

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1]

- ANSI-C63.19-2011
- American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1149_Jul18

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	89.8 V/m = 39.06 dBV/m
Maximum measured above low end	100 mW input power	89.3 V/m = 39.02 dBV/m
Averaged maximum above arm	100 mW input power	89.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

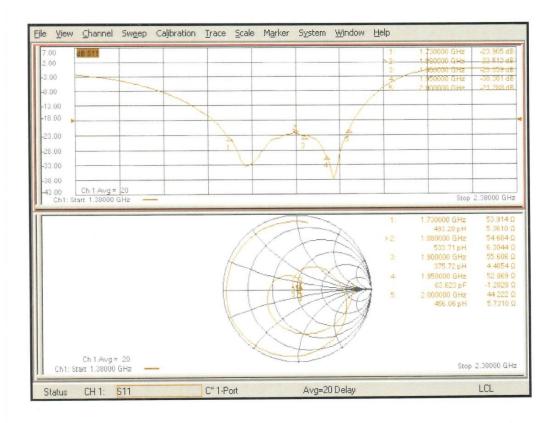
Frequency	Return Loss	Impedance
1730 MHz	23.9 dB	53.9 Ω + 5.4 jΩ
1880 MHz	22.5 dB	54.7 Ω + 6.3 jΩ
1900 MHz	23.4 dB	55.6 Ω + 4.5 jΩ
1950 MHz	30.3 dB	52.9 Ω - 1.3 jΩ
2000 MHz	21.3 dB	44.2 Ω + 5.7 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1149_Jul18

Page 3 of 5

Impedance Measurement Plot

Certificate No: CD1880V3-1149_Jul18

Page 4 of 5

DASY5 E-field Result

Date: 19.07.2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1149

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW ; Frequency: 1880 MHz \\ \mbox{Medium parameters used: } \sigma = 0 \mbox{S/m}, \epsilon_r = 1; \mbox{ρ} = 0 \mbox{kg/m^3} \\ \mbox{Phantom section: } RF \mbox{ Section} \\ \mbox{Measurement Standard: } DASY5 (IEEE/IEC/ANSI C63.19-2011) \\ \end{array}$

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 160.1 V/m; Power Drift = -0.04 dB Applied MIF = 0.00 dB RF audio interference level = 39.06 dBV/m Emission category: M2

MIF scaled E-field

		Grid 3 M2
	39.06 dBV/m Grid 5 M2	Grid 6 M2
	36.15 dBV/m	177 A 178
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.79 dBV/m	39.02 dBV/m	38.91 dBV/m

Certificate No: CD1880V3-1149_Jul18

Page 5 of 5

Dipole 2600 MHz

Client

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

CTTL-SZ (Auden)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: CD2600V3-1020_Oct18 CALIBRATION CERTIFICATE CD2600V3 - SN: 1020 Object QA CAL-20.v6 Calibration procedure(s) Calibration procedure for dipoles in air October 23, 2018 Calibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Type-N mismatch combination Apr-19 Probe EF3DV3 SN: 4013 05-Mar-18 (No. EF3-4013_Mar18) Mar-19 DAE4 SN: 781 17-Jan-18 (No. DAE4-781_Jan18) Jan-19 Secondary Standards ID # Check Date (in house) Scheduled Check SN: GB42420191 09-Oct-09 (in house check Oct-17) In house check: Oct-20 Power meter Agilent 4419B Power sensor HP E4412A SN: US38485102 05-Jan-10 (in house check Oct-17) In house check: Oct-20 Power sensor HP 8482A SN: US37295597 09-Oct-09 (in house check Oct-17) In house check: Oct-20 RF generator R&S SMT-06 SN: 832283/011 27-Aug-12 (in house check Oct-17) In house check: Oct-20 SN: US41080477 In house check: Oct-19 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-18) Function Signature Name Calibrated by: Leif Klysner Laboratory Technician Technical Manager Approved by: Katja Pokovic Issued: October 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD2600V3-1020 Oct18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2600V3-1020_Oct18

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.2 V/m = 38.71 dBV/m
Maximum measured above low end	100 mW input power	85.2 V/m = 38.61 dBV/m
Averaged maximum above arm	100 mW input power	85.7 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

