

RADIO TEST REPORT FCC ID: 2AHJX-03H16006

Product:	Alpha Intelligent Robot
Trade Name:	UBTECH
Model No.:	03H16006
Serial Model:	N/A
Report No.:	NTEK-2016NT08258569F3
Issue Date:	30 Aug. 2016

Prepared for

UBTECH ROBOTICS CORP Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City. PR. CHINA

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website:www.ntek.org.cn

TABLE OF CONTENTS

TES	T RESULT CERTIFICATION	.3
FAC	ILITIES AND ACCREDITATIONS	.5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	.5 .5
GEN	VERAL DESCRIPTION OF EUT	.6
DES	CRIPTION OF TEST MODES	.8
SET	UP OF EQUIPMENT UNDER TEST	10
	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	11 12
TES	T REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST	18 28 35 39 43 45 52
	SUN FAC 3.1 3.2 3.3 GEN DES SET 6.1 6.2 6.3 TES 7.1 7.2 7.3 7.4 7.5 7.6 7.7	SUMMARY OF TEST RESULTS

1 TEST RESULT CERTIFICATION

Applicant's name	UBTECH ROBOTICS CORP
Address	Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, PR. CHINA
Manufacture's Name	UBTECH ROBOTICS CORP BAOAN BRANCH
Address	Huilongda,Industry,Park,Shilongzai,Shiyan,Street,Baoan,District,Shenzhen City.PR.CHINA
Product description	
Product name	Alpha Intelligent Robot
Model and/or type reference	03H16006
Serial Model	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J:2016	
FCC 47 CFR Part 15, Subpart C:2016	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
FCC KDB 558074 D01 DTS Meas Guidance v03r05	

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	25 Aug. 2016 ~ 30 Aug. 2016
Testing Engineer	:	Eileen Wu. (Eileen Liu)
Technical Manager	:	Jason Chen
Authorized Signatory		Sam. Chen
Authonzed Signatory	•	(Sam Chen)

Page 4 of 56

FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Verdict	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)	Maximum Output Power	PASS			
15.247 (c)	Radiated Spurious Emission	PASS			
15.247 (d)	Power Spectral Density	PASS			
15.205	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

 This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

3.2 LABORATORY ACCREDITATIONS AND LISTINGS Site Description			
	•	: Accredited by CNAS, 2014.09.04 The certificate is valid until 2017.09.03 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.	
		Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.	
		Accredited by FCC, September 06, 2013 The Certificate Registration Number is 238937.	
		 Shenzhen NTEK Testing Technology Co., Ltd 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China. 	

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(<1G)	±4.68dB	
5	All emissions, radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

Page 6 of 56

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Alpha Intelligent Robot			
Trade Name	UBTECH			
FCC ID	2AHJX-03H16006			
Model No.	03H16006			
Serial Model	N/A			
Model Difference	N/A			
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20);			
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;			
Number of Channels	11 channels for 802.11b/g/11n(HT20);			
Antenna Type	FPCB Antenna			
Antenna Gain	3.63 dBi			
	DC supply: DC 11.1V/2900mAh from Li-ion Battery or DC 14V from adapter			
Power supply	⊠Adapter supply: Model: WT1403000 Input: 100-240V~, 50/60Hz, 1.6A Output: 14V, 3.0A			
HW Version	N/A			
SW Version	N/A			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Page 7 of 56

Revision History				
Report No.	Version	Description	Issued Date	
NTEK-2016NT08258569F3	Rev.01	Initial issue of report	Aug 30, 2016	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+k×5MHz k=0 to 10

Page 9 of 56

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission					
	Final Test Mode	Description			
	Mode 4	Link Mode			
	Note: AC power line Conducted Emission was tested under maximum output power				

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases					
Final Test Mode Description					
Mode 4	Link Mode				
Mode 1	802.11b CH1/ CH6/ CH11				
Mode 2	802.11g CH1/ CH6/ CH11				
Mode 3	802.11n HT20 CH1/ CH6/ CH11				

Note: For radiated test cases, the worst mode data rate was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

For Conducted Test Cases						
Final Test Mode	Description					
Mode 1	802.11b CH1/ CH6/ CH11					
Mode 2	802.11g CH1/ CH6/ CH11					
Mode 3	802.11n HT20 CH1/ CH6/ CH11					

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UN			
6 SETUP OF EQUIPMENT UN 6.1 BLOCK DIAGRAM CONFIGURAT			
For AC Conducted Emission Mode		•	
	EUT	C1 Adapter	
For Radiated Test Cases			
	EUT		
For Conducted Test Cases			
Measurement C:	EUT		

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Alpha Intelligent Robot	UBTECH	03H16006	2AHJX-03H16006	EUT
E-2	Adapter	N/A	WT1403000	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	C-1	power Cable	NO	1.0m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.:NTEK-2016NT08258569F3

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiat	tion Test equipr	ment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4440A	MY46186938	2015.11.19	2016.11.18	1 year
2	Test Receiver	R&S	ESPI	101318	2016.06.07	2017.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.07	2017.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.06.07	2017.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2016.07.06	2017.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.07	2017.06.06	1 year
10	Power Meter	R&S	NRVS	100696	2016.07.06	2017.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2016.07.06	2017.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year
Condu	uction Test equi	pment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2016.06.07	2017.06.06	1 year
2	LISN	R&S	ENV216	101313	2015.08.24	2017.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2015.08.24	2017.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.06.07	2017.06.06	1 year
6	Spectrum Analyzer	Agilent	N9020A	MY49100060	2015.11.19	2016.11.18	1 year
7	Test Cable	N/A	C01	N/A	2016.06.07	2017.06.06	1 year
8	Test Cable	N/A	C02	N/A	2016.06.07	2017.06.06	1 year
9	Test Cable	N/A	C03	N/A	2016.06.07	2017.06.06	1 year
10	Power Meter	DARE	RPR3006W	100696	2016.07.06	2017.07.05	1 year
1	Attenuation	MCE	24-10-34	BN9258	2016.06.07	2017.06.06	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

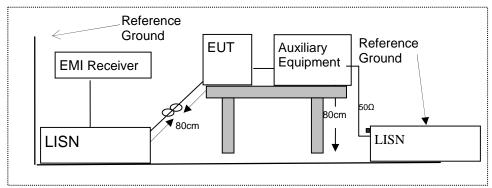
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanay (MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

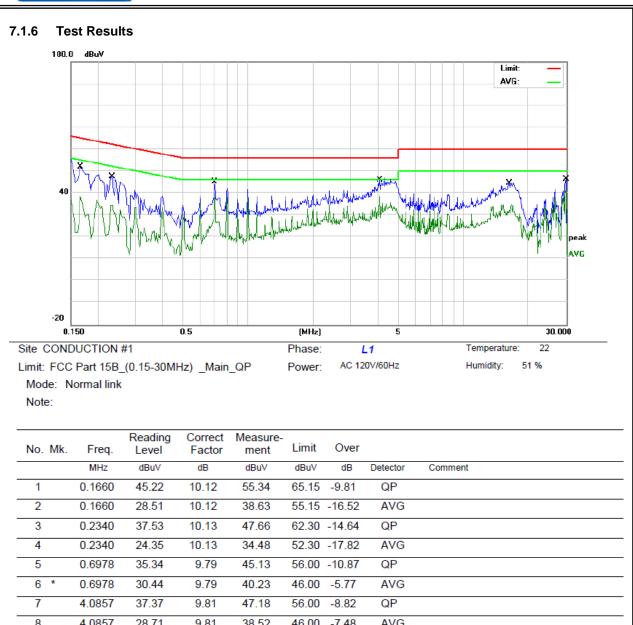
3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

