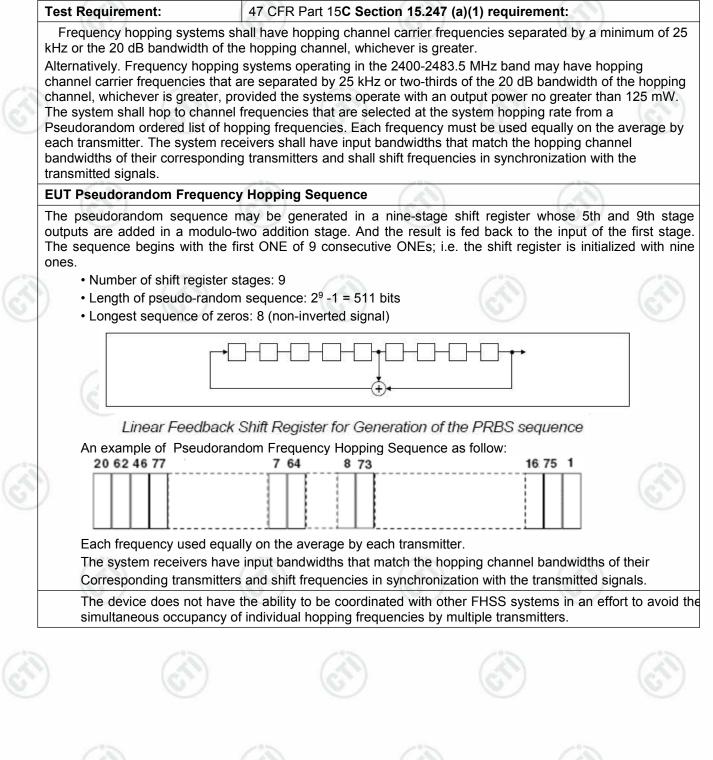
Page 40 of 73

Page 41 of 73

Pref



Page 42 of 73



Appendix H): Pseudorandom Frequency Hopping Sequence

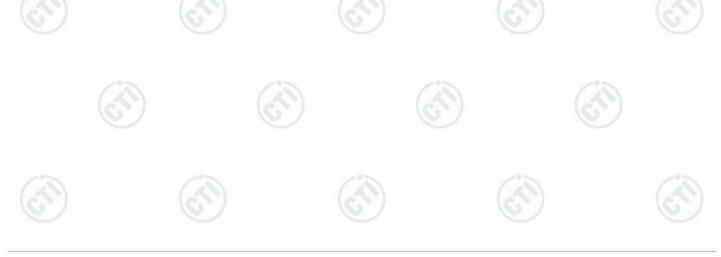
Page 44 of 73

Report No. :EED32K00127802

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

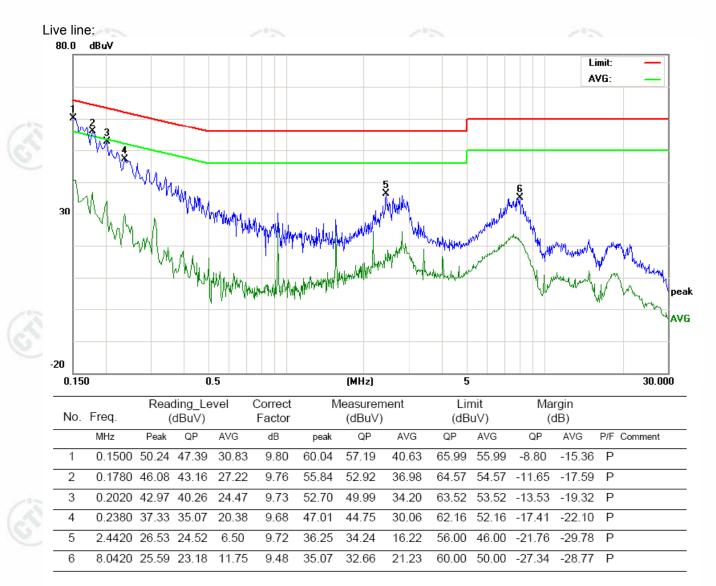

The antenna is ceramic antenna and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

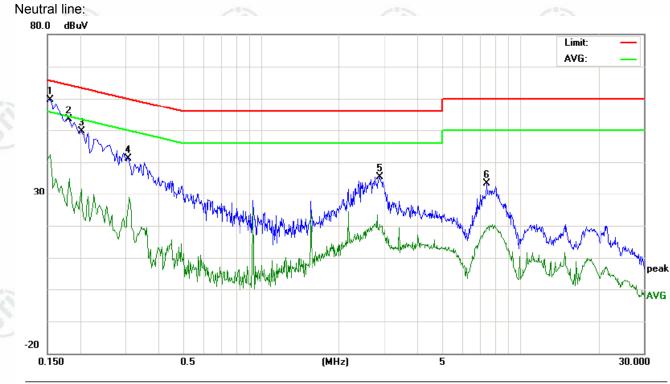
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz							
	 The mains terminal disturbant The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the gradient of the unit being measured multiple power cables to a statistic exceeded. The tabletop EUT was placed 	AC power source through provides a $50\Omega/50$ price of the EUT were round reference planed. A multiple socket of single LISN provided the upon a non-metall	ough a LISN 1 (Lin- uH + 5 Ω linear imp connected to a sec in the same way a putlet strip was use he rating of the LIS ic table 0.8m above	e Impedan edance. T cond LISN as the LISN ed to conne N was not e the grou					
	reference plane. And for flo horizontal ground reference		ient, the EUT was p	placed on t					
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	5) In order to find the maximum of the interface cables must conducted measurement.								
Limit:		(\mathbf{G})	(\bigcirc)						
		Limit (c	lBμV)						
	Frequency range (MHz)	Quasi-peak	Average						
× 2	0.15-0.5	66 to 56*	56 to 46*	13					
*) (a)	0.5-5	56	46	6.					
	5-30	60	50	V					
	* The limit decreases linearly								

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.