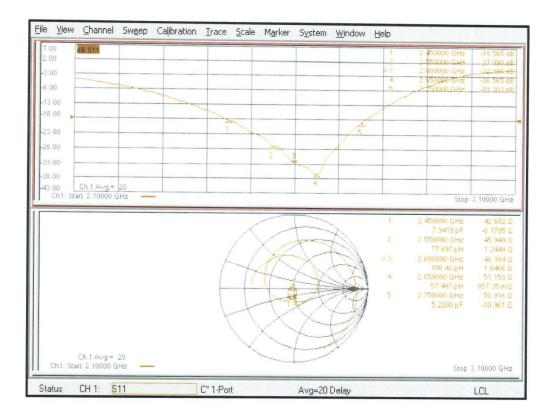
Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	18.6 dB	42.7 Ω - 8.2 jΩ
2550 MHz	27.1 dB	45.9 Ω + 1.2 jΩ
2600 MHz	32.4 dB	48.3 Ω + 1.6 jΩ
2650 MHz	36.6 dB	51.2 Ω + 1.0 jΩ
2750 MHz	19.3 dB	50.9 Ω - 11.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Page 3 of 5

Impedance Measurement Plot

Page 4 of 5

DASY5 E-field Result

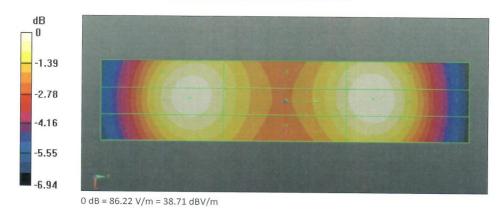
Date: 23.10.2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1020

Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section w Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

Reference Value = 64.09 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.71 dBV/m Emission category: M2

MIF scaled E-fie	eld
------------------	-----

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.32 dBV/m	38.61 dBV/m	38.53 dBV/m
	Grid 5 M2 38.19 dBV/m	
	Grid 8 M2 38.71 dBV/m	Grid 9 M2 38.63 dBV/m

Certificate No: CD2600V3-1020_Oct18

Page 5 of 5

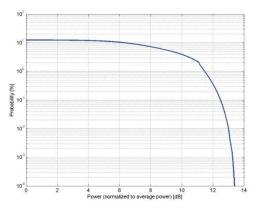
ANNEX E UID Specification

Calibration Laboratory of

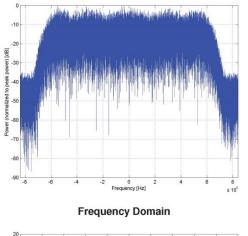
Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

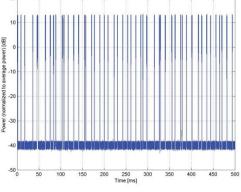
Name:	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.
Group: UID:	CDMA2000 10295-AAB
PAR: ¹ MIF: ²	12.49 dB 3.26 dB
Standard Reference: Category: Modulation: Frequency Band:	3GPP2 C.S0002-C-1, Chapter 2.1.3.9.2.3 FCC OET KDB 941225 D01 SAR test for 3G devices (v02) Random amplitude modulation 64-ary orthogonal Band Class 0 (815.0-849.0 MHz, 20220) Band Class 1 (1850.0-1910.0 MHz, 20040) Band Class 2 (872.0-915.0 MHz, 20040) Band Class 2 (872.0-915.0 MHz, 20041) Band Class 3 (887.0-925.0 MHz, 20042) Band Class 3 (887.0-925.0 MHz, 20042) Band Class 5 (411.7-483.5 MHz, 20043) Band Class 5 (411.7-483.5 MHz, 20044) Band Class 6 (1920.0-1980.0 MHz, 20045) Band Class 6 (1920.0-1980.0 MHz, 20045) Band Class 7 (776.0-794.0 MHz, 20046) Band Class 8 (1710.0-1785.0 MHz, 20047) Band Class 9 (880.0-915.0 MHz, 20048) Band Class 10 (806.0-901.0 MHz, 20049) Band Class 11 (410.0-462.5 MHz, 20050) Band Class 12 (870.0-876.0 MHz, 20151) Band Class 13 (2500.0-2570.0 MHz, 20179) Band Class 14 (1850.0-1915.0 MHz, 20181) Band Class 15 (1710.0-1755.0 MHz, 20181) Band Class 16 (2502.0-2568.0 MHz, 20182) Band Class 18 (787.0-799.0 MHz, 20184)
Detailed Specification: Bandwidth: Integration Time:	Band Class 19 (698.0-716.0 MHz, 20185) Band Class 20 (1626.5-1660.5 MHz, 20186) Band Class 21 (2000.0-2020.0 MHz, 20187) Radio Configuration 1 (RC1) Service Option 3 (SO3) Speech codec: 8k EVRC (Enhanced Voice Rate Codec) 1/8th frame rate 1.2 MHz 500.0 ms

