

Page 1 of 42

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

- Bluetooth controller
- UBTECH
- : UKBTC01
- N/A
- EED32P81612801
- : 2AHJX-UKBTC01
- Nov. 02, 2023
- : 47 CFR Part 15 Subpart C
- Prepared for:

PASS

UBTECH ROBOTICS CORP LTD

Room 2201, Building C1, Nanshan Smart Park, No.1001 Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen, PRC


1 COVER PAGE			
2 CONTENT			
	200		
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION			
5.2 GENERAL DESCRIPTION OF EUT			
5.3 TEST CONFIGURATION			
5.4 TEST ENVIRONMENT			
5.5 DESCRIPTION OF SUPPORT UNIT			
5.5 DESCRIPTION OF SUPPORT UNIT 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (9			
5.6 Test Location 5.7 Measurement Uncertainty (9	5% CONFIDENCE LEVELS, K=	-2)	
5.6 Test Location 5.7 Measurement Uncertainty (9 6 EQUIPMENT LIST	5% CONFIDENCE LEVELS, K=	-2)	
5.6 Test Location 5.7 Measurement Uncertainty (9 6 EQUIPMENT LIST	5% CONFIDENCE LEVELS, K=	-2)	
5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (9 6 EQUIPMENT LIST 7 TEST RESULTS AND MEASUREM 7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED E	5% CONFIDENCE LEVELS, K=	-2)	
5.6 TEST LOCATION	5% CONFIDENCE LEVELS, K= MENT DATA MISSIONS POWER	-2)	
5.6 TEST LOCATION	95% CONFIDENCE LEVELS, K= MENT DATA MISSIONS POWER	-2)	
5.6 TEST LOCATION	95% CONFIDENCE LEVELS, K= MENT DATA MISSIONS. POWER	-2)	
5.6 TEST LOCATION	5% CONFIDENCE LEVELS, K= MENT DATA MISSIONS POWER NSITY	=2)	
5.6 TEST LOCATION	MENT DATA MENT DATA MISSIONS POWER NSITY D CONDUCTED SPURIOUS EN & RESTRICTED BANDS	=2) ////////////////////////////////	

3 Version

	Version No.	Date	6	Description)
	00	Nov. 02, 2023		Original	
8	1	2	15	(°))	100
2	(6	(°)	$(2^{\mathbb{N}})$	(25)	(5)

set Summary

Page 4 of 42

i lest Summary	(4) (4)	
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
Downault		(6))

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD
Address of Applicant:	Room 2201,Building C1, Nanshan Smart Park, No.1001 Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen, PRC
Manufacturer:	UBTECH ROBOTICS CORP LTD
Address of Manufacturer:	Room 2201,Building C1, Nanshan Smart Park, No.1001 Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen, PRC

5.2 General Description of EUT

Product Name:	Bluetooth controller		\bigcirc
Model No.:	UKBTC01		
Trade mark:	UBTECH		(3
Device type:	Portable	(\mathcal{O})	6
Operation Frequency:	2402MHz~2480MHz	\bigcirc	\bigcirc
Modulation Type:	GFSK		
Transfer Rate:	🖂 1Mbps	2	13
Number of Channel:	40	(°)	(3)
Antenna Type:	PCB Antenna		U
Antenna Gain:	1.5dBi		
Power Supply:	Battery DC 3.7V	(°))	13
Test Voltage:	DC 3.7V	(25)	(2)
Sample Received Date:	Oct. 11, 2023		U
Sample tested Date:	Oct. 11, 2023 to Oct. 17, 2023		

Page 5 of 42

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

Software:	Broadcom	BlueTool	5)	(25)
EUT Power Grade:	Class2 (Po selected)	wer level is built-in s	set parameters and c	annot be changed and
Use test software to transmitting of the E	set the lowest frequency UT.	y, the middle freque	ncy and the highest f	requency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
	GFSK	1Mbps	CH39	2480

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 7 of 42

5.4 Test Environment

	Operating Environment	t:				
260	Radiated Spurious Emi	ssions:				
10	Temperature:	22~25.0 °C		(2)		(2)
2	Humidity:	50~56 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:	·				
	Temperature:	22~25.0 °C				
	Humidity:	50~56 % RH	(\mathcal{O})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
1	Temperature:	22~25.0 °C		1		13
	Humidity:	50~56 % RH		$(c^{(n)})$		(\mathcal{A})
	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