Page 47 of 73

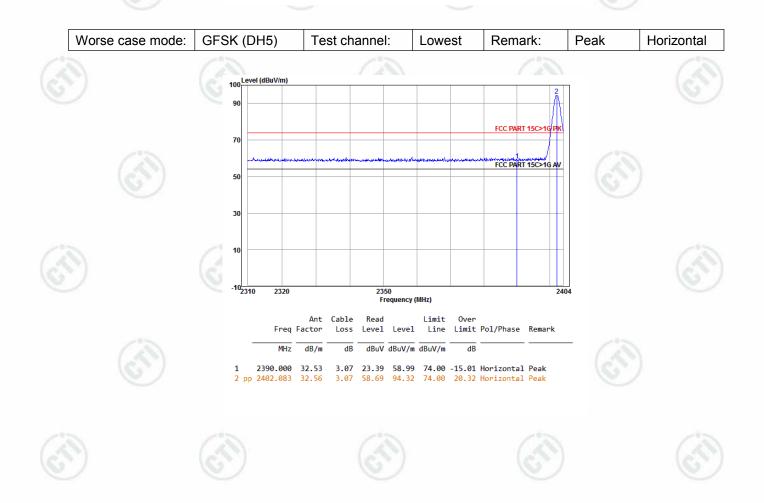
 No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Μ	leasuren (dBuV)		Lin (dBi			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	49.93	47.21	32.63	9.79	59.72	57.00	42.42	65.78	55.78	-8.78	-13.36	Ρ	
2	0.1819	43.47	41.35	25.11	9.76	53.23	51.11	34.87	64.39	54.39	-13.28	-19.52	Ρ	
3	0.2020	39.81	37.22	21.78	9.73	49.54	46.95	31.51	63.52	53.52	-16.57	-22.01	Ρ	
4	0.3100	30.49	28.15	19.26	9.60	40.09	37.75	28.86	59.97	49.97	-22.22	-21.11	Ρ	
5	2.8699	25.64	22.34	10.36	9.78	35.42	32.12	20.14	56.00	46.00	-23.88	-25.86	Ρ	
6	7.4820	23.94	21.20	9.79	9.50	33.44	30.70	19.29	60.00	50.00	-29.30	-30.71	Ρ	

Notes:

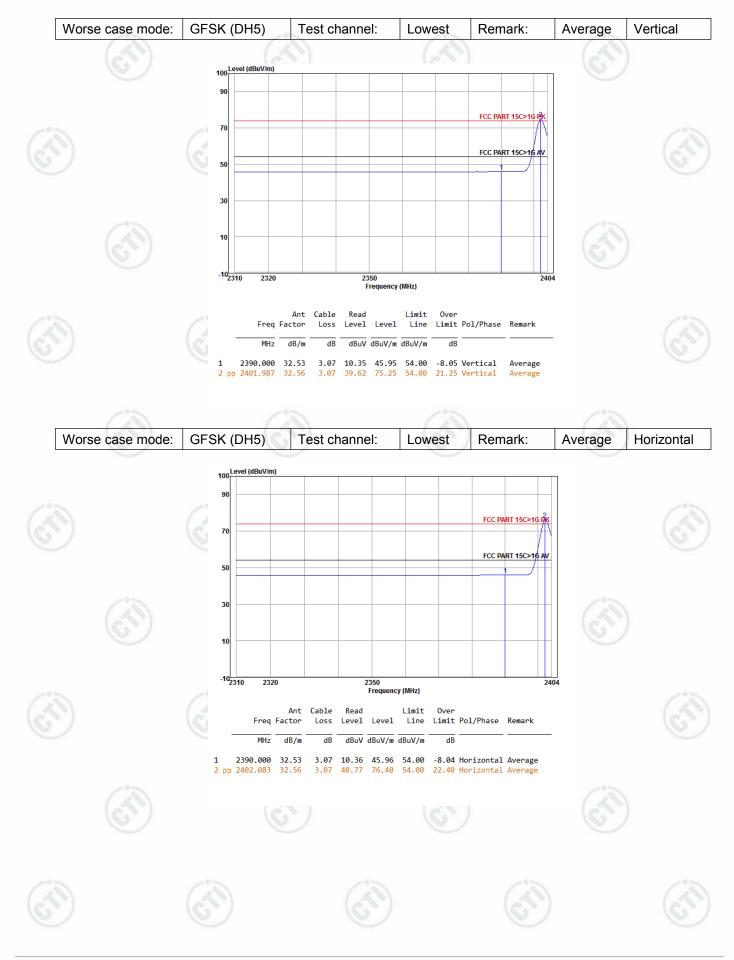
1. The following Quasi-Peak and Average measurements were performed on the EUT:

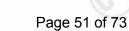
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K): Restricted bands around fundamental frequency (Radiated)

