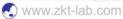


FCC TEST REPORT FCC ID:2AHI6NIAEBTN312

Report Number	: ZKT-2108043921E-1
Date of Test	. Aug. 06, 2021 to Aug. 16, 2021
Date of issue	: Aug. 16, 2021
Total number of pages	39
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	Shenzhen Ruijiahua Technology CO.,LTD
Address	4F, Ruide Building, No.20 Jiuwei first Road, Hangcheng Street, Bao'an District, Shenzhen, China
Manufacturer's name	: Shenzhen Ruijiahua Technology CO.,LTD
Address	4F, Ruide Building, No.20 Jiuwei first Road, Hangcheng Street, Bao'an District, Shenzhen, China
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure	: /
Non-standard test method	: N/A
Test Report Form No	TRF-EL-111_V0
Test Report Form(s) Originator	ZKT Testing
Master TRF	Dated: 2020-01-06
test (EUT) is in compliance with the F identified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may al only, and shall be noted in the revision of the document.
Product name	: Truly Wireless Noise Canceling Earbuds
Trademark	iLIVE
Model/Type reference	: IAEBTN312 IAEBTN312B, IAEBTN312W
Ratings	: Input: DC 5V or DC 3.7V Battery

Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


Table of Contents	Page
1.VERSION	5
2.SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 1POWER LINE CONDUCTED EMISSION LIMITS	12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	12 13
4.1.5 EUT OPERATING CONDITIONS	13
4.1.6 TEST RESULTS	14
4.2 RADIATED EMISSION MEASUREMENT	16
4.2.1 RADIATED EMISSION LIMITS	16
4.2.2 TEST PROCEDURE	17
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	17 17
4.2.5 EUT OPERATING CONDITIONS	17
	-
5.RADIATED BAND EMISSION MEASUREMENT 5.1 TEST REQUIREMENT:	23 23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	23
5.4 TEST SETUP	24
5.5 EUT OPERATING CONDITIONS	24
5.6 TEST RESULT	25
6.POWER SPECTRAL DENSITY TEST	26
6.1 APPLIED PROCEDURES / LIMIT	26
6.2 TEST PROCEDURE 6.3 DEVIATION FROM STANDARD	26 26
6.4 TEST SETUP	26 26
	-

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔇 www.zkt-lab.com

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	26 27
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	29 29 29 29 29 29 29 30
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	32 32 32 32 32 32 32 33
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS	34 34 34 34 34 34
10.ANTENNA REQUIREMENT	38
11. TEST SETUP PHOTO	39
12. EUT CONSTRUCTIONAL DETAILS	39

1.VERSION

Report No.	Version	Description	Approved
ZKT-2108043921E-1	Rev.01	Initial issue of report	Aug. 16, 2021

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 , providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Truly Wireless Noise Canceling Earbuds
Model No.:	IAEBTN312 IAEBTN312B, IAEBTN312W
Model Different .:	Only for different model name.
Serial No.:	N/A
Hardware Version:	H1.0
Software Version:	S1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Worst Case:	The internal structure of the left and right ears is completely consistent. The report only record the worst data, and the worst data is the left ear.
Antenna Type:	Chip Antenna
Antenna gain:	0dBi
Power supply:	Input: DC 5V or DC 3.7V Battery
SWITCHING POWER	N/A
ADAPTER:	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode			
Charging mode	Charging mode Keep the EUT in Charging mode.			
•	the test voltage was tuned from 85% to 115% of the nominal rated supply ne worst case was under the nominal rated supply condition. So the report just ata.			

Test Software	BT Test Tool
Power level setup	<0dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

AC Line

EUT

Radiated Emission

EUT

1

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Truly Wireless Noise Canceling Earbuds	iLIVE	IAEBTN312	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[]Length_. column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Project No.: ZKT-2108043921E-1 Page 11 of 39