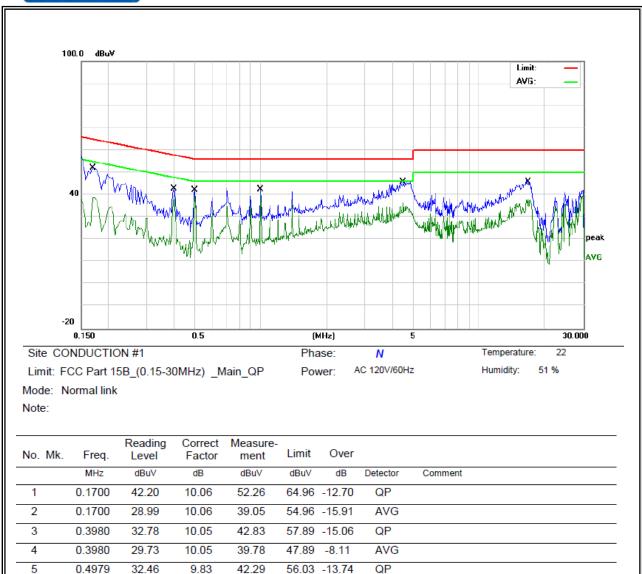
7.1.5 Test Procedure


According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Page 14 of 56

Report No.:NTEK-2016NT08258569F3


0	0.0976	30.44	9.79	40.25	40.00 -5.77	AVG
7	4.0857	37.37	9.81	47.18	56.00 -8.82	QP
8	4.0857	28.71	9.81	38.52	46.00 -7.48	AVG
9	16.2457	34.63	10.01	44.64	60.00 -15.36	QP
10	16.2457	24.95	10.01	34.96	50.00 -15.04	AVG
11	29.8900	36.15	10.22	46.37	60.00 -13.63	QP
12	29.8900	31.07	10.22	41.29	50.00 -8.71	AVG

*:Maximum data x:Over limit !:over margin

Page 15 of 56

Report No.:NTEK-2016NT08258569F3

46.03 -5.84

56.00 -13.48

46.00 -5.57

56.00 -9.96

46.00 -9.45

60.00 -13.26

50.00 -12.05

AVG

QP

AVG QP

AVG

QP

AVG

*:Maximum data x:Over limit !:over margin

30.36

32.63

30.54

36.26

26.77

36.77

27.98

9.83

9.89

9.89

9.78

9.78

9.97

9.97

40.19

42.52

40.43

46.04

36.55

46.74

37.95

6

7

8

9

10

11

12

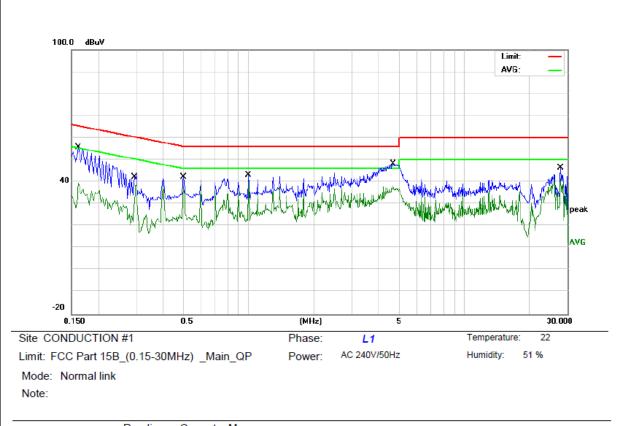
0.4979

0.9979

0.9979

4.4858

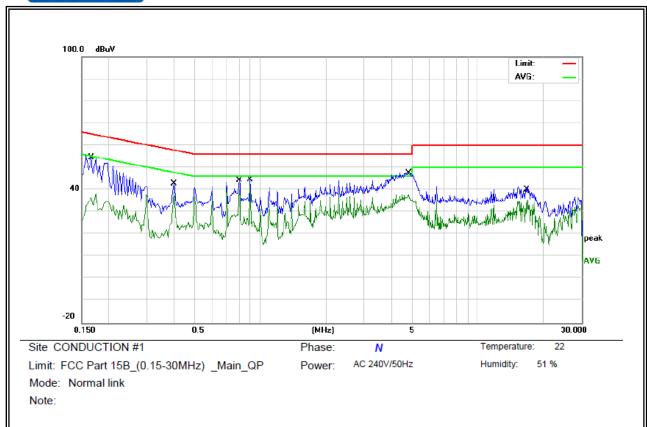
4.4858


16.8379

16.8379

Page 16 of 56

Report No.:NTEK-2016NT08258569F3


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1620	45.53	10.12	55.65	65.36	-9.71	QP	
2	0.1620	29.45	10.12	39.57	55.36	-15.79	AVG	
3	0.2977	33.18	10.14	43.32	60.30	-16.98	QP	
4	0.2977	28.66	10.14	38.80	50.30	-11.50	AVG	
5	0.4979	32.54	9.82	42.36	56.03	-13.67	QP	
6	0.4979	28.17	9.82	37.99	46.03	-8.04	AVG	
7	0.9979	33.34	9.87	43.21	56.00	-12.79	QP	
8 *	0.9979	30.22	9.87	40.09	46.00	-5.91	AVG	
9	4.6817	38.55	9.82	48.37	56.00	-7.63	QP	
10	4.6817	28.46	9.82	38.28	46.00	-7.72	AVG	
11	27.8978	36.36	10.19	46.55	60.00	-13.45	QP	
12	27.8978	31.36	10.19	41.55	50.00	-8.45	AVG	

*:Maximum data x:Over limit !:over margin

Page 17 of 56

Report No.:NTEK-2016NT08258569F3

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1660	44.54	10.06	54.60	65.15	-10.55	QP		
2	0.1660	28.43	10.06	38.49	55.15	-16.66	AVG		
3	0.3980	32.93	10.05	42.98	57.89	-14.91	QP		
4	0.3980	28.88	10.05	38.93	47.89	-8.96	AVG		
5	0.7980	34.59	9.84	44.43	56.00	-11.57	QP		
6	0.7980	30.45	9.84	40.29	46.00	-5.71	AVG		
7	0.8980	34.77	9.87	44.64	56.00	-11.36	QP		
8 *	0.8980	32.06	9.87	41.93	46.00	-4.07	AVG		
9	4.8098	37.93	9.80	47.73	56.00	-8.27	QP		
10	4.8098	27.91	9.80	37.71	46.00	-8.29	AVG		
11	16.8379	31.87	9.97	41.84	60.00	-18.16	QP		
12	16.8379	25.75	9.97	35.72	50.00	-14.28	AVG		