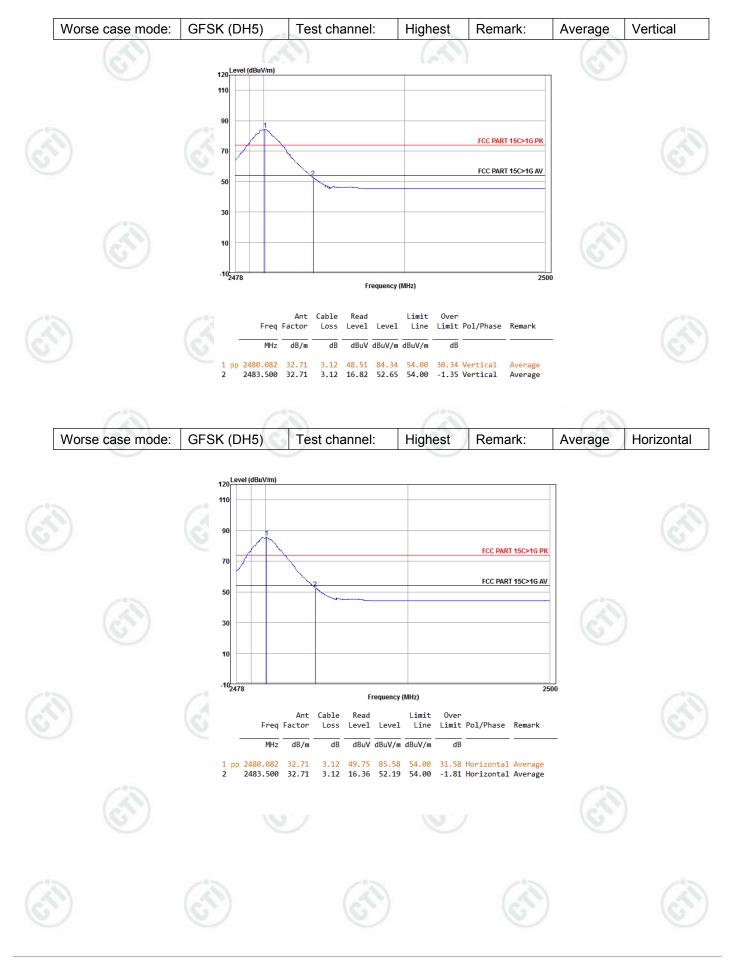

						_
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	1
	Above 1GHz	Peak	1MHz	10Hz	Average	ć
Test Procedure:	Below 1GHz test procedu	ire as below:				
	 a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner was mounted on the too the end on the too the antenna height is determine the maximule polarizations of the anten and the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the of frequency to show com bands. Save the spect for lowest and highest 	choic camber. The of the highest rate ters away from the p of a variable-howaried from one m value of the file enna are set to re- nission, the EUT to heights from 0 degrees to 360 m was set to Pe um Hold Mode. end of the restrict opliance. Also more rum analyzer plo	te table wa idiation. the interfer eight anter meter to for eld strength make the r was arran 1 meter to 0 degrees t ak Detect ted band of easure any	ence-receinna tower. bur meters n. Both hor neasureme aged to its 4 meters 5 find the Function a closest to the cemission	360 degrees to iving antenna, above the gro rizontal and ve ent. worst case an and the rotata maximum read nd Specified he transmit s in the restric	o wh ouncertic d th ble ding
	Above 1GHz test procedu			.		
	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an	he distance is 1 lowest channel , ments are perfor d found the X ax	form table meter and the Highe med in X, is position	0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse cas	
Limit:	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ	form table meter and the Highe rmed in X, is position uencies me	0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	to 1.5 meter). positioning for t is worse cas as complete.	
Limit:	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBµV/	form table meter and the Highe med in X, is position uencies me m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	to 1.5 meter). positioning for t is worse cas as complete. mark	
Limit:	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0	form table meter and the Highe rmed in X, is position uencies me m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po	to 1.5 5 meter). positioning for t is worse cas as complete. mark eak Value	
Limit:	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5	form table meter and the Highe rmed in X, is position uencies me m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	to 1.5 5 meter). oositioning for t is worse cas as complete. mark eak Value eak Value	
Limit:	to fully Anechoic Chammeter(Above 18GHz the b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedue Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5 46.0	form table meter and the Highe rmed in X, is position uencies me m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). positioning for t is worse cas as complete. mark eak Value eak Value eak Value	
Limit:	to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5	form table meter and the Highe rmed in X, is position uencies me m @3m)	 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe 	to 1.5 5 meter). oositioning for t is worse cas as complete. mark eak Value eak Value	

Test plot as follows: GFSK: Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical 100 Level (dBuV/m) 90 FCC PART 15C>1G PK 70 FCC PART 15C>1G AV 50 30 10 -102310 2350 Frequency (MHz) 2320 2404 Ant Cable Read Limit 0ver Freq Factor Limit Pol/Phase Remark Loss Level Level Line