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2020	Sep. 21, 2021
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2020	Sep. 21, 2021
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2020	Sep. 21, 2021
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2020	Sep. 21, 2021
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2020	Sep. 21, 2021
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2020	Sep. 21, 2021
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2020	Sep. 21, 2021
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 22, 2020	Sep. 21, 2021
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2020	Sep. 21, 2021
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2020	Sep. 21, 2021
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2020	Sep. 21, 2021
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2020	Sep. 21, 2021
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2020	Sep. 21, 2021
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2020	Sep. 21, 2021
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2020	Sep. 21, 2021
16	D.C. Power Supply	LongWei	TPR-6405D	/	/	٨
17	Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 22, 2020	Sep. 21, 2021
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 22, 2020	Sep. 21, 2021
3	Test Cable	N/A	C01	N/A	Sep. 22, 2020	Sep. 21, 2021
4	Test Cable	N/A	C02	N/A	Sep. 22, 2020	Sep. 21, 2021
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 22, 2020	Sep. 21, 2021
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 22, 2020	Sep. 21, 2021
7	Power Meter	Anritsu	ML2495A	N/A	Sep. 22, 2020	Sep. 21, 2021

4. EMC EMISSION TEST

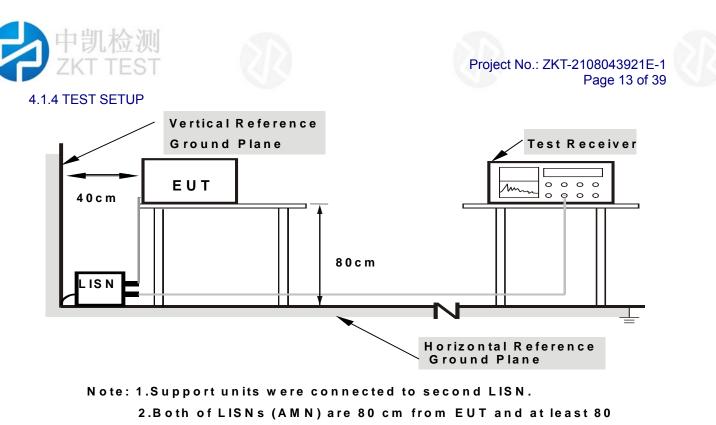
4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard		
	Quas -peak	Average	Stanuaru	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:


(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

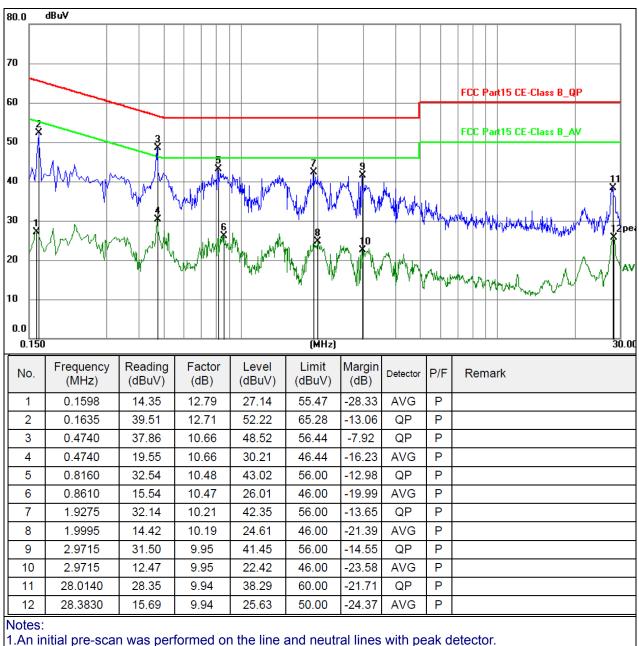
No deviation

from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.

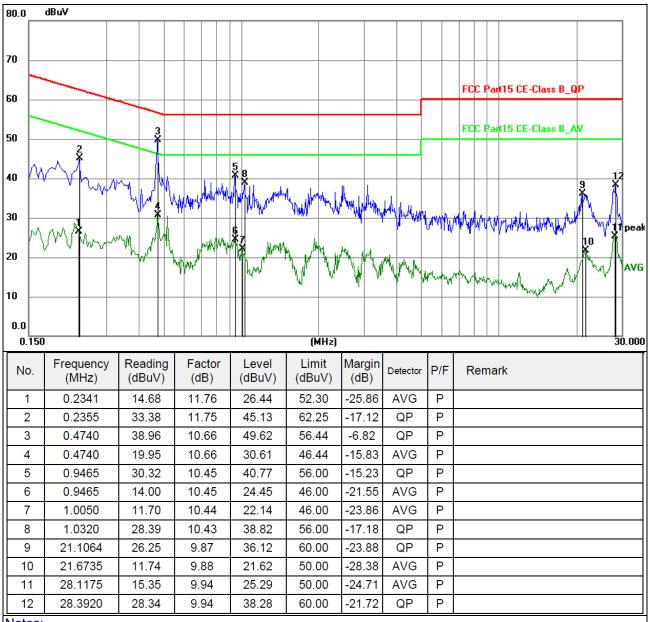
We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.