*:Maximum data x:Over limit !:over margin

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOOT art 10:200, Restricted bands									
MHz	MHz	GHz							
16.42-16.423	399.9-410	4.5-5.15							
16.69475-16.69525	608-614	5.35-5.46							
16.80425-16.80475	960-1240	7.25-7.75							
25.5-25.67	1300-1427	8.025-8.5							
37.5-38.25	1435-1626.5	9.0-9.2							
73-74.6	1645.5-1646.5	9.3-9.5							
74.8-75.2	1660-1710	10.6-12.7							
123-138	2200-2300	14.47-14.5							
149.9-150.05	2310-2390	15.35-16.2							
156.52475-156.52525	2483.5-2500	17.7-21.4							
156.7-156.9	2690-2900	22.01-23.12							
162.0125-167.17	3260-3267	23.6-24.0							
167.72-173.2	3332-3339	31.2-31.8							
240-285	3345.8-3358	36.43-36.5							
322-335.4	3600-4400	(2)							
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

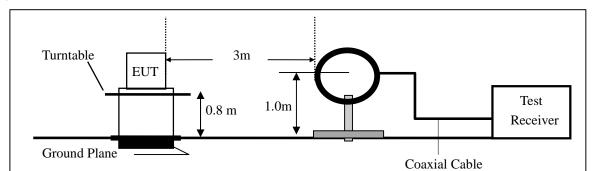
Limits of Radiated Emission Measurement(Above 1000MHz)

	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

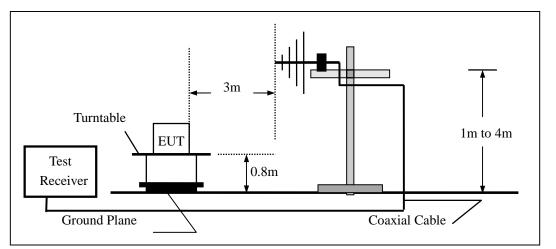
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

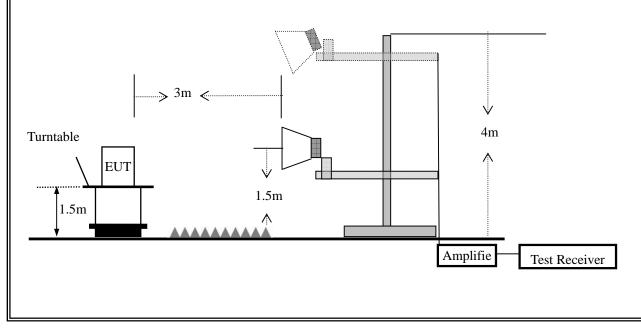
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);
- Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.



7.2.4 Test Configuration



(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Setting
Auto
1000 MHz
10th carrier harmonic
1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.
 Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f \ge 1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

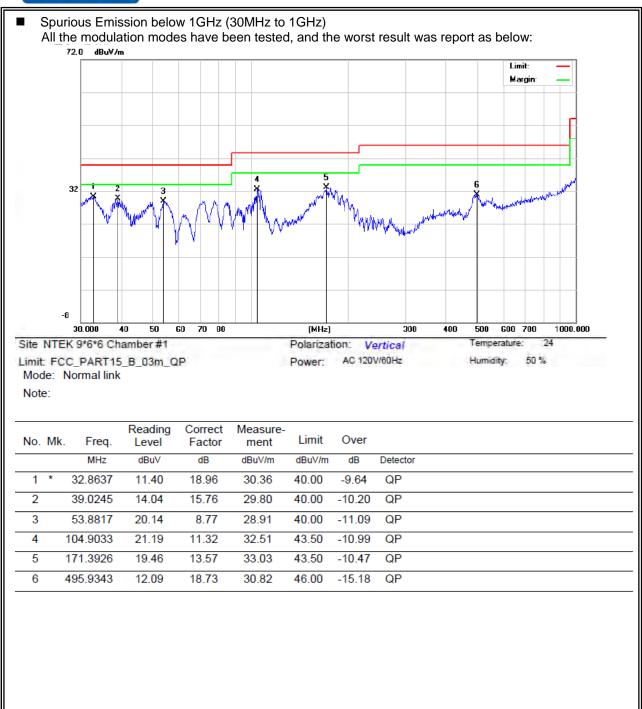
Page 21 of 56

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Alpha Intelligent Robot	Model No.:	03H16006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m) Limit 3m(dBuV/m) Over(dB			Limit 3m(dBuV/m)		(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV


Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Page 22 of 56

Report No.:NTEK-2016NT08258569F3



*:Maximum data x:Over limit !:over margin

Page 23 of 56

Report No.:NTEK-2016NT08258569F3

Page 24 of 56

Report No.:NTEK-2016NT08258569F3

■ Spuric EUT:			e 1GHz (1 Intelligent		Model	el No.: 03H16006				
	Temperature:		20 °C							
Test Mode		Mode1/Mode2/Mode3			Test B			Eileen Liu		
						-		port as below:		
-	Deed	Oshla	A	Pream	Enviroime					
Frequenc V	Read Level	Cable loss	Antenna Factor	p Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Remark	Comment	
(11112)					2 MHz)(802.1			rtomant	Commone	
4824.528	64.9	5.21	35.59	44.3	61.4	74	-12.6	Pk	Vertical	
4824.528	49.61	5.21	35.59	44.3	46.11	54	-7.89	AV	Vertical	
7236.416	66.38	6.48	36.27	44.6	64.53	74	-9.47	Pk	Vertical	
7236.416	44.49	6.48	36.27	44.6	42.64	54	-11.36	AV	Vertical	
4824.213	67.61	5.21	35.55	44.3	64.07	74	-9.93	Pk	Horizontal	
4824.213	46.2	5.21	35.55	44.3	42.66	54	-11.34	AV	Horizontal	
7236.107	55.34	6.48	36.27	44.52	53.57	74	-20.43	Pk	Horizontal	
7236.107	44.02	6.48	36.27	44.52	42.25	54	-11.75	AV	Horizontal	
			Low Cha	innel (2437	′ MHz)(802.1	1b)Above	1G			
4874.255	69.24	5.21	35.66	44.2	65.91	74	-8.09	Pk	Vertical	
4874.255	45.99	5.21	35.66	44.2	42.66	54	-11.34	AV	Vertical	
7311.239	65.27	7.1	36.5	44.43	64.44	74	-9.56	Pk	Vertical	
7311.239	47.01	7.1	36.5	44.43	46.18	54	-7.82	AV	Vertical	
4874.113	65.01	5.21	35.66	44.2	61.68	74	-12.32	Pk	Horizontal	
4874.113	44.79	5.21	35.66	44.2	41.46	54	-12.54	AV	Horizontal	
7311.318	61.32	7.1	36.5	44.43	60.49	74	-13.51	Pk	Horizontal	
7311.318	44.63	7.1	36.5	44.43	43.8	54	-10.2	AV	Horizontal	
	1		Low Cha		2 MHz)(802.1	1b)Above	1G	I		
4924.097	64.46	5.21	35.52	44.21	60.98	74	-13.02	Pk	Vertical	
4924.097	47.33	5.21	35.52	44.21	43.85	54	-10.15	AV	Vertical	
7386.336	61.13	7.1	36.53	44.6	60.16	74	-13.84	Pk	Vertical	
7386.336	45.91	7.1	36.53	44.6	44.94	54	-9.06	AV	Vertical	
4924.024	64.79	5.21	35.52	44.21	61.31	74	-12.69	Pk	Horizontal	
4924.024	43.88	5.21	35.52	44.21	40.4	54	-13.6	AV	Horizontal	
7386.319	64.5	7.1	36.53	44.6	63.53	74	-10.47	Pk	Horizontal	
7386.319	46.34	7.1	36.53	44.6	45.37	54	-8.63	AV	Horizontal	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).
(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Page 25 of 56