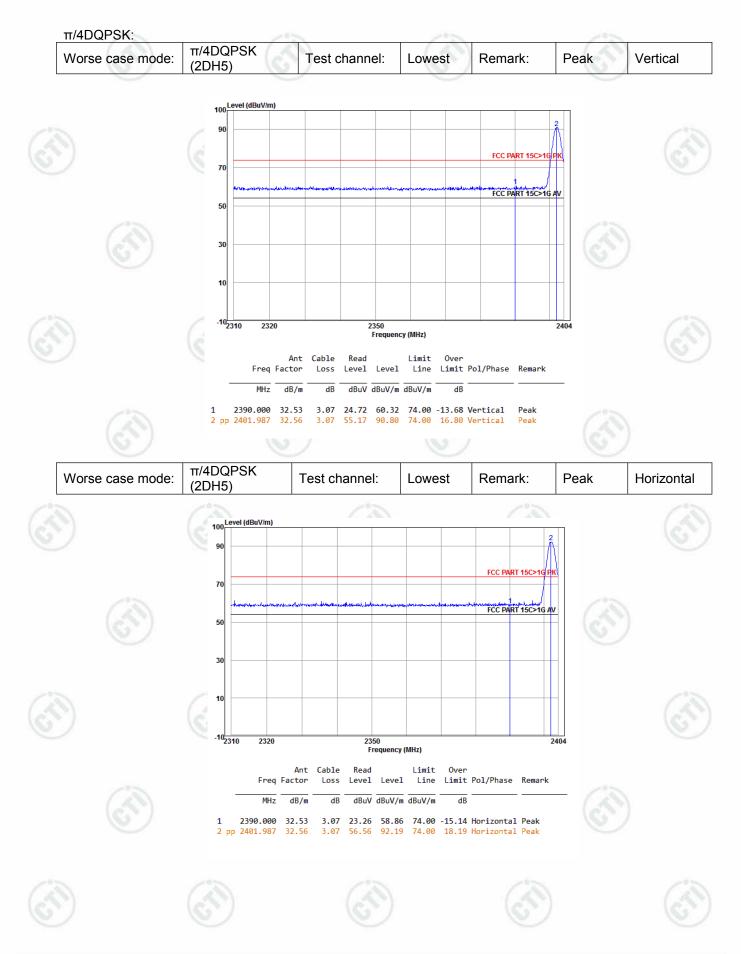


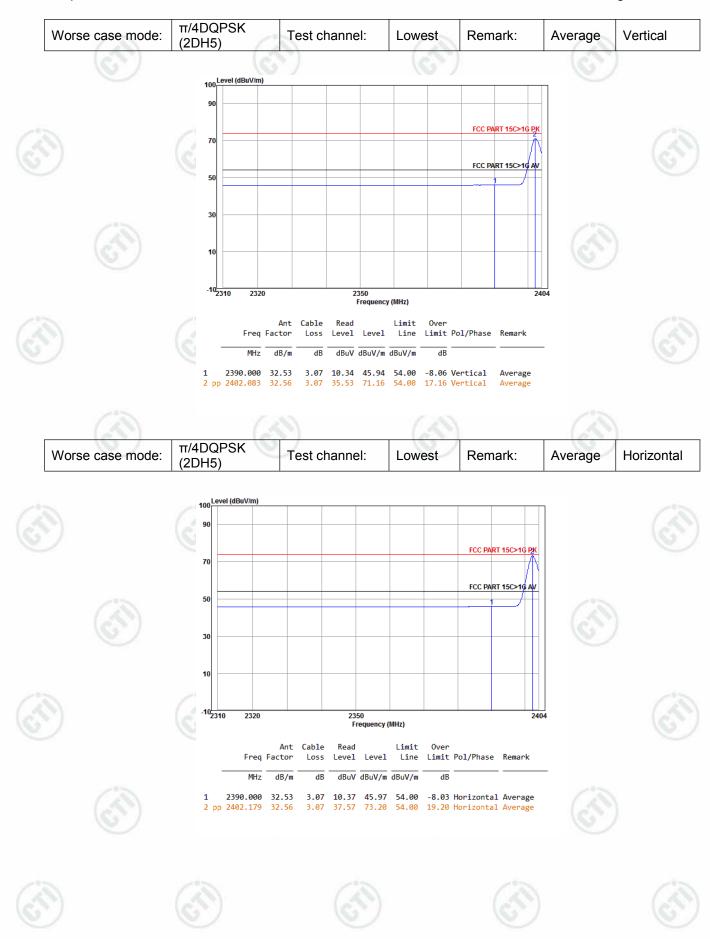


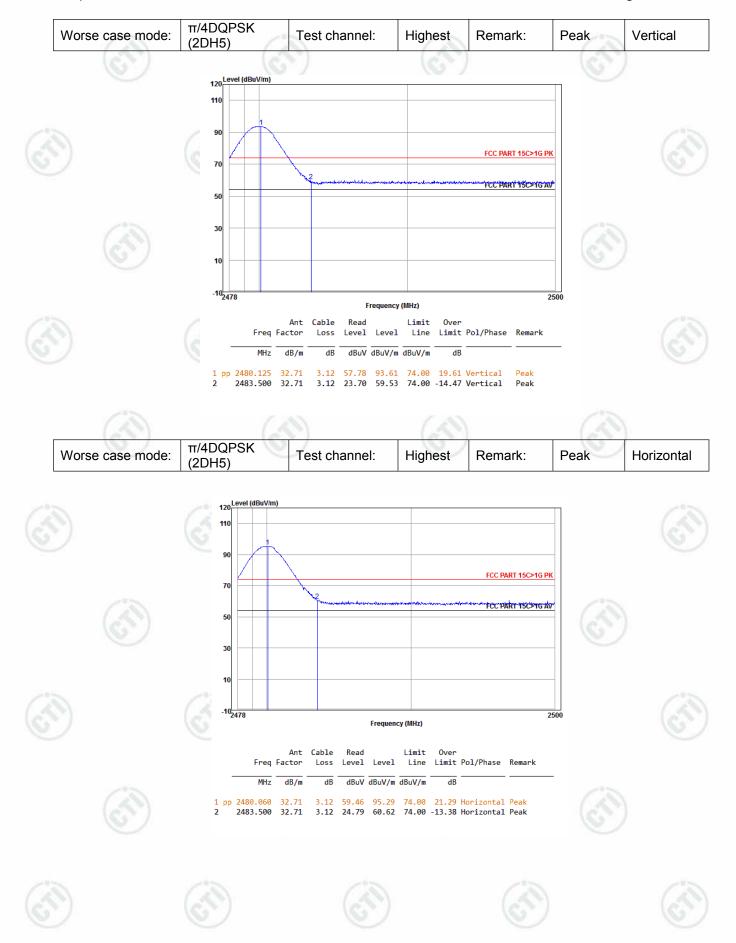
Page 50 of 73


Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical 120 Level (dBuV/m) 110 90 FCC PART 15C>1G PK 70 FCC PART 15C>16 AV 50 30 10 -102478 2500 Frequency (MHz) Cable Read Ant Limit 0ver Freq Factor Limit Pol/Phase Remark Loss Level Level Line dB/m dBuV dBuV/m dBuV/m MHz dB dB 1 pp 2479.972 32.71 3.12 62.23 98.06 74.00 24.06 Vertical Peak 25.31 61.14 74.00 -12.86 Vertical 2 2483.500 32.71 3.12 Peak GFSK (DH5) Remark: Peak Worse case mode: Test channel: Highest Horizontal 120 Level (dBuV/m) 11 9 FCC PART 15C>1G PK 70 CC PART 15C STG AV 50 30 10 -102478 2500 Frequency (MHz) Ant Cable Limit 0ver Read Limit Pol/Phase Remark Freq Factor Loss Level Level Line MHz dB/m dB dBuV dBuV/m dBuV/m dB 32.71 3.12 63.68 99.51 74.00 25.51 Horizontal Peak 2480,038 2483.500 32.71 3.12 24.89 60.72 74.00 -13.28 Horizontal Peak

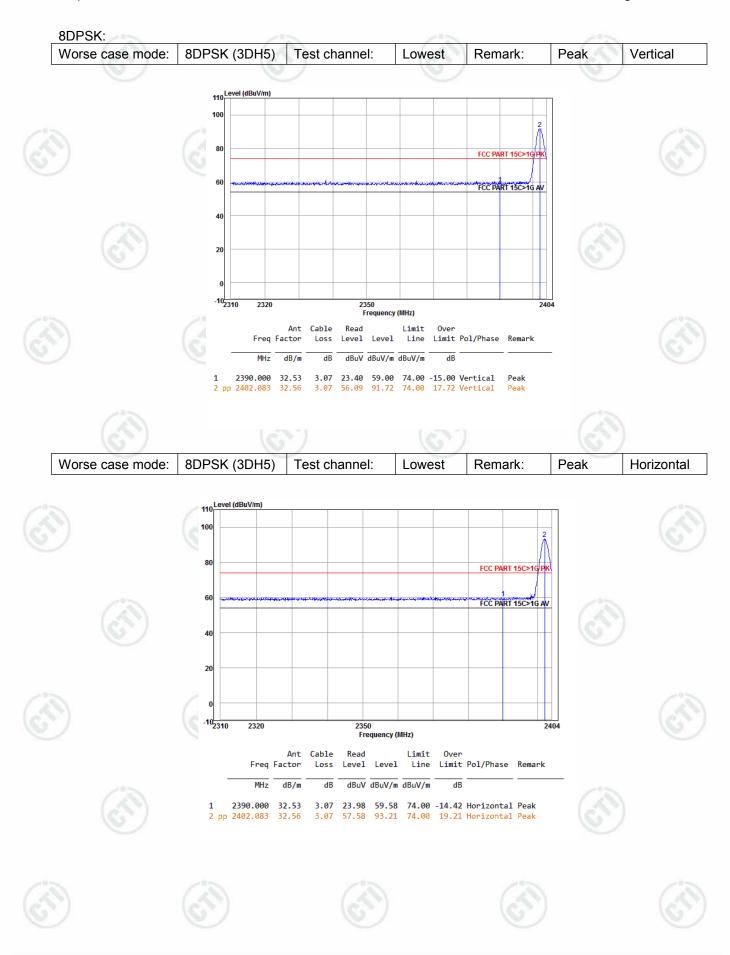
(S)