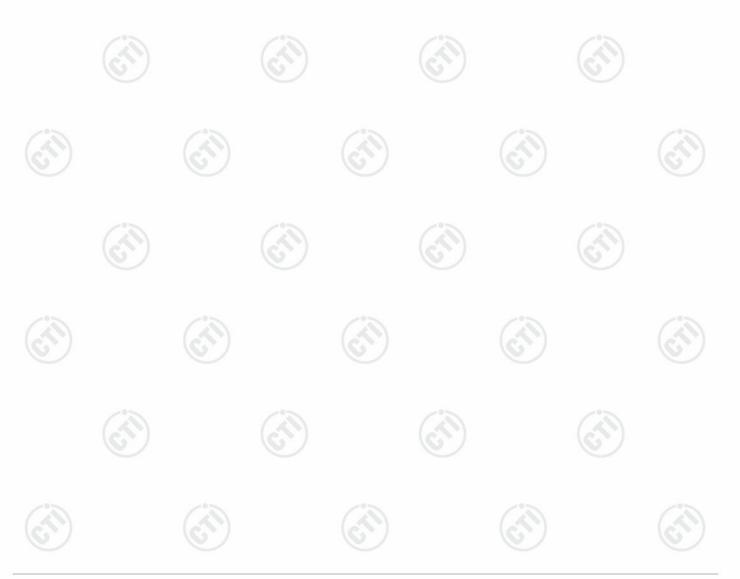
1)	support	equi	oment
1/	Support	cyui	princin

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



Page 8 of 42

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	0	3.3dB (9kHz-30MHz)
3 Radiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
0		3.4dB (18GHz-40GHz)
	Conduction omission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5.7 Measurement Uncertainty (95% confidence levels, k=2)

6 Equipment List

RF test system									
Equipment	Manufacturer	ufacturer Model No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023				
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023				
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023				
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023				
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-09-2023	06-08-2024				
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023				
Communication test set	R&S	CMW500	120765	12-23-2022	12-22-2023				
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023				
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	- 6	9 -				

			Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024	
Temperature/ Humidity Indicator	Defu	TH128		(<u>s</u>) -	
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024	
Barometer	changchun	DYM3	1188	~~~~		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	$(\overset{\frown}{})$	(ć	

Page 10 of 42

	3M Semi-ar	echoic Chamber (2)-	Radiated disturb	ance Test	1
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber &					
Accessory	TDK	SAC-3		05/22/2022	05/21/2025
Equipment					6
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Multi device Controller	maturo	NCD/070/10711112		<u> </u>	0
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	(6	9)

Page 11 of 42

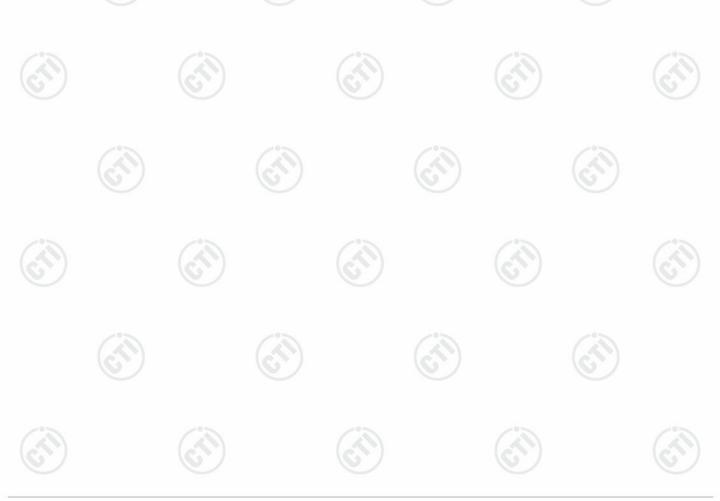
		<i></i>			
		3M full-anechoi	c Chamber	1	
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	<u> -</u>	6
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		2
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>	-
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	0	6
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	- (2	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	G	2
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	- (2)	-(2)
	6	G		C)	6

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

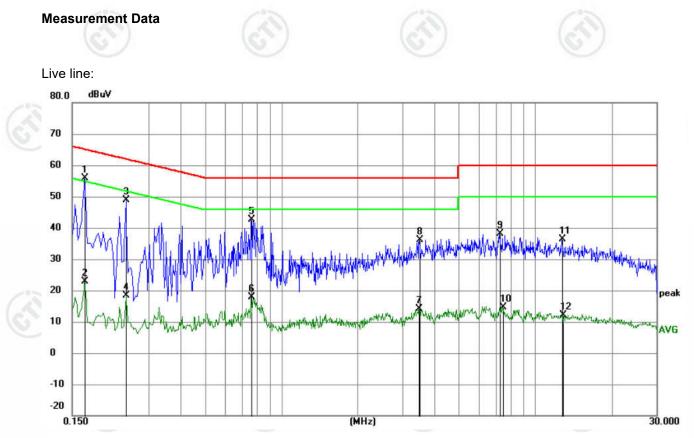
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	
The antenna is PCB antenn	a. The best case gain of the antenna is 1.5dBi	