Temperature :
26°C
Relative Humidity:
54%

Pressure :
101kPa
Phase :
L

Test Voltage :
AC 120V/60Hz
Image: Compare the second seco


2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3.Mesurement Level = Reading level + Correct Factor

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
		Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

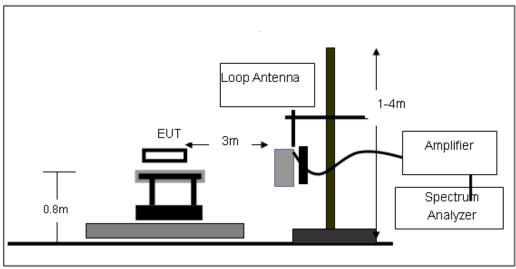
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

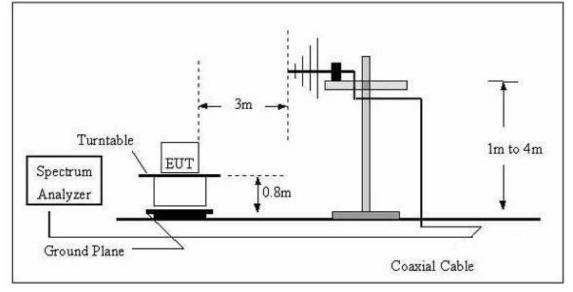
Note:

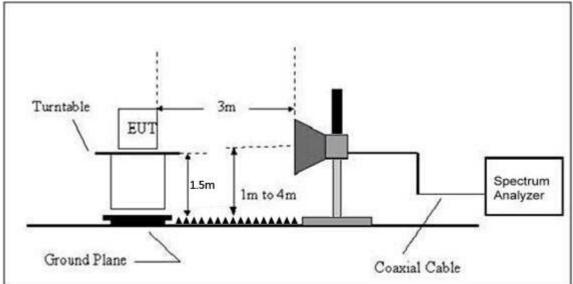

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

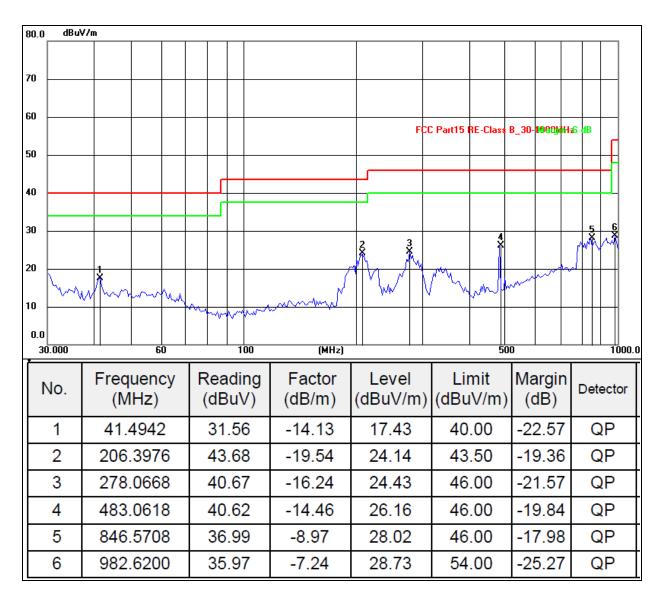
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

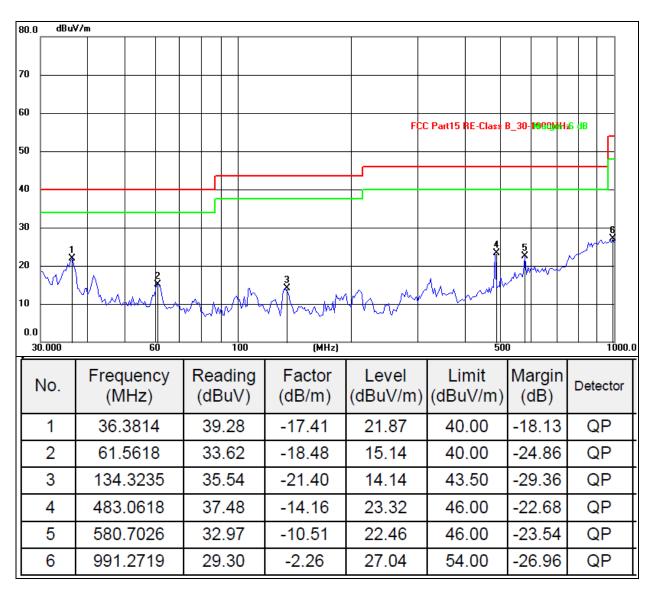
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Between 30MHz - 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3.7V		