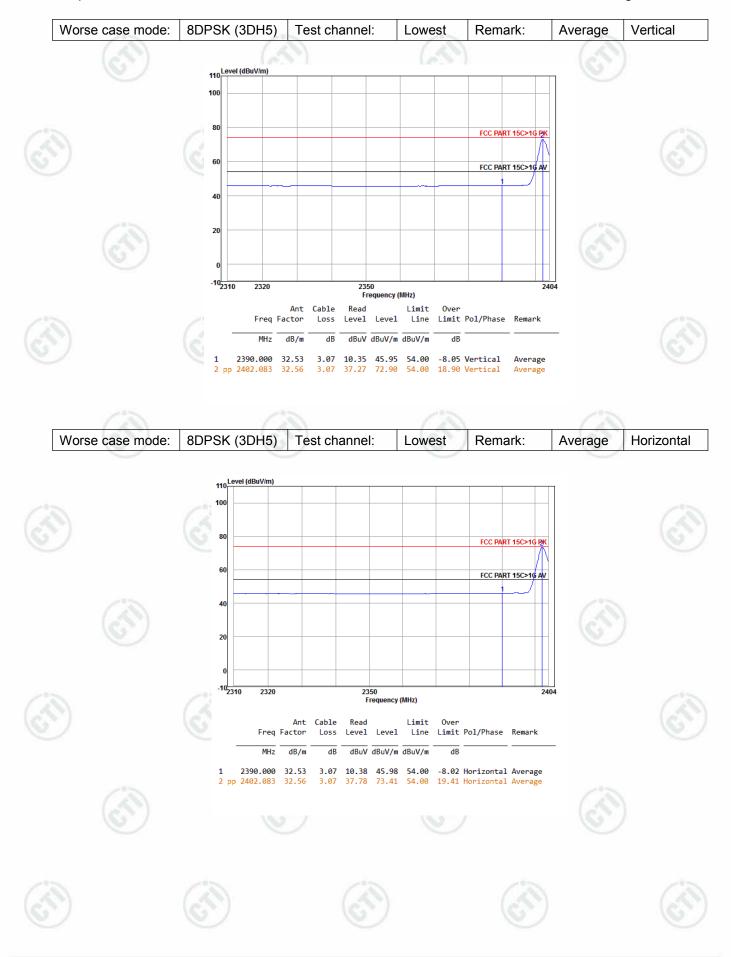

Page 52 of 73



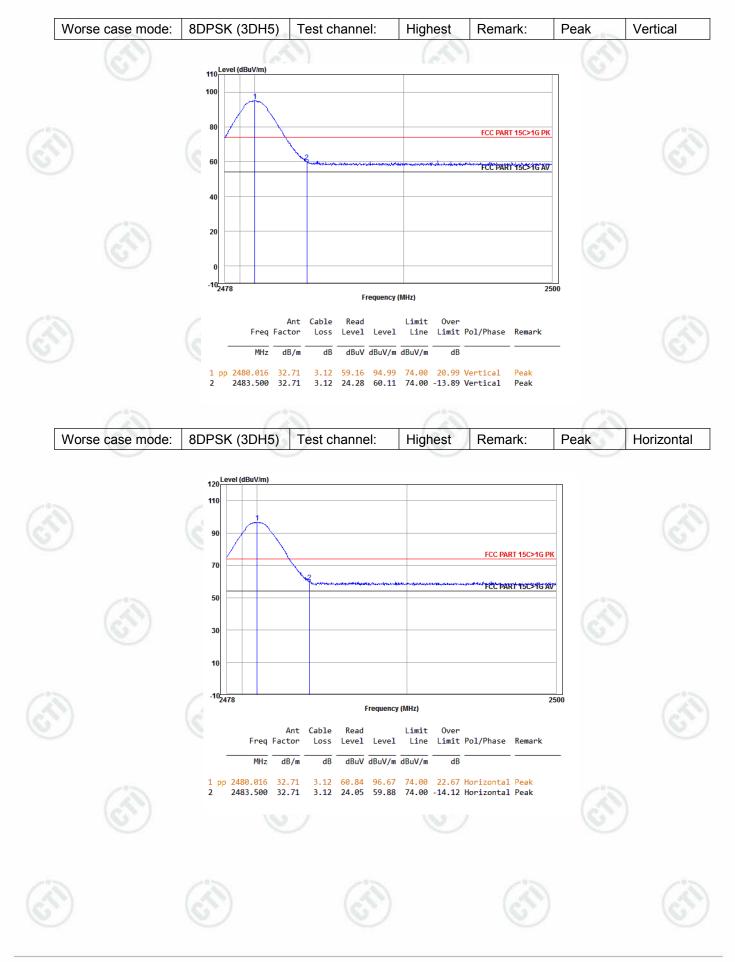


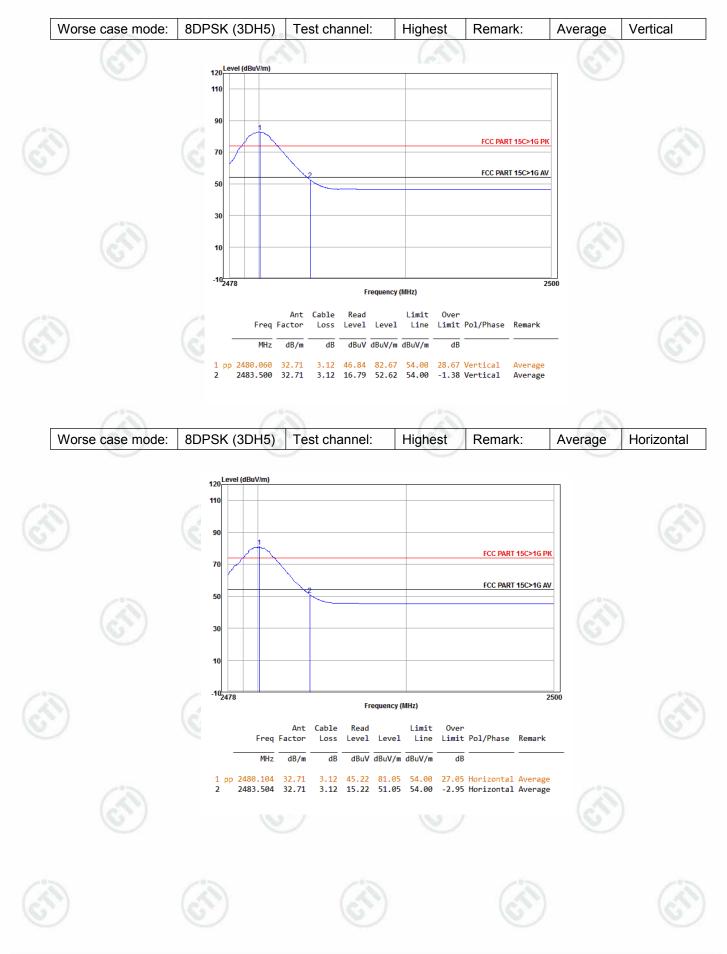
Page 55 of 73





Page 58 of 73

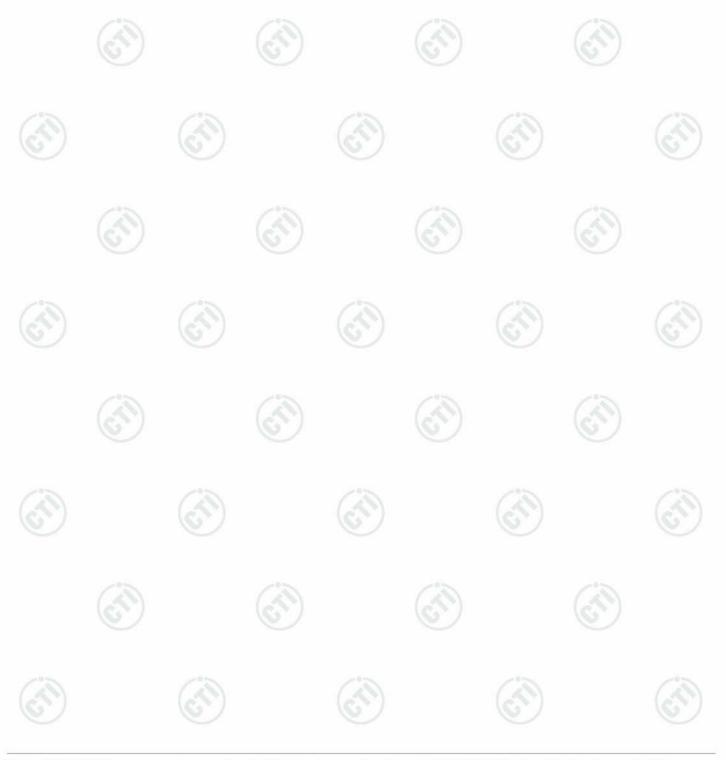



Page 59 of 73

Page 61 of 73

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.


2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix L): Radiated Spurious Emissions

Receiver Setup:		13	10			
G.	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(25)		Peak	1MHz	3MHz	Peak	
V	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

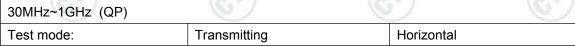
Below 1GHz test procedure as below:

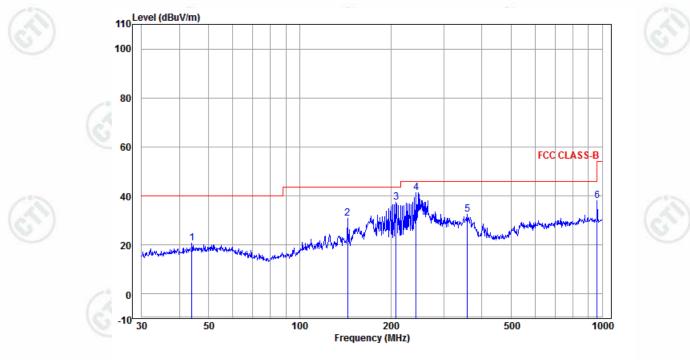
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be
- stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.


Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	205-	30	107				
	1.705MHz-30MHz	30	- (<u>}</u>	30	2				
/	30MHz-88MHz	100	40.0	Quasi-peak	3	Ľ				
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
0.	Above 1GHz	500	54.0	Average	3					
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

			Cable			Limit			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		(
1	43.966	14.14	0.08	6.50	20.72	40.00	-19.28	Horizontal	QP