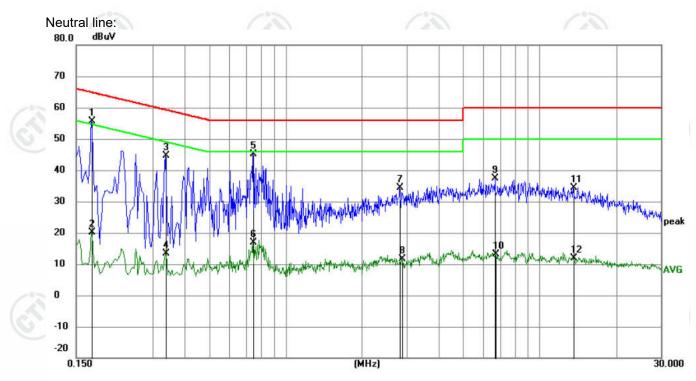
СТІ	华测	检测
R	eport No. : EE	D32P81612801

Page 13 of 42

7.2 AC Power Line Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.	.207						
Test Method:	ANSI C63.10: 2013							
 Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	(33)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average	1				
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46	-				
	5-30	60	50					
	* Decreases with the logarith							
 Test Setup:		in or the nequency.						
	AC Mains	E E E E E E E E E E E E E E E E E E E	Test Receiver					
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linea impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment 							
	unit under test and bor mounted on top of the gro the closest points of the and associated equipmen 5) In order to find the maxim and all of the interface ca	nded to a ground re- bund reference plane. LISN 1 and the EUT. It was at least 0.8 m fro- num emission, the relat ables must be changed	ference plane for L This distance was bet All other units of the om the LISN 2. ive positions of equip according to	of the ISN wee EU				
Test Mode:	unit under test and bor mounted on top of the gro the closest points of the and associated equipmen 5) In order to find the maxim	nded to a ground re- bund reference plane. LISN 1 and the EUT. It was at least 0.8 m fro hum emission, the relat ables must be changed nducted measurement	ference plane for L This distance was bet All other units of the om the LISN 2. tive positions of equip according to	of the ISN wee EU				

Page 14 of 42

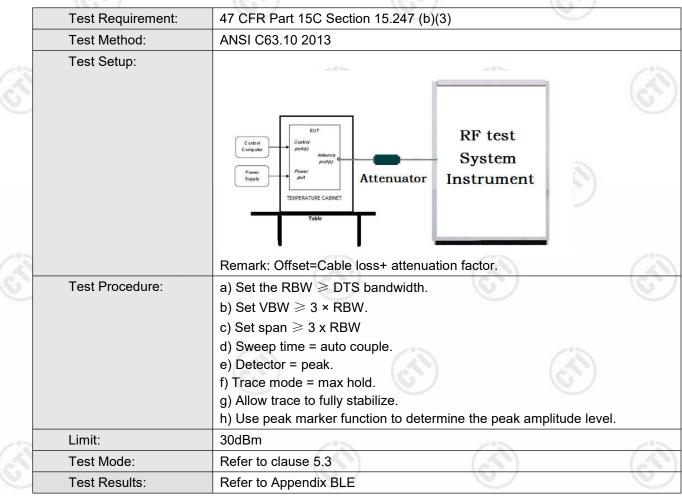

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1680	46.02	9.87	55.89	65.06	-9.17	QP	
2		0.1680	13.11	9.87	22.98	55.06	-32.08	AVG	
3	6	0.2444	39.02	9.96	48.98	61.95	-12.97	QP	
4		0.2444	8.44	9.96	18.40	51.95	-33.55	AVG	
5		0.7619	32.72	9.86	42.58	56.00	-13.42	QP	
6		0.7619	8.08	9.86	17.94	46.00	-28.06	AVG	
7		3.4800	4.35	9.78	14.13	46.00	-31.87	AVG	
8		3.4980	26.32	9.78	36.10	56.00	-19.90	QP	
9		7.2465	28.43	9.79	38.22	60.00	-21.78	QP	
10		7.4759	4.96	9.79	14.75	50.00	-35.25	AVG	
11		12.7230	26.44	9.86	36.30	60.00	-23.70	QP	
12		12.7903	2.34	9.86	12.20	50.00	-37.80	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1723	45.87	9.87	55.74	64.85	-9.11	QP	
2		0.1723	10.20	9.87	20.07	54.85	-34.78	AVG	
3		0.3390	34.67	10.03	44.70	59.23	-14.53	QP	
4		0.3390	3.34	10.03	13.37	49.23	-35.86	AVG	
5		0.7439	35.20	9.87	45.07	56.00	-10.93	QP	
6		0.7439	7.01	9.87	16.88	46.00	-29.12	AVG	
7		2.8229	24.71	9.79	34.50	56.00	-21.50	QP	
8		2.8769	1.93	9.79	11.72	46.00	-34.28	AVG	
9		6.6974	27.50	9.79	37.29	60.00	-22.71	QP	
10		6.7110	3.24	9.79	13.03	50.00	-36.97	AVG	
11		13.6050	24.51	9.89	34.40	60.00	-25.60	QP	
12		13.6050	2.03	9.89	11.92	50.00	-38.08	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 42