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK mode

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	Low Channel:2402MHz								
V	4804.00	57.12	30.55	5.77	24.66	57.00	74.00	-17.00	Pk
V	4804.00	46.25	30.55	5.77	24.66	46.13	54.00	-7.87	AV
V	7206.00	52.24	30.33	6.32	24.55	52.78	74.00	-21.22	Pk
V	7206.00	41.23	30.33	6.32	24.55	41.77	54.00	-12.23	AV
V	9608.00	47.85	30.85	7.45	24.69	49.14	74.00	-24.86	Pk
V	9608.00	36.24	30.85	7.45	24.69	37.53	54.00	-16.47	AV
V	12010.00	43.15	31.02	8.99	25.57	46.69	74.00	-27.31	Pk
V	12010.00	31.24	31.02	8.99	25.57	34.78	54.00	-19.22	AV
Н	4804.00	56.85	30.55	5.77	24.66	56.73	74.00	-17.27	Pk
Н	4804.00	46.25	30.55	5.77	24.66	46.13	54.00	-7.87	AV
Н	7206.00	52.48	30.33	6.32	24.55	53.02	74.00	-20.98	Pk
Н	7206.00	41.21	30.33	6.32	24.55	41.75	54.00	-12.25	AV
Н	9608.00	46.54	30.85	7.45	24.69	47.83	74.00	-26.17	Pk
Н	9608.00	35.64	30.85	7.45	24.69	36.93	54.00	-17.07	AV
Н	12010.00	43.12	31.02	8.99	25.57	46.66	74.00	-27.34	Pk
Н	12010.00	31.25	31.02	8.99	25.57	34.79	54.00	-19.21	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			Ν	/liddle Ch	nannel:2440)MHz			
V	4880.00	56.85	30.55	5.77	24.66	56.73	74.00	-17.27	Pk
V	4880.00	44.16	30.55	5.77	24.66	44.04	54.00	-9.96	AV
V	7320.00	51.23	30.33	6.32	24.55	51.77	74.00	-22.23	Pk
V	7320.00	40.13	30.33	6.32	24.55	40.67	54.00	-13.33	AV
V	9760.00	46.26	30.85	7.45	24.69	47.55	74.00	-26.45	Pk
V	9760.00	34.25	30.85	7.45	24.69	35.54	54.00	-18.46	AV
V	12200.00	41.25	31.02	8.99	25.57	44.79	74.00	-29.21	Pk
V	12200.00	30.12	31.02	8.99	25.57	33.66	54.00	-20.34	AV
Н	4880.00	55.56	30.55	5.77	24.66	55.44	74.00	-18.56	Pk
Н	4880.00	44.56	30.55	5.77	24.66	44.44	54.00	-9.56	AV
Н	7320.00	51.25	30.33	6.32	24.55	51.79	74.00	-22.21	Pk
Н	7320.00	41.23	30.33	6.32	24.55	41.77	54.00	-12.23	AV
Н	9760.00	46.32	30.85	7.45	24.69	47.61	74.00	-26.39	Pk
Н	9760.00	35.43	30.85	7.45	24.69	36.72	54.00	-17.28	AV
Н	12200.00	41.23	31.02	8.99	25.57	44.77	74.00	-29.23	Pk
Н	12200.00	31.25	31.02	8.99	25.57	34.79	54.00	-19.21	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		I	High Cha	nnel:2480M	1Hz			
V	4960.00	55.25	30.55	5.77	24.66	55.13	74.00	-18.87	Pk
V	4960.00	45.24	30.55	5.77	24.66	45.12	54.00	-8.88	AV
V	7440.00	50.12	30.33	6.32	24.55	50.66	74.00	-23.34	Pk
V	7440.00	40.23	30.33	6.32	24.55	40.77	54.00	-13.23	AV
V	9920.00	41.21	30.85	7.45	24.69	42.50	74.00	-31.50	Pk
V	9920.00	35.26	30.85	7.45	24.69	36.55	54.00	-17.45	AV
V	12400.00	40.23	31.02	8.99	25.57	43.77	74.00	-30.23	Pk
V	12400.00	31.02	31.02	8.99	25.57	34.56	54.00	-19.44	AV
Н	4960.00	55.56	30.55	5.77	24.66	55.44	74.00	-18.56	Pk
Н	4960.00	45.12	30.55	5.77	24.66	45.00	54.00	-9.00	AV
Н	7440.00	50.23	30.33	6.32	24.55	50.77	74.00	-23.23	Pk
Н	7440.00	40.23	30.33	6.32	24.55	40.77	54.00	-13.23	AV
Н	9920.00	45.48	30.85	7.45	24.69	46.77	74.00	-27.23	Pk
Н	9920.00	35.89	30.85	7.45	24.69	37.18	54.00	-16.82	AV
Н	12400.00	40.56	31.02	8.99	25.57	44.10	74.00	-29.90	Pk
Н	12400.00	30.74	31.02	8.99	25.57	34.28	54.00	-19.72	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above	Peak	1MHz	3MHz	Peak	
	1GHz	Average	1MHz	3MHz	Average	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