2	143.830	9.18	0.61	20.95	30.74	43.50	-12.76	Horizontal	QP
3	208.580	11.71	1.15	24.40	37.26	43.50	-6.24	Horizontal	QP
4 pp	242.525	12.45	1.31	27.57	41.33	46.00	-4.67	Horizontal	QP
5	357.929	14.53	1.32	16.62	32.47	46.00	-13.53	Horizontal	QP
6	962.162	21.95	2.14	14.03	38.12	54.00	-15.88	Horizontal	QP

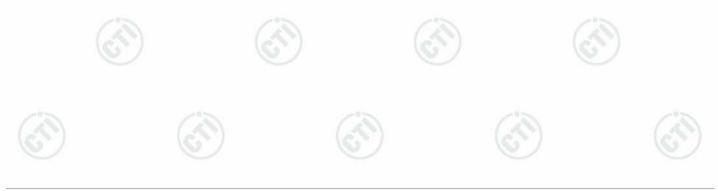
Page 64 of 73

Page 65 of 73

Transmitter Emission above 1GHz

Worse case	Worse case mode:		H5)	Test cha	nnel:	Lowest	Remark: Po	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1273.572	30.40	1.97	44.28	48.27	36.36	74.00	-37.64	Pass	н	
1823.477	31.43	2.66	43.66	48.56	38.99	74.00	-35.01	Pass	θĤ)	
4804.000	34.69	5.98	44.60	47.86	43.93	74.00	-30.07	Pass	Ĥ	
5865.832	35.80	7.31	44.51	49.30	47.90	74.00	-26.10	Pass	Н	
7206.000	36.42	6.97	44.77	46.63	45.25	74.00	-28.75	Pass	Н	
9608.000	37.88	6.98	45.58	46.57	45.85	74.00	-28.15	Pass	Н	
1247.899	30.34	1.93	44.32	47.60	35.55	74.00	-38.45	Pass	V	
1577.198	31.01	2.38	43.91	48.15	37.63	74.00	-36.37	Pass	V	
4804.000	34.69	5.98	44.60	48.05	44.12	74.00	-29.88	Pass	V	
6094.137	35.95	7.41	44.51	48.67	47.52	74.00	-26.48	Pass	V	
7206.000	36.42	6.97	44.77	46.42	45.04	74.00	-28.96	Pass	V	
9608.000	37.88	6.98	45.58	46.92	46.20	74.00	-27.80	Pass	V	