7.3 Maximum Conducted Output Power

7.4 DTS Bandwidth

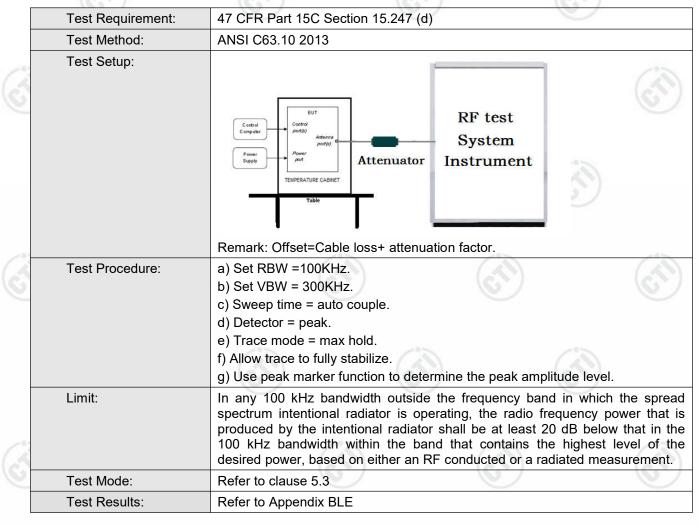
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
8	Test Setup:	
		Control Computer Computer Computer Computer Power Supply TemPERATURE CABINET Table
3		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
8	Limit:	≥ 500 kHz
-	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE



Page 18 of 42

7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
	Test Method:	ANSI C63.10 2013				
3	Test Setup:					
		Control Computer Computer Power Supply TeMPERATURE CABNET Table				
		Remark: Offset=Cable loss+ attenuation factor.				
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no les than 3 kHz) and repeat. 				
	Limit:	≤8.00dBm/3kHz				
	Test Mode:	Refer to clause 5.3				
	Test Results:	Refer to Appendix BLE				