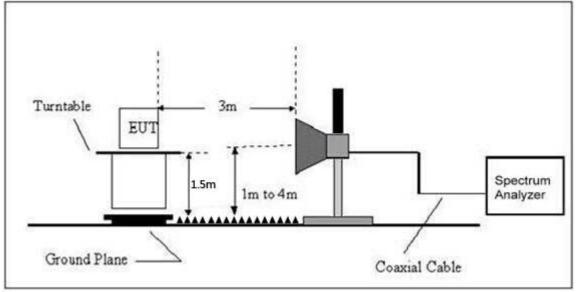
(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
				Low	Channe	I: 2402MHz	2			
	Н	2390.00	57.26	30.22	4.85	23.98	55.87	74.00	PK	PASS
	Н	2390.00	46.34	30.22	4.85	23.98	44.95	54.00	AV	PASS
	Н	2400.00	54.28	30.22	4.85	23.98	52.89	74.00	PK	PASS
	Н	2400.00	44.68	30.22	4.85	23.98	43.29	54.00	AV	PASS
	V	2390.00	51.67	30.22	4.85	23.98	50.28	74.00	PK	PASS
	V	2390.00	42.36	30.22	4.85	23.98	40.97	54.00	AV	PASS
	V	2400.00	49.87	30.22	4.85	23.98	48.48	74.00	PK	PASS
OFOK	V	2400.00	36.45	30.22	4.85	23.98	35.06	54.00	AV	PASS
GFSK	High Channel: 2480MHz									
	Н	2483.50	57.56	30.22	4.85	23.98	56.17	74.00	PK	PASS
	Н	2485.50	45.66	30.22	4.85	23.98	44.27	54.00	AV	PASS
	Н	2483.50	54.23	30.22	4.85	23.98	52.84	74.00	PK	PASS
	Н	2485.50	44.52	30.22	4.85	23.98	43.13	54.00	AV	PASS
	V	2483.50	52.14	30.22	4.85	23.98	50.75	74.00	PK	PASS
	V	2485.50	40.16	30.22	4.85	23.98	38.77	54.00	AV	PASS
	V	2483.50	48.97	30.22	4.85	23.98	47.58	74.00	PK	PASS
	V	2485.50	39.54	30.22	4.85	23.98	38.15	54.00	AV	PASS
Remark: 1. Emission	Level =	Meter Readi	ng + Antenr	na Factor +	Cable Lo	oss – Pre-a	mplifier, Marg	in= Emis	sion Leve	el - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

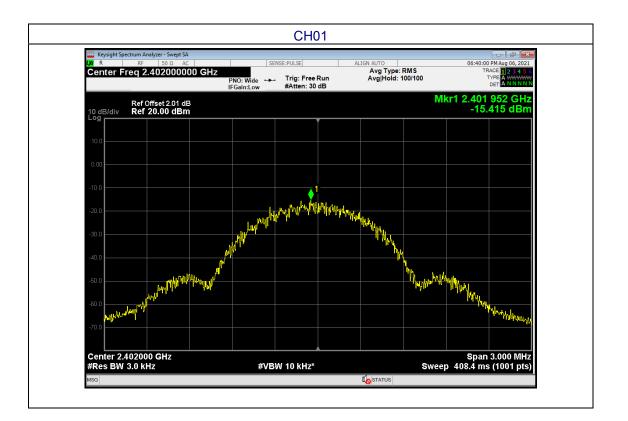
6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

