


Certificate No: Z19-60228

CALIBRATION

**CNAS L0570** 

### **CALIBRATION CERTIFICATE**

Object ES3DV3 - SN:3154

Morlab

Calibration Procedure(s)

Client

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date: July 16, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

|                                    |             | ·                                        |                       |  |
|------------------------------------|-------------|------------------------------------------|-----------------------|--|
| Primary Standards                  | ID#         | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibratio  |  |
| Power Meter NRP2                   | 101919      | 18-Jun-19 (CTTL, No.J19X05125)           | Jun-20                |  |
| Power sensor NRP-Z91               | 101547      | 18-Jun-19 (CTTL, No.J19X05125)           | Jun-20                |  |
| Power sensor NRP-Z91               | 101548      | 18-Jun-19 (CTTL, No.J19X05125)           | Jun-20                |  |
| Reference10dBAttenuator            | 18N50W-10dB |                                          | Feb-20                |  |
| Reference20dBAttenuator            | 18N50W-20dB |                                          | Feb-20                |  |
| Reference Probe EX3DV4             | SN 3617     | 31-Jan-19(SPEAG,No.EX3-3617_Jan19)       | Jan-20                |  |
| DAE4                               | SN 1331     | 06-Feb-19(SPEAG, No.DAE4-1331_Feb19)     |                       |  |
| Secondary Standards                | ID#         | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |  |
| SignalGeneratorMG3700A 6201052605  |             | 18-Jun-19 (CTTL, No.J19X05127)           | Jun-20                |  |
| Network Analyzer E5071C MY46110673 |             | 24-Jan-19 (CTTL, No.J19X00547)           | Jan -20               |  |
|                                    | Name        | Function                                 | Signature             |  |
| Calibrated by:                     | Yu Zongying | SAR Test Engineer                        | AND                   |  |
| Reviewed by:                       | Lin Hao     | SAR Test Engineer                        | 林光                    |  |
| Approved by: Qi Dianyuan           |             | SAR Project Leader                       | 2002                  |  |
|                                    |             |                                          |                       |  |

Issued: July 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60228



Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization  $\theta$  or rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 $\theta$ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization  $\theta$ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the  $E^2$ -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
  data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
  media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60228 Page 2 of 11

# Probe ES3DV3

SN: 3154

Calibrated: July 16, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60228 Page 3 of 11



## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3154

#### **Basic Calibration Parameters**

|                         | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|-------------------------|----------|----------|----------|-----------|
| $Norm(\mu V/(V/m)^2)^A$ | 1.24     | 1.18     | 1.19     | ±10.0%    |
| DCP(mV) <sup>B</sup>    | 101.6    | 105.7    | 104.0    |           |

#### **Modulation Calibration Parameters**

| UID | Communication |   | Α   | В    | С   | D    | VR    | Unc <sup>E</sup> |
|-----|---------------|---|-----|------|-----|------|-------|------------------|
|     | System Name   |   | dB  | dBõV |     | dB   | mV    | (k=2)            |
| 0   | CW            | Χ | 0.0 | 0.0  | 1.0 | 0.00 | 277.0 | ±2.4%            |
|     |               | Υ | 0.0 | 0.0  | 1.0 |      | 270.1 |                  |
|     |               | Z | 0.0 | 0.0  | 1.0 |      | 269.1 |                  |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60228 Page 4 of 11

 $<sup>^{\</sup>rm A}$  The uncertainties of Norm X, Y, Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 5 and Page 6).  $^{\rm B}$  Numerical linearization parameter: uncertainty not required.

Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



# DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3154

# Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.34    | 6.34    | 6.34    | 0.43               | 1.43                       | ±12.1%         |
| 900                  | 41.5                                  | 0.97                               | 6.15    | 6.15    | 6.15    | 0.25               | 1.77                       | ±12.1%         |
| 1750                 | 40.1                                  | 1.37                               | 5.30    | 5.30    | 5.30    | 0.65               | 1.25                       | ±12.1%         |
| 1900                 | 40.0                                  | 1.40                               | 5.06    | 5.06    | 5.06    | 0.78               | 1.22                       | ±12.1%         |
| 2100                 | 39.8                                  | 1.49                               | 5.07    | 5.07    | 5.07    | 0.86               | 1.13                       | ±12.1%         |
| 2300                 | 39.5                                  | 1.67                               | 4.78    | 4.78    | 4.78    | 0.90               | 1.13                       | ±12.1%         |
| 2450                 | 39.2                                  | 1.80                               | 4.62    | 4.62    | 4.62    | 0.90               | 1.09                       | ±12.1%         |
| 2600                 | 39.0                                  | 1.96                               | 4.39    | 4.39    | 4.39    | 0.90               | 1.13                       | ±12.1%         |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60228 Page 5 of 11

<sup>&</sup>lt;sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.