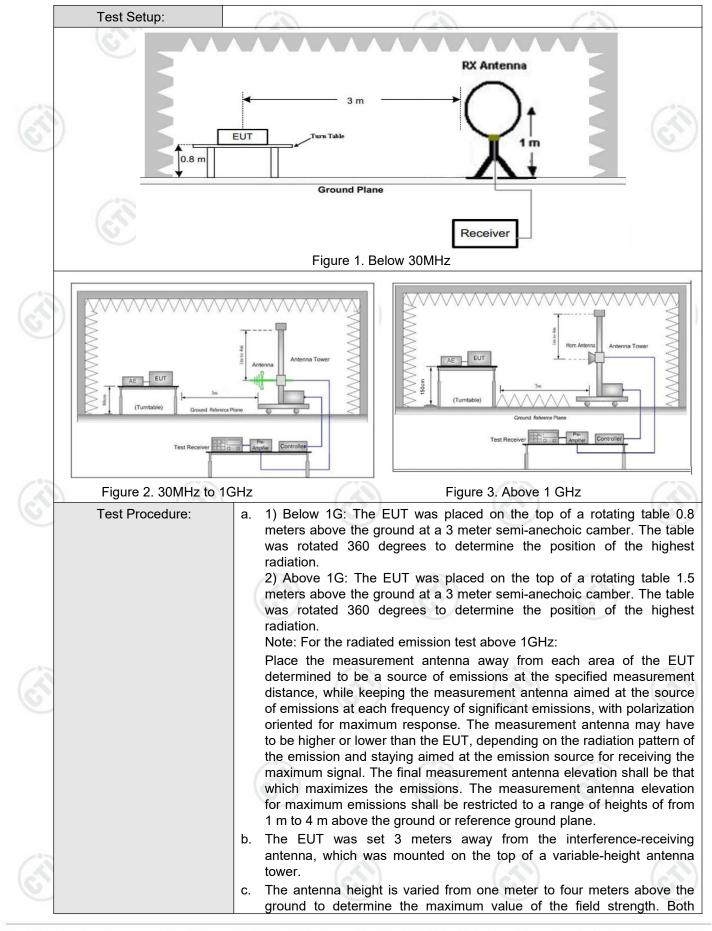


Page 19 of 42

7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 42

7.7 Radiated Spurious Emission & Restricted bands

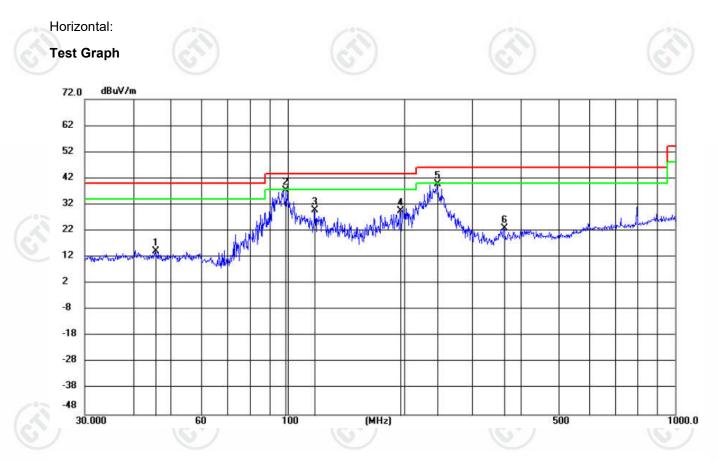

	16.4.1					16.4				
	Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15	.205	N. C.	/			
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	9	Detector	RBW	VBW	Remark			
2		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
1				Peak	1MHz	3MHz	Peak			
3		Above 1GHz	7)	Peak	1MHz	10kHz	Average			
	Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measureme distance (n			
		0.009MHz-0.490MHz	24	400/F(kHz)	-	- 20	300			
		0.490MHz-1.705MHz	24	000/F(kHz)	-	- <u>-</u>	30			
		1.705MHz-30MHz		30	-	9	30			
		30MHz-88MHz		100	40.0	Quasi-peak	3			
-		88MHz-216MHz		150	43.5	Quasi-peak	3			
~		216MHz-960MHz	2	200	46.0	Quasi-peak	3			
2		960MHz-1GHz	1	500	54.0	Quasi-peak	3			
		Above 1GHz		500	54.0	Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	B above the ment under t	maximum est. This p	permitted av	erage emission			

Page 21 of 42

CTI华测检测

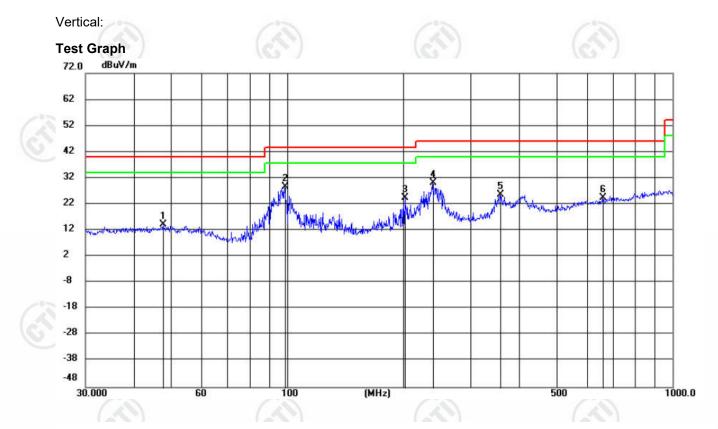
Report No. : EED32P81612801

	Test Results:	Pass
	Test Mode:	Refer to clause 5.3
<u> </u>		i. Repeat above procedures until all frequencies measured was complete.
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
<u>છ</u>		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.