Report No.:NTEK-2016NT08258569F3

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All the modulation modes have been tested and all other emissions more than 20dB below the limit, the worst result was report as below:

								1		
Frequenc	Meter	Cable	Antenna	Preamp	Emission			Detec		
у	Reading	Loss	Factor	Factor	Level	Limits	Margin	tor		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/ m)	(dB)	Туре	Comment	
	802.11b									
2390	60.24	3.14	27.21	43.8	46.79	74	-27.21	Pk	Vertical	
2390	38.34	3.14	27.21	43.8	24.89	54	-29.11	AV	Vertical	
2390	60.8	3.14	27.21	43.8	47.35	74	-26.65	Pk	Horizontal	
2390	42.61	3.14	27.21	43.8	29.16	54	-24.84	AV	Horizontal	
2483.5	61.03	3.58	27.7	44	48.31	74	-25.69	Pk	Vertical	
2483.5	41.11	3.58	27.7	44	28.39	54	-25.61	AV	Vertical	
2483.5	59.77	3.58	27.7	44	47.05	74	-26.95	Pk	Horizontal	
2483.5	41.98	3.58	27.7	44	29.26	54	-24.74	AV	Horizontal	
802.11g										
2390	60.81	3.14	27.21	43.8	47.36	74	-26.64	Pk	Vertical	
2390	42.64	3.14	27.21	43.8	29.19	54	-24.81	AV	Vertical	
2390	62.26	3.14	27.21	43.8	48.81	74	-25.19	Pk	Horizontal	
2390	40.02	3.14	27.21	43.8	26.57	54	-27.43	AV	Horizontal	
2483.5	59.22	3.58	27.7	44	46.5	74	-27.5	Pk	Vertical	
2483.5	38.6	3.58	27.7	44	25.88	54	-28.12	AV	Vertical	
2483.5	61.38	3.58	27.7	44	48.66	74	-25.34	Pk	Horizontal	
2483.5	40.92	3.58	27.7	44	28.2	54	-25.8	AV	Horizontal	
				802.	11n20					
2390	60.98	3.14	27.21	43.8	47.53	74	-26.47	Pk	Vertical	
2390	39.42	3.14	27.21	43.8	25.97	54	-28.03	AV	Vertical	
2390	62.01	3.14	27.21	43.8	48.56	74	-25.44	Pk	Horizontal	
2390	41.27	3.14	27.21	43.8	27.82	54	-26.18	AV	Horizontal	
2483.5	59.57	3.58	27.7	44	46.85	74	-27.15	Pk	Vertical	
2483.5	41.09	3.58	27.7	44	28.37	54	-25.63	AV	Vertical	
2483.5	60.99	3.58	27.7	44	48.27	74	-25.73	Pk	Horizontal	
2483.5	40.27	3.58	27.7	44	27.55	54	-26.45	AV	Horizontal	

Page 26 of 56

Report No.:NTEK-2016NT08258569F3

■ Spurious Emission in Restricted Bands 3260MMHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

	nouulation	modes	lave been							
Frequenc	Reading	Cable	Antenna	Preamp	Emissi on					
y	Level	Loss	Factor	Factor	Level	Limits	Margin	Detector		
					(dBµV/	(dBµV/				
(MHz)	(dBµV)	(dB)	dB/m	(dB)	m)	m)	(dB)	Туре	Comment	
	802.11b									
3260	60.32	4.04	29.57	44.7	49.23	74	-26.53	Pk	Vertical	
3260	57.94	4.04	29.57	44.7	46.85	54	-14.37	AV	Vertical	
3260	61.42	4.04	29.57	44.7	50.33	74	-24.06	Pk	Horizontal	
3260	56.69	4.04	29.57	44.7	45.6	54	-14.6	AV	Horizontal	
3332	64.47	4.26	29.87	44.4	54.2	74	-24.09	Pk	Vertical	
3332	53.23	4.26	29.87	44.4	42.96	54	-15.2	AV	Vertical	
3332	61.08	4.26	29.87	44.4	50.81	74	-24.13	Pk	Horizontal	
3332	53.67	4.26	29.87	44.4	43.4	54	-15.76	AV	Horizontal	
17797	42.33	10.99	43.95	43.5	53.77	74	-23.7	Pk	Vertical	
17797	32.46	10.99	43.95	43.5	43.9	54	-14.88	AV	Vertical	
17788	43.91	11.81	43.69	44.6	54.81	74	-25.12	Pk	Horizontal	
17788	31.29	11.81	43.69	44.6	42.19	54	-13.79	AV	Horizontal	
	802.11g									
3260	60.32	4.04	29.57	44.7	49.23	74	-25.82	Pk	Vertical	
3260	57.94	4.04	29.57	44.7	46.85	54	-15.64	AV	Vertical	
3260	61.42	4.04	29.57	44.7	50.33	74	-26.79	Pk	Horizontal	
3260	56.69	4.04	29.57	44.7	45.6	54	-15.25	AV	Horizontal	
3332	64.47	4.26	29.87	44.4	54.2	74	-24.33	Pk	Vertical	
3332	53.23	4.26	29.87	44.4	42.96	54	-15.35	AV	Vertical	
3332	61.08	4.26	29.87	44.4	50.81	74	-24.51	Pk	Horizontal	
3332	53.67	4.26	29.87	44.4	43.4	54	-15.52	AV	Horizontal	
17797	42.33	10.99	43.95	43.5	53.77	74	-22.91	Pk	Vertical	
17797	32.46	10.99	43.95	43.5	43.9	54	-13.77	AV	Vertical	
17788	43.91	11.81	43.69	44.6	54.81	74	-23.38	Pk	Horizontal	
17788	31.29	11.81	43.69	44.6	42.19	54	-12.83	AV	Horizontal	
				802.	11n20			-		
3260	60.32	4.04	29.57	44.7	49.23	74	-25.79	Pk	Vertical	
3260	57.94	4.04	29.57	44.7	46.85	54	-16.84	AV	Vertical	
3260	61.42	4.04	29.57	44.7	50.33	74	-25.82	Pk	Horizontal	
3260	56.69	4.04	29.57	44.7	45.6	54	-16.95	AV	Horizontal	
3332	64.47	4.26	29.87	44.4	54.2	74	-24.32	Pk	Vertical	
3332	53.23	4.26	29.87	44.4	42.96	54	-15.27	AV	Vertical	
3332	61.08	4.26	29.87	44.4	50.81	74	-24.56	Pk	Horizontal	
3332	53.67	4.26	29.87	44.4	43.4	54	-15.43	AV	Horizontal	
	00.07	1.20	20.07		10.1	0-1	10.10	,	Tonzontai	