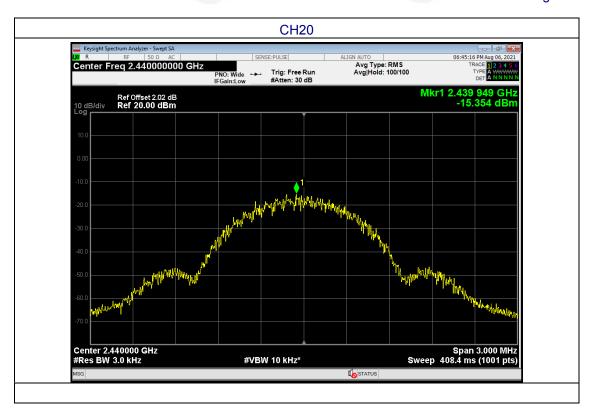
6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



6.6 TEST RESULT


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-15.415	8	PASS
2440 MHz	-15.354	8	PASS
2480 MHz	-15.175	8	PASS

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

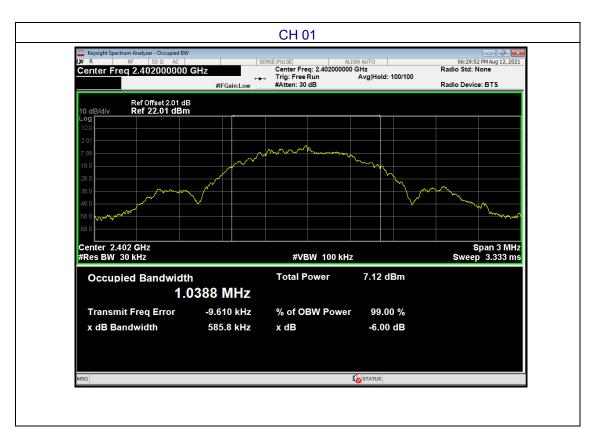
No deviation.

7.4 TEST SETUP

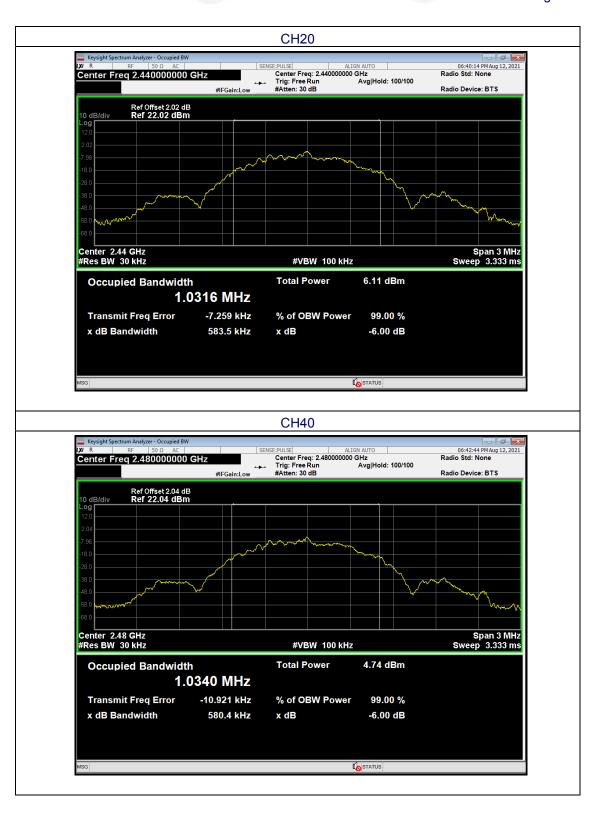
EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



7.6 TEST RESULT


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.586		
Middle	0.584	>500	Pass
Highest	0.580		

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.25		
Middle	-1.34	30.00	Pass
Highest	-1.42		