No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	45.5667	0.57	13.62	14.19	40.00	-25.81	peak	200	7	
2	99.1797	24.15	13.10	37.25	43.50	-6.25	peak	100	186	
3	117.5868	17.72	12.02	29.74	43.50	-13.76	peak	200	205	
4	195.6846	17.32	12.20	29.52	43.50	-13.98	peak	200	195	
5 *	243.9753	25.84	14.05	39.89	46.00	-6.11	peak	100	0	
6	361.7772	5.93	17.16	23.09	46.00	-22.91	peak	100	71	

Page 23 of 42

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		47.7506	0.56	13.59	14.15	40.00	-25.85	peak	100	7	
2	*	98.6594	15.61	12.99	28.60	43.50	-14.90	peak	200	158	
3		202.2068	11.76	12.56	24.32	43.50	-19.18	peak	200	127	
4		238.4356	16.28	13.85	30.13	46.00	-15.87	peak	200	189	
5		357.2391	8.56	17.08	25.64	46.00	-20.36	peak	100	213	
6		660.8028	1.71	22.65	24.36	46.00	-21.64	peak	100	7	

Page 24 of 42

Radiated Spurious Emission above 1GHz:

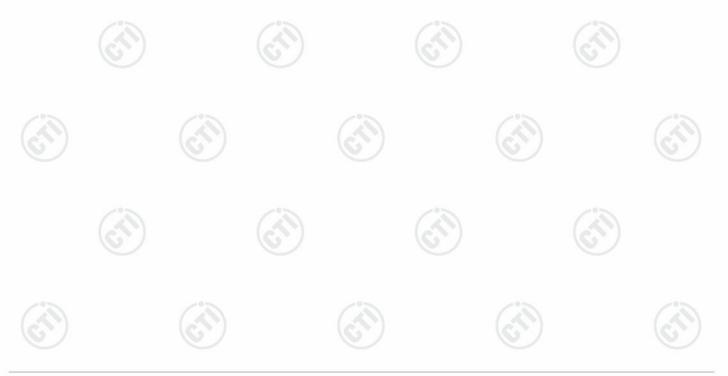
During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

1		13		13	8	13		(in)		
Mode	e:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	Ζ	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1440.8441	1.42	38.56	39.98	74.00	34.02	Pass	Н	PK	
2	2067.5068	4.77	37.85	42.62	74.00	31.38	Pass	Н	PK	
3	3435.029	-20.14	55.81	35.67	74.00	38.33	Pass	н	PK	
4	4803.1202	-16.23	53.44	37.21	74.00	36.79	Pass	Н	PK	
5	7205.2804	-11.83	52.20	40.37	74.00	33.63	Pass	Н	PK	
6	12502.6335	-4.81	49.41	44.60	74.00	29.40	Pass	Н	PK	
7	1550.455	1.88	38.15	40.03	74.00	33.97	Pass	V	PK	
8	2063.1063	4.76	37.74	42.50	74.00	31.50	Pass	V	PK	
9	4804.1203	-16.23	54.85	38.62	74.00	35.38	Pass	V	PK	
10	7207.2805	-11.83	53.64	41.81	74.00	32.19	Pass	V	PK	
11	10222.4815	-6.98	47.91	40.93	74.00	33.07	Pass	V	PK	
12	16275.8851	1.53	46.57	48.10	74.00	25.90	Pass	V	PK	

	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	2
20	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1295.0295	1.05	38.47	39.52	74.00	34.48	Pass	н	PK
	2	1924.8925	4.16	38.05	42.21	74.00	31.79	Pass	Н	PK
	3	3300.02	-19.80	54.47	34.67	74.00	39.33	Pass	н	PK
	4	4879.1253	-16.21	53.11	36.90	74.00	37.10	Pass	Н	PK
	5	7319.288	-11.65	5 49.82	38.17	74.00	35.83	Pass	Н	PK
	6	13687.7125	-1.76	46.89	45.13	74.00	28.87	Pass	Н	PK
	7	1274.8275	0.99	38.63	39.62	74.00	34.38	Pass	V	PK
3	8	1956.2956	4.32	37.62	41.94	74.00	32.06	Pass	V	PK
	9	3198.0132	-20.35	5 55.19	34.84	74.00	39.16	Pass	V	PK
-	10	4880.1253	-16.21	56.54	40.33	74.00	33.67	Pass	V	PK
	11	7321.2881	-11.65	5 53.22	41.57	74.00	32.43	Pass	V	PK
	12	11370.558	-6.28	47.72	41.44	74.00	32.56	Pass	V	PK
		and the second sec		and the second sec		the second se			the second se	