Page 27 of 56

17797 42.33 10.99 43.95 43.5 53.77 74 -23.2 Pk Vertical 17797 32.46 10.99 43.95 43.5 43.9 54 -13.71 AV Vertical 17788 43.91 11.81 43.69 44.6 54.81 74 -23.67 Pk Horizontal 17788 31.29 11.81 43.69 44.6 42.19 54 -13.83 AV Horizontal
17788 43.91 11.81 43.69 44.6 54.81 74 -23.67 Pk Horizontal
17788 31.29 11.81 43.69 44.6 42.19 54 -13.83 AV Horizontal

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

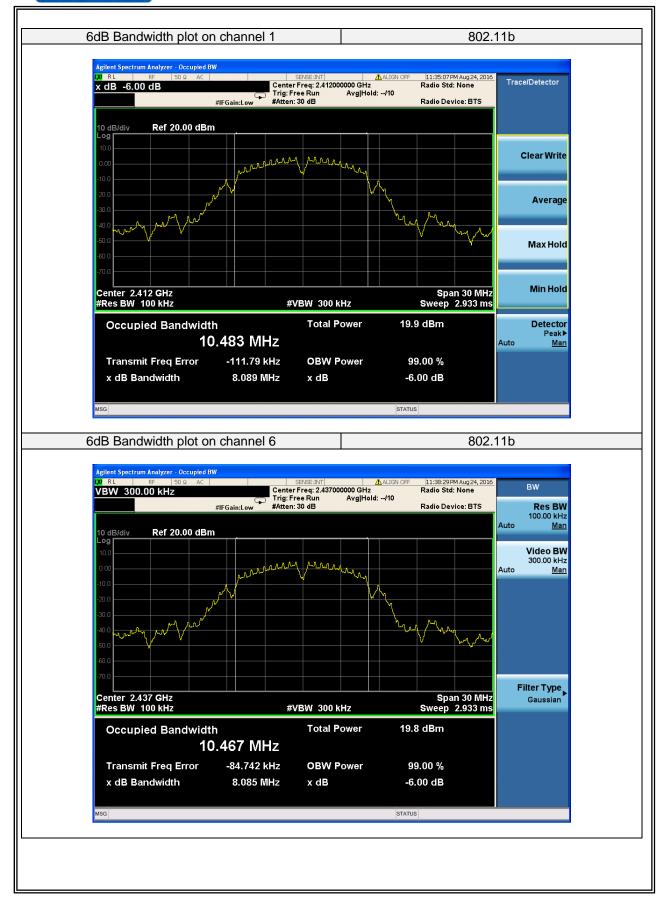
The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

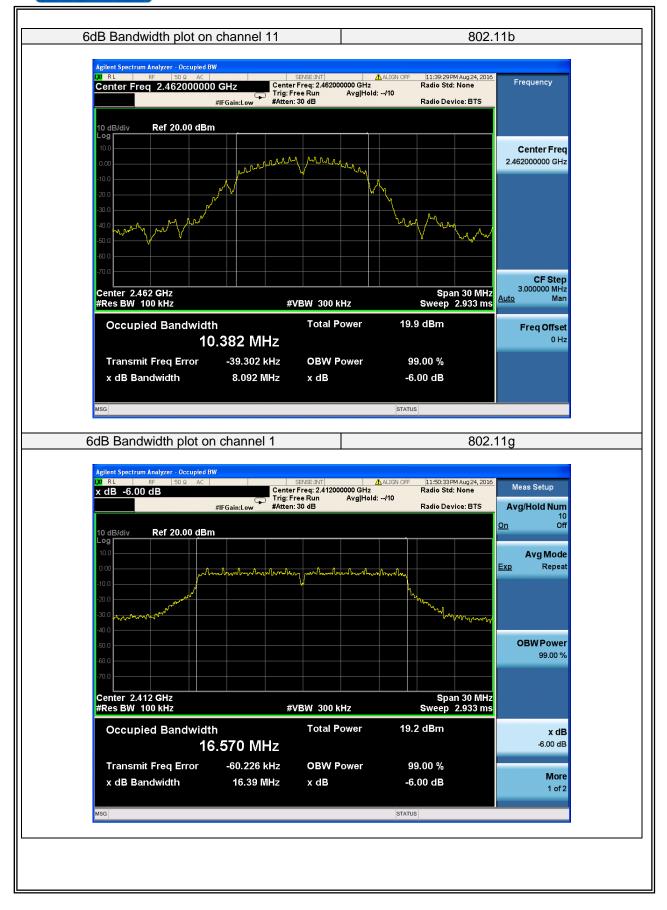
7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