 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"
 Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


UID Specification Sheet

UID 10295-AAB page 1/2


16.01.2014



Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Time Domain

UID Specification Sheet

UID 10295-AAB page 2/2

16.01.2014

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Name:

LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)

Group: UID: LTE-FDD

10176-CAE

PAR: 1 MIE: 2

Category: Modulation:

Standard Reference:

Frequency Band:

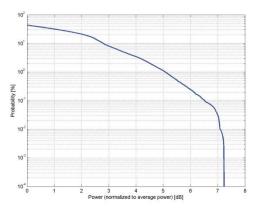
6.52dB -9.76 dB 3GPP / ETSI TS 136,101 V8,4,0 3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation 16-QAM Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Band 2, E-UTRA/FDD (1820.0 - 1900.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1755.0 MHz) Band 5, E-UTRA/FDD (824.0 - 849.0 MHz) Band 6, E-UTRA/FDD (830.0 - 840.0 MHz) Band 7, E-UTRA/FDD (2500.0 - 2570.0 MHz) Band 8, E-UTRA/FDD (880.0 - 915.0 MHz) Band 9, E-UTRA/FDD (800.9 9 - 1784.9 MHz) Band 9, E-UTRA/FDD (1719.9 - 1784.9 MHz) Band 10, E-UTRA/FDD (1710.0 - 1770.0 MHz) Band 11, E-UTRA/FDD (1427.9 - 1447.9 MHz) Band 12, E-UTRA/FDD (699.0 - 716.0 MHz) Band 13, E-UTRA/FDD (777.0 - 787.0 MHz) Band 14, E-UTRA/FDD (788.0 - 798.0 MHz) Band 17, E-UTRA/FDD (704.0 - 716.0 MHz) Band 18, E-UTRA/FDD (815.0 - 830.0 MHz) Band 19, E-UTRA/FDD (830.0 - 845.0 MHz) Band 20, E-UTRA/FDD (832.0 - 862.0 MHz) Band 21, E-UTRA/FDD (1447.9 - 1462.9 MHz) Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz) Band 24, E-UTRA/FDD (1626.5 - 1660.5 MHz) Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 26 E-UTRA/FDD (814.0 - 849.0 MHz) Band 27 E-UTRA/FDD (807.0 - 824.0 MHz) Band 28 E-UTRA/FDD (703.0 - 748.0 MHz) Band 30, E-UTRA/FDD (2305.0 - 2315.0 MHz) Band 65, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 66, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 68, E-UTRA/FDD (698.0 - 728.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (663.0 - 698.0 MHz) Validation band (0.0 - 6000.0 MHz) Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: QPSK Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14

MCS Index: 15 Data Type: PN9 10.0 MHz

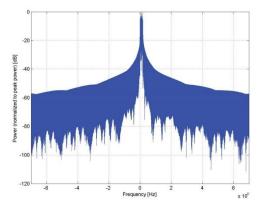
10.0 ms

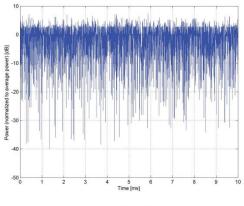
Bandwidth: Integration Time:

Detailed Specification:


 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"
 Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).

UID Specification Sheet


UID 10176-CAE page 1/2


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10176-CAE page 2/2

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Name:

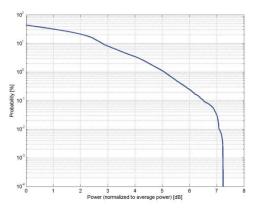
LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)

Group:

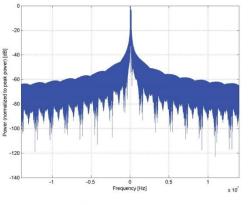
LTE-FDD 10170-CAD

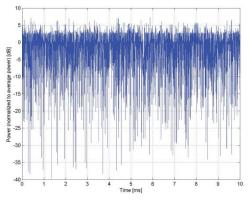
UID: PAR: 1 MIF: 2

PAR: ¹ MIF: ²	6.52 dB -9.76 dB
Standard Reference:	3GPP / ETSI TS 136.101 V8.4.0 3GPP / ETSI TS 136.213 V8.4.0
Category: Modulation:	FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation 16-QAM
Frequency Band:	Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Band 2, E-UTRA/FDD (1850.0 - 1910.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 9, E-UTRA/FDD (1710.9 - 1784.9 MHz) Band 9, E-UTRA/FDD (1710.9 - 1770.0 MHz) Band 20, E-UTRA/FDD (832.0 - 862.0 MHz) Band 22, E-UTRA/FDD (832.0 - 862.0 MHz) Band 22, E-UTRA/FDD (832.0 - 862.0 MHz) Band 23, E-UTRA/FDD (830.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (1700.0 - 1915.0 MHz) Band 28, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 28, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 65, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 66, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (1695.0 - 698.0 MHz) Validation band (0.0 - 6000.0 MHz)
Detailed Specification:	Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: 16QAM Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14 MCS Index: 15 Data Type: PN9 20.0 MHz
Integration Time:	10.0 ms


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for 2 the same communication system (same UID and version).

UID Specification Sheet


UID 10170-CAD page 1/2


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

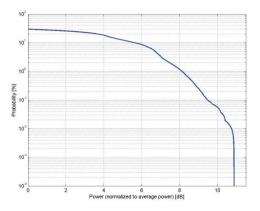
UID Specification Sheet

UID 10170-CAD page 2/2

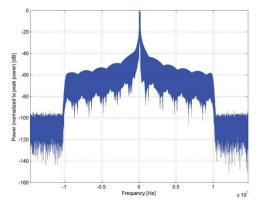
Calibration Laboratory of Schmid & Partner

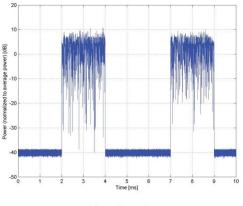
Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Name:	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)
Group: UID:	LTE-TDD 10173-CAD
PAR: 1 MIF: 2	9.48dB -1.44dB
Standard Reference:	3GPP / ETSI TS 136.101 V8.4.0 3GPP / ETSI TS 136.213 V8.4.0
Category: Modulation: Frequency Band:	FCC OET KDB 941225 D05 SAR for LTE Devices v02 Random amplitude modulation 16-QAM Band 33, E-UTRA/TDD (1900.0 - 1920.0 MHz) Band 33, E-UTRA/TDD (1850.0 - 1910.0 MHz) Band 37, E-UTRA/TDD (1910.0 - 1930.0 MHz) Band 37, E-UTRA/TDD (1910.0 - 1930.0 MHz) Band 38, E-UTRA/TDD (1880.0 - 1920.0 MHz) Band 40, E-UTRA/TDD (1880.0 - 2620.0 MHz) Band 40, E-UTRA/TDD (2300.0 - 2400.0 MHz) Band 41, E-UTRA/TDD (2496.0 - 2690.0 MHz) Band 41, E-UTRA/TDD (3400.0 - 3600.0 MHz) Band 43, E-UTRA/TDD (3600.0 - 3800.0 MHz) Band 44, E-UTRA/TDD (3600.0 - 3800.0 MHz) Band 44, E-UTRA/TDD (5150.0 - 5525.0 MHz) Band 44, E-UTRA/TDD (5150.0 - 5525.0 MHz) Band 47, E-UTRA/TDD (5550.0 - 5325.0 MHz) Band 48, E-UTRA/TDD (5550.0 - 3700.0 MHz) Validation band (0.0 - 6000.0 MHz)
Detailed Specification: Bandwidth:	Modulation Scheme: SC-FDMA Uplink-downlink configuration: 1 Special Subframe configuration: 4 Number of Frames: 1 Settings for UL Subframe 2,3,7,8: Number of PUSCHs: 1 Modulation Scheme: 16QAM Allocated RB: 1 Start Number of RB: 50 Data Type: PN9fix 20.0MHz
Integration Time:	6.0 ms


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"
 Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).

UID Specification Sheet


UID 10173-CAD page 1/2


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Time Domain

UID Specification Sheet

UID 10173-CAD page 2/2