Ì

Page 26 of 42


	20-									
Ν	Node):		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	Z
r	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1201.6202	0.80	39.13	39.93	74.00	34.07	Pass	Н	PK
2	2	1891.6892	3.97	38.35	42.32	74.00	31.68	Pass	Н	PK
	3	3464.0309	-20.08	55.77	35.69	74.00	38.31	Pass	Н	PK
	4	4961.1307	-15.97	53.14	37.17	74.00	36.83	Pass	Н	PK
	5	7439.296	-11.34	50.97	39.63	74.00	34.37	Pass	Н	PK
	6	11854.5903	-5.96	48.82	42.86	74.00	31.14	Pass	Н	PK
	7	1346.6347	1.22	38.32	39.54	74.00	34.46	Pass	V	PK
	8	1913.4913	4.10	36.86	40.96	74.00	33.04	Pass	V	PK
	9	3316.0211	-19.86	57.45	37.59	74.00	36.41	Pass	V	PK
	10	4960.1307	-15.97	55.68	39.71	74.00	34.29	Pass	V	PK
3	11	7440.296	-11.34	53.80	42.46	74.00	31.54	Pass	V	PK
	12	12399.6266	-4.69	48.15	43.46	74.00	30.54	Pass	V	PK
1						Ċ.			•	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

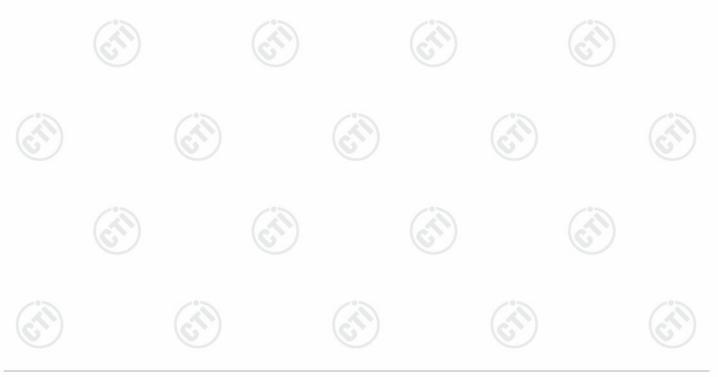
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

PK Limit	AV Limit	Horizontal PK	Horizontal AV	
 PK Detector 	AV Detector			

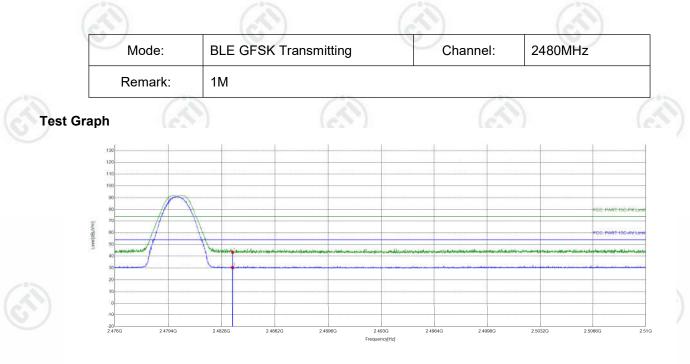
-20

Suspect									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	37.42	43.19	74.00	30.81	PASS	Horizontal	PK
2	2390	5.77	24.19	29.96	54.00	24.04	PASS	Horizontal	AV

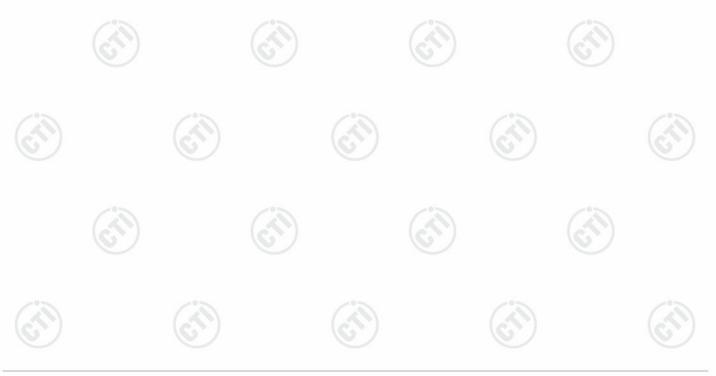
2.360



Page 28 of 42



	(C)	\sim		(6.)		C			C)	
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390	5.77	37.52	43.29	74.00	30.71	PASS	Vertical	PK
6	2	2390	5.77	23.75	29.52	54.00	24.48	PASS	Vertical	AV



Page 29 of 42

PK Limit AV Limit Horizontal PK Horizontal AV AV Detector

	\C.			10.21		16.7			(C.2.)	
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	36.76	43.33	74.00	30.67	PASS	Horizontal	PK
U	2	2483.5	6.57	23.79	30.36	54.00	23.64	PASS	Horizontal	AV