Worse case	mode:	GFSK(1-D	H5)	Test chai	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	1.97	44.29	48.32	36.39	74.00	-37.61	Pass	Н
1832.785	31.45	2.67	43.65	47.85	38.32	74.00	-35.68	Pass	H
4882.000	34.85	6.14	44.60	47.15	43.54	74.00	-30.46	Pass	Ľн
5689.360	35.67	7.13	44.53	48.62	46.89	74.00	-27.11	Pass	н
7323.000	36.43	6.85	44.87	46.90	45.31	74.00	-28.69	Pass	Н
9764.000	38.05	7.12	45.55	46.39	46.01	74.00	-27.99	Pass	Н
1263.883	30.38	1.96	44.29	47.83	35.88	74.00	-38.12	Pass	V
1589.289	31.04	2.40	43.90	47.49	37.03	74.00	-36.97	Pass	V
4882.000	34.85	6.14	44.60	47.50	43.89	74.00	-30.11	Pass	V
5504.170	35.52	6.93	44.55	49.78	47.68	74.00	-26.32	Pass	V
7323.000	36.43	6.85	44.87	47.10	45.51	74.00	-28.49	Pass	V
9764.000	38.05	7.12	45.55	47.42	47.04	74.00	-26.96	Pass	V

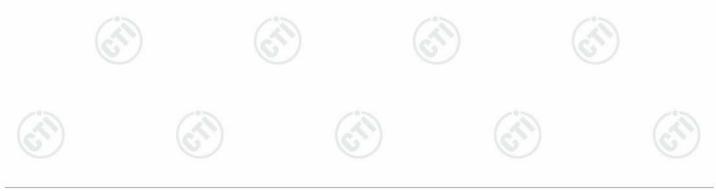


Worse case	mode:	GFSK(1-D	H5)	Test chan	nel:	Highest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.00	44.26	47.78	35.95	74.00	-38.05	Pass	Н
1565.200	30.99	2.37	43.92	47.88	37.32	74.00	-36.68	Pass	<u></u>
4960.000	35.02	6.29	44.60	46.87	43.58	74.00	-30.42	Pass	(H)
6109.670	35.96	7.41	44.51	48.21	47.07	74.00	-26.93	Pass	Ĥ
7440.000	36.45	6.73	44.97	46.34	44.55	74.00	-29.45	Pass	Н
9920.000	38.22	7.26	45.52	46.49	46.45	74.00	-27.55	Pass	Н
1150.279	30.10	1.78	44.46	48.75	36.17	74.00	-37.83	Pass	V
1413.674	30.70	2.17	44.10	48.19	36.96	74.00	-37.04	Pass	V
4960.000	35.02	6.29	44.60	47.49	44.20	74.00	-29.80	Pass	V
6109.670	35.96	7.41	44.51	48.32	47.18	74.00	-26.82	Pass	V
7440.000	36.45	6.73	44.97	46.91	45.12	74.00	-28.88	Pass	V
9920.000	38.22	7.26	45.52	46.18	46.14	74.00	-27.86	Pass	V

Worse case	Worse case mode:		((2-DH5)	Test char	nnel:	Lowest	Remark: Pe	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1367.659	30.60	2.11	44.16	48.87	37.42	74.00	-36.58	Pass	Н	
1805.005	31.40	2.64	43.68	47.72	38.08	74.00	-35.92	Pass	Н	
4804.000	34.69	5.98	44.60	50.75	46.82	74.00	-27.18	Pass	H	
5703.861	35.68	7.14	44.53	49.34	47.63	74.00	-26.37	Pass	ЭH	
7206.000	36.42	6.97	44.77	46.69	45.31	74.00	-28.69	Pass	Н	
9608.000	37.88	6.98	45.58	46.03	45.31	74.00	-28.69	Pass	Н	
1280.072	30.41	1.98	44.27	48.31	36.43	74.00	-37.57	Pass	V	
1589.289	31.04	2.40	43.90	47.76	37.30	74.00	-36.70	Pass	V	
4804.000	34.69	5.98	44.60	48.12	44.19	74.00	-29.81	Pass	V	
6125.242	35.97	7.41	44.51	48.74	47.61	74.00	-26.39	Pass	V	
7206.000	36.42	6.97	44.77	46.57	45.19	74.00	-28.81	Pass	V	
9608.000	37.88	6.98	45.58	45.80	45.08	74.00	-28.92	Pass	v	

Worse ca	Worse case mode:		((2-DH5)	Test char	nnel:	Middle	Remark: Po	Remark: Peak	
Frequen (MHz)	- Factor	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1283.33	5 30.42	1.99	44.27	48.08	36.22	74.00	-37.78	Pass	Н
1814.21	8 31.42	2.65	43.67	47.69	38.09	74.00	-35.91	Pass	H
4882.00	0 34.85	6.14	44.60	47.81	44.20	74.00	-29.80	Pass	(H)
6445.15	6 36.13	7.32	44.55	49.09	47.99	74.00	-26.01	Pass	Ĥ
7323.00	0 36.43	6.85	44.87	46.67	45.08	74.00	-28.92	Pass	Н
9764.00	0 38.05	7.12	45.55	45.45	45.07	74.00	-28.93	Pass	Н
1299.77	3 30.46	2.01	44.25	48.22	36.44	74.00	-37.56	Pass	V
1764.12	3 31.34	2.60	43.72	47.58	37.80	74.00	-36.20	Pass	V
4882.00	0 34.85	6.14	44.60	47.32	43.71	74.00	-30.29	Pass	V
6063.19	0 35.93	7.42	44.51	48.07	46.91	74.00	-27.09	Pass	V
7323.00	0 36.43	6.85	44.87	47.35	45.76	74.00	-28.24	Pass	V
9764.00	0 38.05	7.12	45.55	45.59	45.21	74.00	-28.79	Pass	v

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Highest	Remark: Pe	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1280.072	30.41	1.98	44.27	47.77	35.89	74.00	-38.11	Pass	Н	
1630.264	31.11	2.45	43.85	48.99	38.70	74.00	-35.30	Pass	Н	
4960.000	35.02	6.29	44.60	50.01	46.72	74.00	-27.28	Pass	H	
6032.401	35.92	7.43	44.50	48.58	47.43	74.00	-26.57	Pass	Ľ	
7440.000	36.45	6.73	44.97	47.04	45.25	74.00	-28.75	Pass	Н	
9920.000	38.22	7.26	45.52	45.61	45.57	74.00	-28.43	Pass	Н	
1263.883	30.38	1.96	44.29	47.80	35.85	74.00	-38.15	Pass	V	
1521.981	30.91	2.32	43.97	48.32	37.58	74.00	-36.42	Pass	V	
4960.000	35.02	6.29	44.60	49.60	46.31	74.00	-27.69	Pass	V	
5865.832	35.80	7.31	44.51	48.85	47.45	74.00	-26.55	Pass	V	
7440.000	36.45	6.73	44.97	46.81	45.02	74.00	-28.98	Pass	V	
9920.000	38.22	7.26	45.52	46.59	46.55	74.00	-27.45	Pass	v	