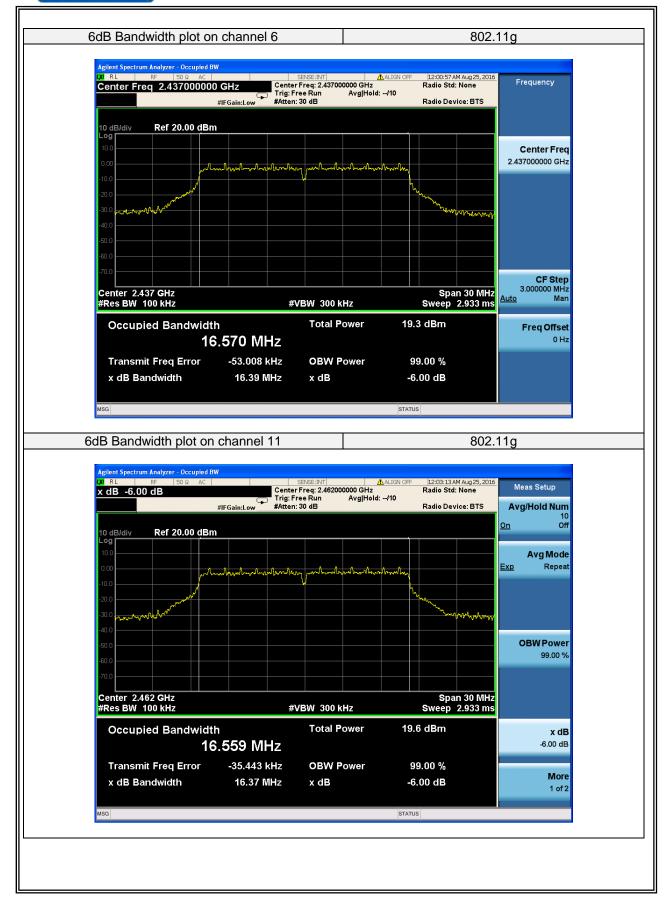

Page 29 of 56

7.3.6 Test Results

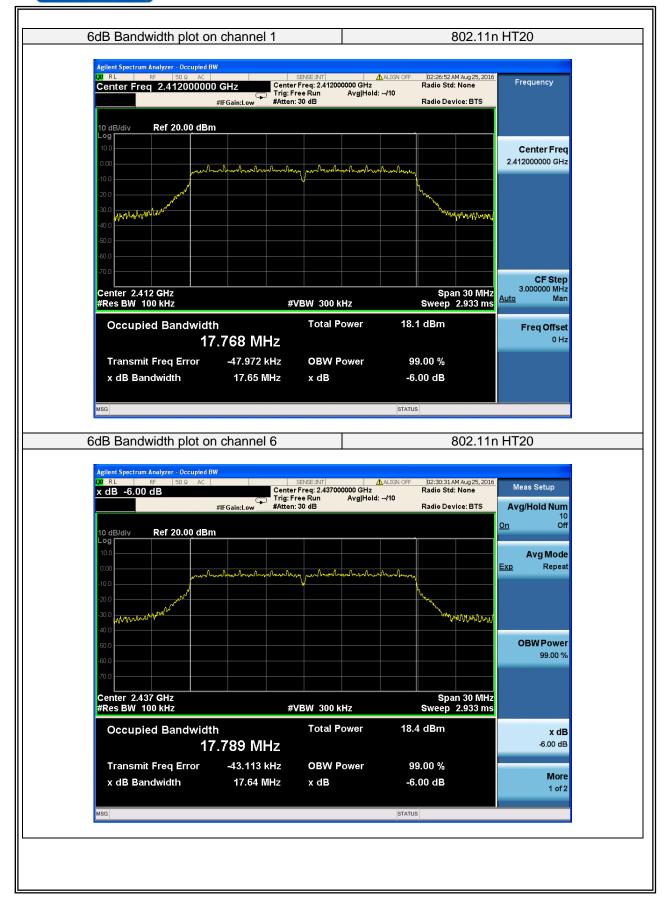
EUT:	Alpha Intelligent Robot	Alpha Intelligent Robot			03H16006			
Temperature:	20 ℃	20 ℃		Relative Humidity:				
Test Mode:	Mode1/Mode2/Mode3		Test By:		Eileen Liu			
			1			T		
Channel	Frequency (MHz)	6dB bandwidth (kHz)		Limit (kHz)	Result			
802.11b								
1	2412		8089.000		500	Pass		
6	2437		8085.000		500	Pass		
11	2462		8092.000		500	Pass		
		802	2.11g					
1	2412		16390.000		500	Pass		
6	2437		16390.000		500	Pass		
11	2462		16370.000		500	Pass		
802.11n HT20								
1	2412		17650.000		500	Pass		
6	2437		17640.000		500	Pass		
11	2462		17650.000		500	Pass		



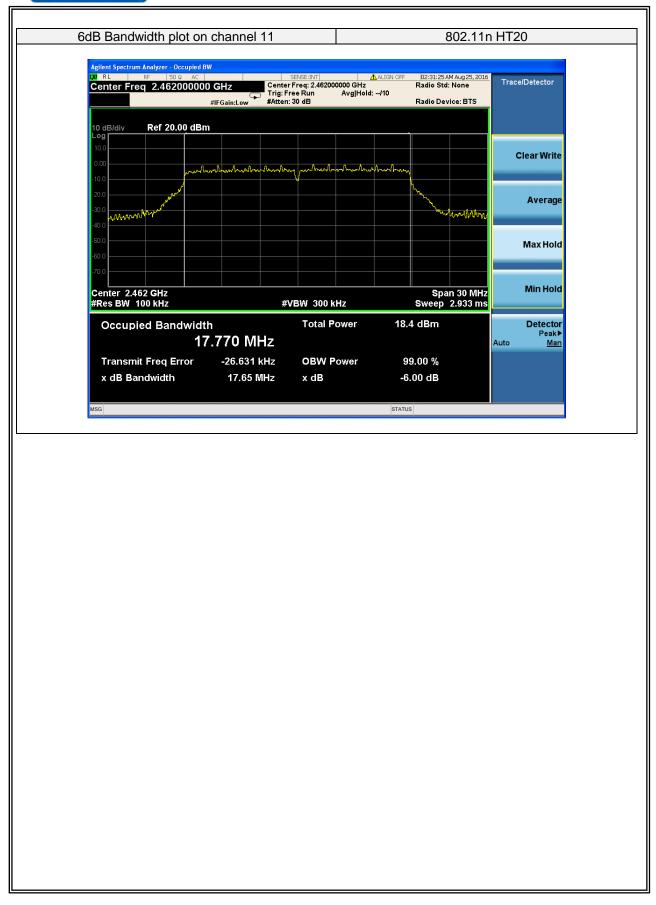
Page 30 of 56



Page 31 of 56



Page 32 of 56



Page 33 of 56

Page 34 of 56

7.4 20DB BANDWIDTH

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.4.2 Conformance Limit

N/A

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

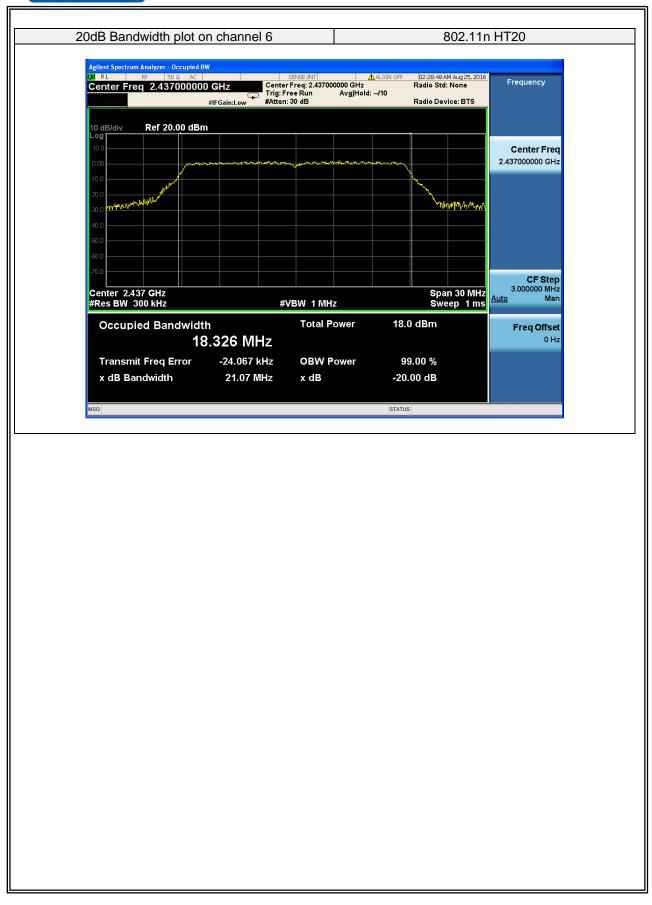
The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 300KHz VBW \geq 3*RBW Sweep = auto Detector function = peak Trace = max hold

Page 36 of 56

7.4.6 Test Results

EUT:	Alpha Intelligent Robot	Model No.:	03H16006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Band	Frequency (MHz)	20dB bandwidth (kHz)	Limit (kHz)	Result
802.11b	2437	12890.000	N/A	Pass
802.11g	2437	20430.000	N/A	Pass
802.11n HT20	2437	21070.000	N/A	Pass