Page 30 of 42

	0	Mode:	BL	E GFSK Tra	ansmitting	e	Channel:	2480	OMHz	
		Remark:	1N	1						
(A)	Test Grap	h 🤅			(Λ)		e.	(1)		(\mathcal{A})
		130								
		100 90 80 70							FCC PART ISC P	65.mat
	Level(dB)/A/m]	60 50 40	Anima		anter and a state of the state	يىلىكى ئىرىكى ئىرىكى ئىرىكى ئىرىكى ئىرىكى بىرىكى مەركىكى مەركىكى تەركىكى تەركىكى تەركىكى تەركىكى تەركىكى تەركى	مرتمان درور استرام کار می وارد و را می و	ngha Arton ang taong	FGG-PART-ISG-A	F Limet
		30								
		-10 -20 2.476G 2.4794G	2.4826	3G 2.4862G	2 4896G	2.493G 2.496	4G 2.4998G	2.5032G	2.5066G	2.51G
		PK Limit AV Lin AV Detector	it — Verti	cal PK — Vertical AV	F	"requency[Hz]				
	<u>Cuereete</u>	al 1 in 1		(0)		C.	1		(6))	
	Suspecte	F	actor							
	NO		dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark

Note:	
INOLE.	

1

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

44.01

30.03

74.00

54.00

PASS

PASS

29.99

23.97

Vertical

Vertical

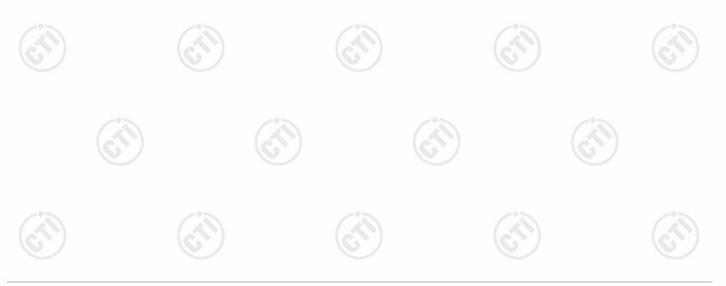
ΡK

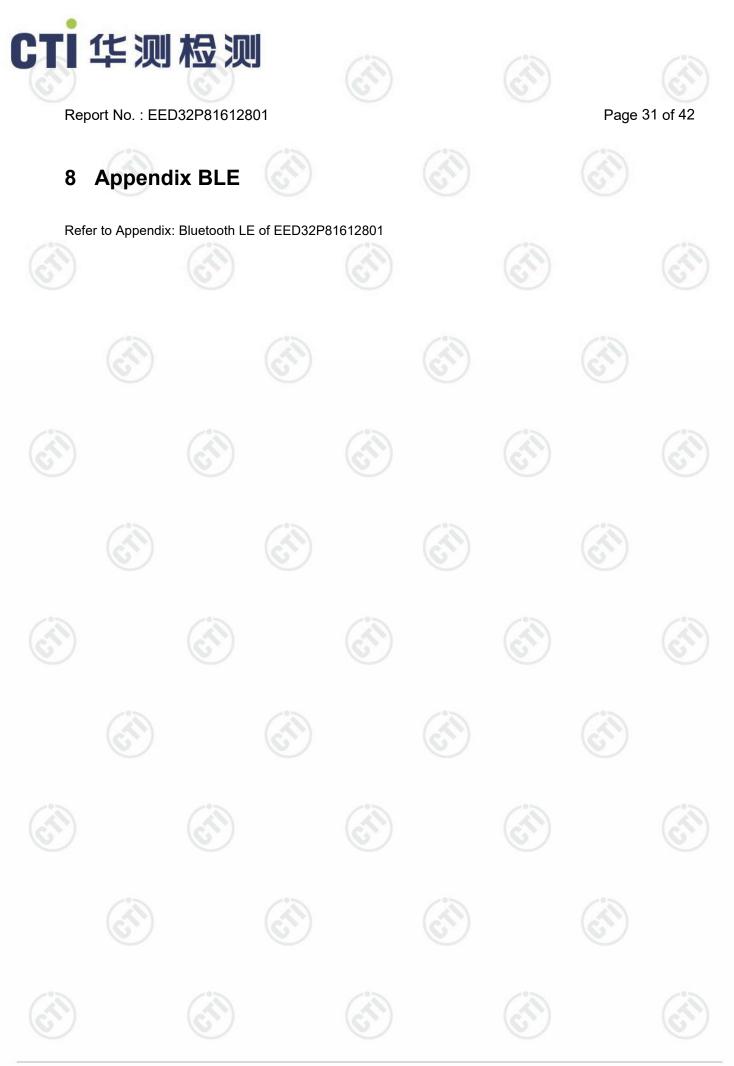
AV

Final Test Level =Receiver Reading -Correct Factor

6.57

6.57


2483.5


2483.5

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

37.44

23.46

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com