Worse case mode:		8DPSK(3-DH5)		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	1.96	44.29	48.70	36.75	74.00	-37.25	Pass	Н
1561.221	30.99	2.36	43.93	48.57	37.99	74.00	-36.01	Pass	<u></u>
4804.000	34.69	5.98	44.60	47.57	43.64	74.00	-30.36	Pass	H)
6063.190	35.93	7.42	44.51	48.80	47.64	74.00	-26.36	Pass	Ĥ
7206.000	36.42	6.97	44.77	47.35	45.97	74.00	-28.03	Pass	Н
9608.000	37.88	6.98	45.58	46.12	45.40	74.00	-28.60	Pass	Н
1176.935	30.17	1.82	44.42	47.68	35.25	74.00	-38.75	Pass	V
1303.086	30.46	2.02	44.24	48.06	36.30	74.00	-37.70	Pass	V
4804.000	34.69	5.98	44.60	47.08	43.15	74.00	-30.85	Pass	V
6187.929	36.00	7.39	44.52	48.45	47.32	74.00	-26.68	Pass	V
7206.000	36.42	6.97	44.77	47.45	46.07	74.00	-27.93	Pass	V
9608.000	37.88	6.98	45.58	45.63	44.91	74.00	-29.09	Pass	V

Worse case mode:		8DPSK(3-DH5)		Test channel:		Middle	Remark: Peak			
Freque (MH	-	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1286.6	606	30.43	1.99	44.26	48.70	36.86	74.00	-37.14	Pass	Н
1601.4	172	31.06	2.41	43.88	47.75	37.34	74.00	-36.66	Pass	Н
4882.0	000	34.85	6.14	44.60	48.03	44.42	74.00	-29.58	Pass	H
6047.7	76	35.93	7.43	44.51	48.87	47.72	74.00	-26.28	Pass) H
7323.0	000	36.43	6.85	44.87	47.10	45.51	74.00	-28.49	Pass	Н
9764.0	000	38.05	7.12	45.55	45.71	45.33	74.00	-28.67	Pass	Н
1192.0)11	30.21	1.85	44.40	48.10	35.76	74.00	-38.24	Pass	V
1521.9	981	30.91	2.32	43.97	47.59	36.85	74.00	-37.15	Pass	V
4882.0	000	34.85	6.14	44.60	47.22	43.61	74.00	-30.39	Pass	V
6094.1	37	35.95	7.41	44.51	48.19	47.04	74.00	-26.96	Pass	V
7323.0	000	36.43	6.85	44.87	47.31	45.72	74.00	-28.28	Pass	V
9764.0	000	38.05	7.12	45.55	45.01	44.63	74.00	-29.37	Pass	V

Worse case mode:		8DPSK(3-DH5)		Test channel:		Highest	est Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1260.670	30.37	1.95	44.30	49.64	37.66	74.00	-36.34	Pass	Н
1651.146	31.15	2.47	43.83	47.85	37.64	74.00	-36.36	Pass	H
4960.000	35.02	6.29	44.60	47.21	43.92	74.00	-30.08	Pass	H)
5865.832	35.80	7.31	44.51	48.59	47.19	74.00	-26.81	Pass	Ĥ
7440.000	36.45	6.73	44.97	46.27	44.48	74.00	-29.52	Pass	Н
9920.000	38.22	7.26	45.52	46.60	46.56	74.00	-27.44	Pass	Н
1082.109	29.93	1.66	44.56	48.35	35.38	74.00	-38.62	Pass	V
1521.981	30.91	2.32	43.97	47.69	36.95	74.00	-37.05	Pass	V
4960.000	35.02	6.29	44.60	47.15	43.86	74.00	-30.14	Pass	V
6428.771	36.12	7.33	44.54	49.14	48.05	74.00	-25.95	Pass	V
7440.000	36.45	6.73	44.97	46.32	44.53	74.00	-29.47	Pass	V
9920.000	38.22	7.26	45.52	46.30	46.26	74.00	-27.74	Pass	V

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

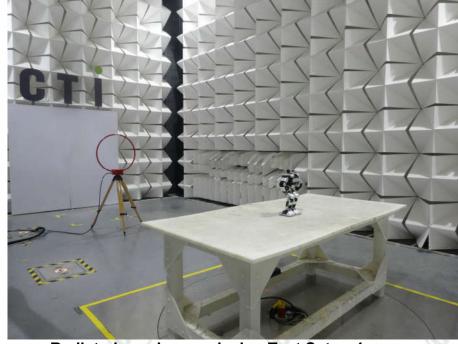
3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

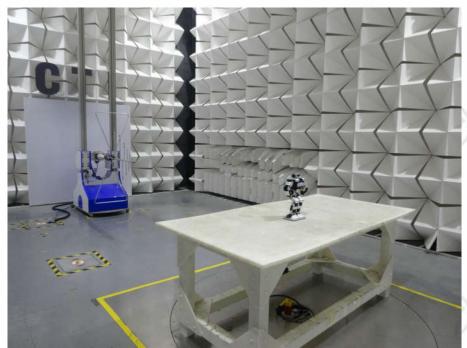
equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

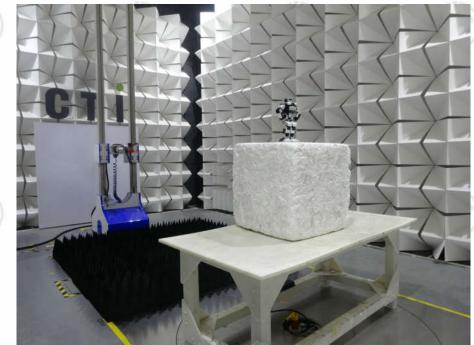


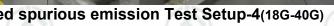


PHOTOGRAPHS OF TEST SETUP

Test model No.: Yanshee

Radiated spurious emission Test Setup-1(9K-30M)


Radiated spurious emission Test Setup-2(30M-1G)



Radiated spurious emission Test Setup-3(1G-18G)



PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00127801 for EUT external and internal photos.6

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