Page 37 of 56

Page 38 of 56

7.5 DUTY CYCLE

7.5.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.5.2 Conformance Limit

No limit requirement.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

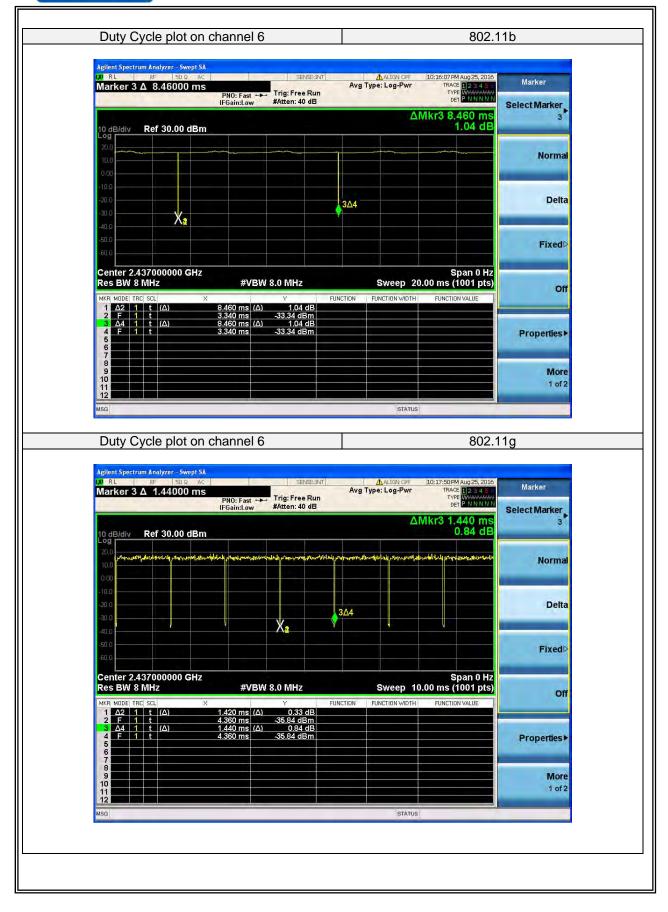
The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

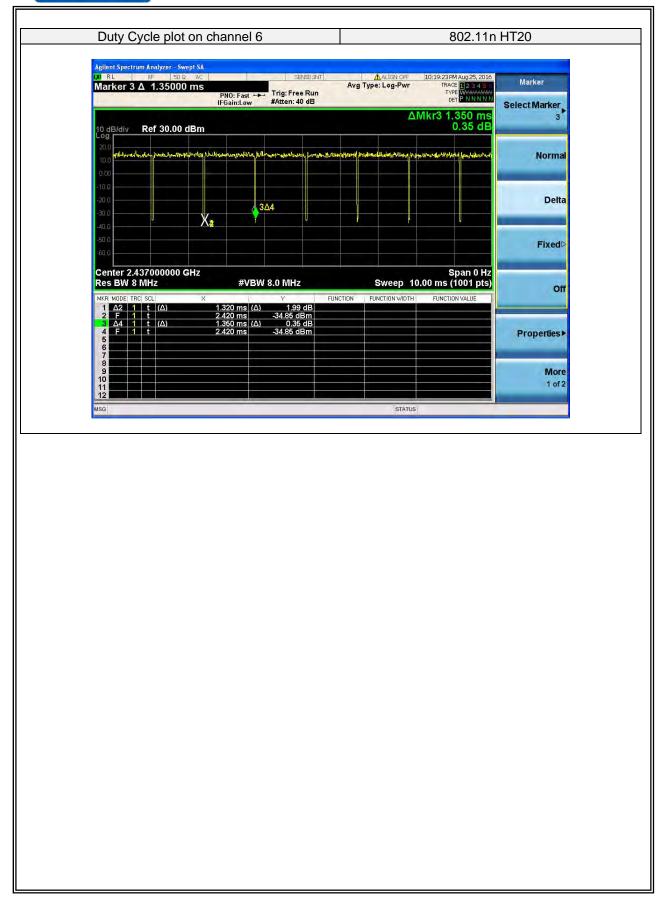
Page 40 of 56

7.5.6 Test Results


EUT:	Alpha Intelligent Robot	Model No.:	03H16006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

ſ	Mode	Data rate	Channel	T_{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)
Γ	802.11b	1Mbps	6	-	-	100%	0.000
Γ	802.11g	6Mbps	6	1.420	1.440	0.9861	0.061
	802.11n HT20	MCS0	6	1.320	1.350	0.9778	0.098

Note: All the modulation modes were tested, the data of the worst mode are described in the following table.



Page 41 of 56

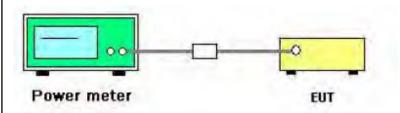
Page 42 of 56

7.6 MAXIMUM OUTPUT POWER

7.6.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.6.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.

7.6.3 Measuring Instruments

The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

7.6.4 Test Setup

7.6.5 Test Procedure

- 1. Test procedures refer KDB 558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.

7.6.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

Page 44 of 56

7.6.7 Test Results

EUT:	Alpha Int	elligent Robot	Model No.:	03H16006			
Temperature:	20 ℃		Relative Humidity:	48%			
Test Mode:	Mode1/M	ode1/Mode2/Mode3 Test By: Eileen Liu					
Test Channel	Frequency (MHz)	Power Setting	Average Output Power (dBm)	LIMIT (dBm)	Verdict		
802.11b							
1	2412	Default	12.16	30	PASS		
6	2437	Default	11.94	30	PASS		
11	2462	Default	12.16	30	PASS		
	802.11g						
1	2412	Default	11.86	30	PASS		
6	2437	Default	11.87	30	PASS		
11	2462	Default	12.24	30	PASS		
802.11n HT20							
1	2412	Default	10.30	30	PASS		
6	2437	Default	10.41	30	PASS		
11	2462	Default	10.74	30	PASS		

7.7 POWER SPECTRAL DENSITY

7.7.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.7.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle \geq 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

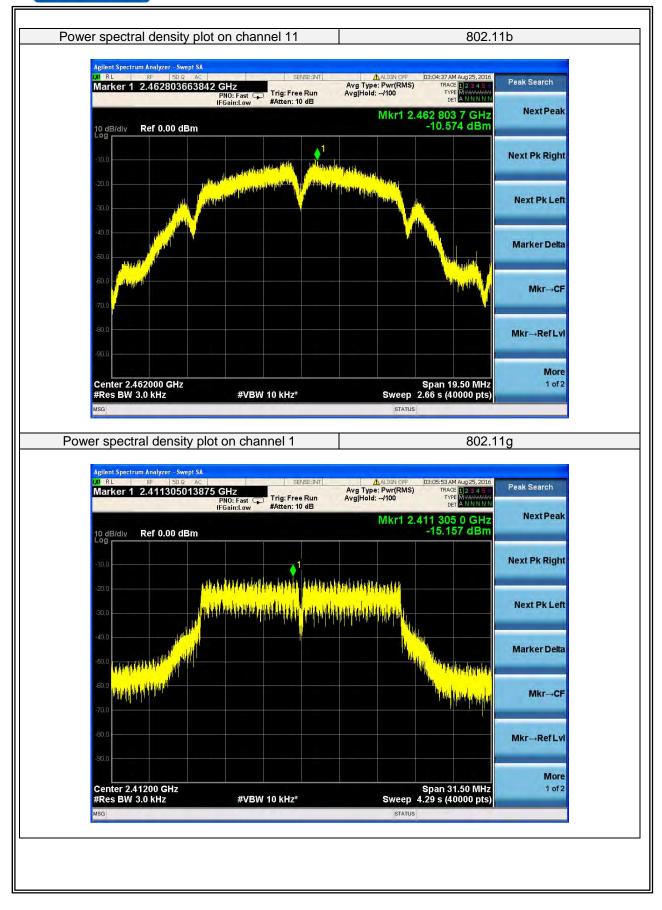
a) Set instrument center frequency to DTS channel center frequency.

- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set VBW ≥3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducin

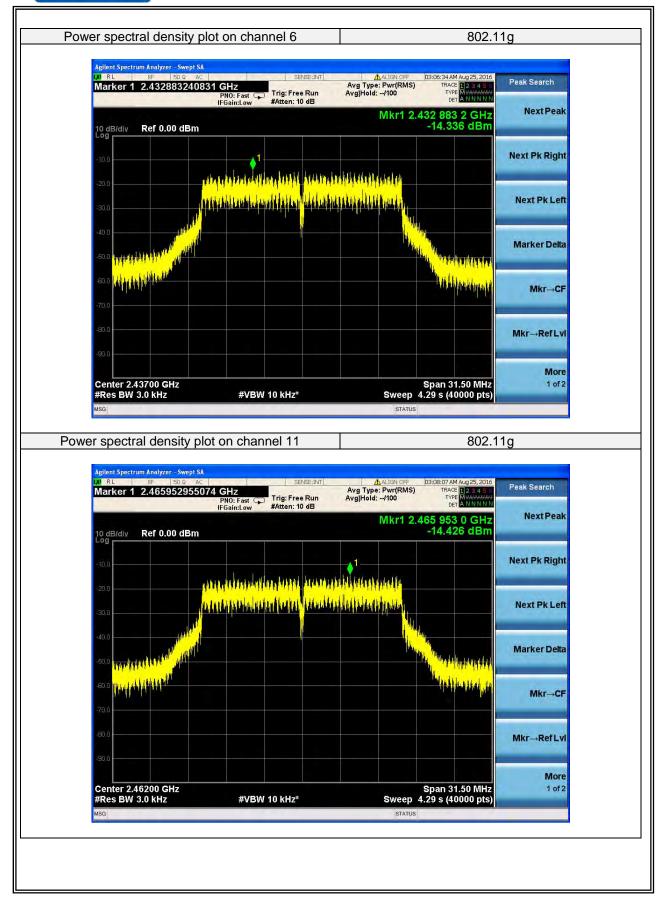
Page 46 of 56

7.7.6 Test Results

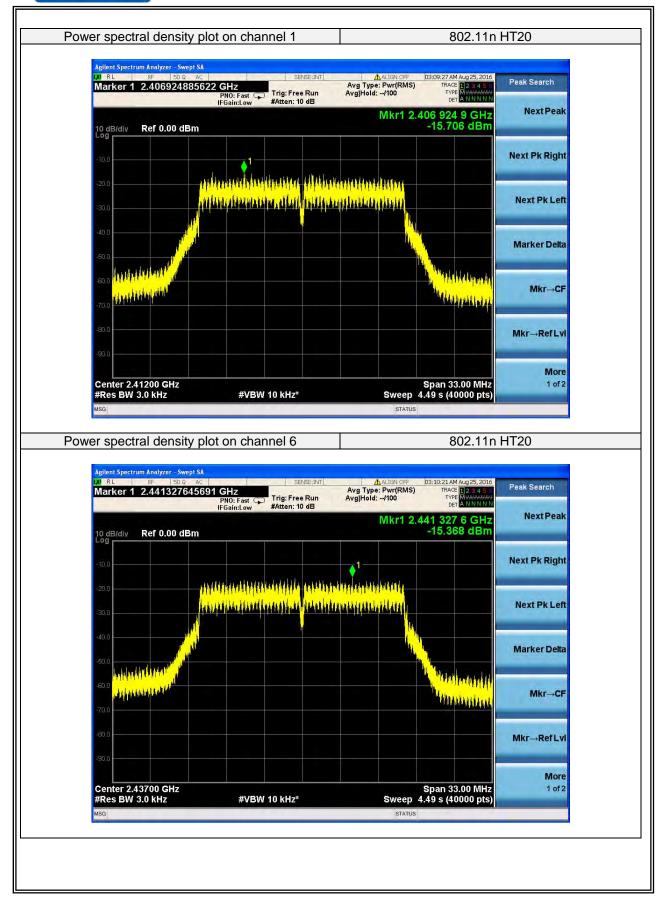
EUT:	Alpha Intelli	Alpha Intelligent Robot		No.:	03H16006	
Temperature:	20 ℃	I	Relative Humidity:		48%	
Test Mode:	Mode1/Mode	de2/Mode3 Test By: Eileen Liu		Mode1/Mode2/Mode3		
	•					
Test Channel Frequency (MHz)		Power Density (dBm/3KHz)		Limit (dBm/3KHz)		Verdict
		802	.11b	•	· ·	
1	2412	-9.428		8		PASS
6	2437	-10.330		8		PASS
11	2462	-10.574		8		PASS
		802.	.11g			
1	2412	-15.157		8		PASS
6	2437	-14.336		8		PASS
11	2462	-14.426		8		PASS
802.11n HT20						
1	2412	-15.706		8		PASS
6	2437	-15.368	8			PASS
11	2462	-15.097		8		PASS



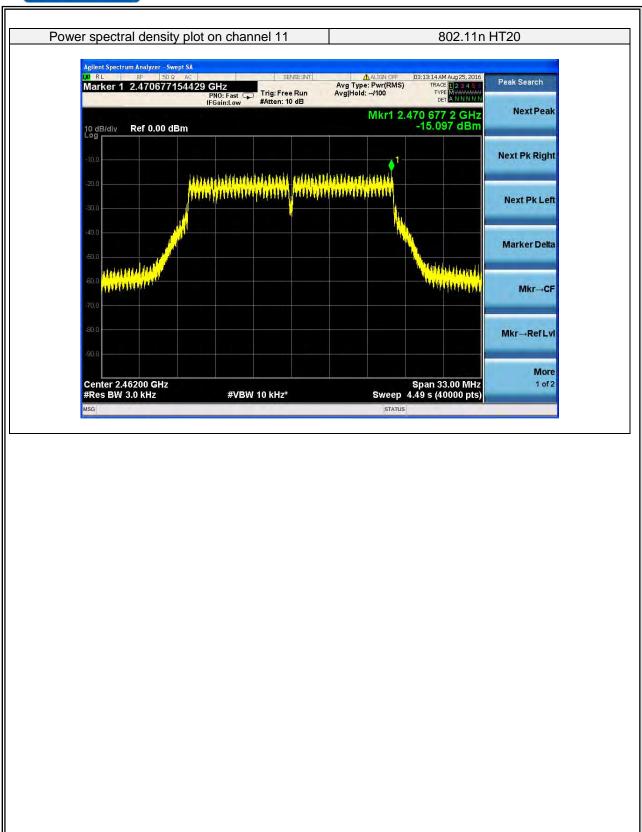
Page 47 of 56



Page 48 of 56



Page 49 of 56



Page 50 of 56

Page 51 of 56

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Alpha Intelligent Robot	Model No.:	03H16006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached FPCB antenna. It comply with the standard requirement.

END OF REPORT