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

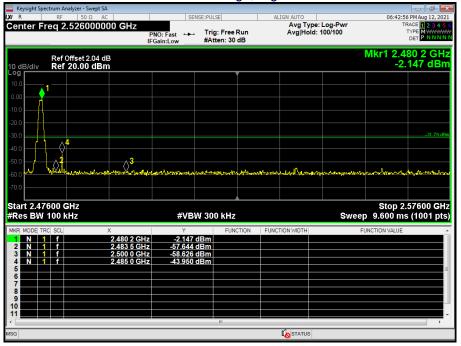
No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS



GFSK: Band Edge, Left Side

	opece		nalyzer - Swep										
R		RF		AC		SENSE:PU	LSE		ALIGN /		: Log-Pwr	06	:30:18 PM Aug 12, 2 TRACE 1 2 3 4
enter	Fre	eq 2.	.356000	0000 GHz	PNO: Fast IFGain:Low		ig: Free Ru .tten: 30 di			vg Hold:			
dB/div			Offset 2.01 20.00 di									Mkr1	2.402 2 GI 0.384 dB
9).0							ľ						
00													<u> </u>
											1		-29.72
).0						4						-	
).0 Lund a	in and a	WHENDER	Mann when	and a started and a started	Manager Charles	a show has been	the street of the state of the	and down as	.	dame. A re-	Machine	ن /لانتور با ب	المعواليون ليدريهم
				T					A d have a contra			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	206	00.0							y sylfiad too yaa				n 0 40600 C
art 2.3					;	≠VBW 30	00 kHz					Sto	
art 2.3 Res Bi	W 1	00 k		X		Y	FUNCT	ION	FUNCTION			Sto	p 2.40600 G) ms (1001 p
art 2. Res Bl	W 1	SCL		2.402 2 G	-lz 0	ү .384 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.3 Res Bl	W 1	00 k		2.402 2 GH 2.400 0 GH	-1z 0 -1z -49	Ƴ .384 dBm .383 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.3 Res Bl	W 1	OO k SCL f		2.402 2 G	-lz 0 -lz49 -lz60	ү .384 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.3 Res Bl N N N N N N N	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.3 Res Bl N N N N N N N	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
2.0 art 2.3 Res Bi R MODE 1 N 2 N 3 N 4 N 5 6 6 7	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
Image: Constraint of the second sec	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.: Res Bl R Mode 2 N 3 N 4 N 5 5 6 7 8 8 8 8 9 0	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.3 Res Bi	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION	FUNCTION			Sto eep 9.600	i ms (1001 p
art 2.: Res Bi R Mode 1 N 2 N 3 N 4 N 5 6 6 6 7 8 8 9 9	W 1	OO k SCL f		2.402 2 GH 2.400 0 GH 2.390 0 GH	-lz 0 -lz49 -lz60	Y <u>.384 dBm .383 dBm</u> .208 dBm	FUNCT	ION				Sto eep 9.600	i ms (1001 p

GFSK: Band Edge, Right Side

Lowest channel

I R		m Analyzer - Swep RF 50 Ω	pt SA AC		SENSE:PUL	orl	ALIGN AUTO		06-21-2	9 PM Aug 12, 20
			00000 GHz	PNO: Fast IFGain:Low	. Trig	g: Free Run iten: 30 dB	Avg T	ype: Log-Pwr old: 10/10		RACE 1 2 3 4 5 TYPE MWWW DET P NNN
0 dB/div		ef Offset 2.0 [°] ef 20.00 d							Mkr1 2 -1.	.412 GH .941 dBr
og 10.0		▲1								
0.00										
0.0 0.0										-29.17 dE
0.0					5			ILA demonstration	hall market and the second	
i0.0 	ا ^{رو} ور مرور م	when my man	Junewich	mmand	Maryanhan	an sala ang tang tang tang tang tang tang tang	and a second			
tart 0. Res B				#\	VBW 30	0 kHz		Sim	Stop	26.50 GH s (1001 pt
CCS D	44 I.O.	U KHZ						014	eep 2.000	o (1001 pc
			X	1		FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	. (100 H pt.
			2.412 GH	z -1.9	041 dBm		FUNCTION WIDTH			o (100 T pr
			2.412 GH 25.653 GH 4.980 GH	z -1.9 z -42.7 z -57.3	941 dBm 758 dBm 319 dBm		FUNCTION WIDTH			
KR MODE 1 N 2 N 3 N 4 N 5 N 6			2.412 GH 25.653 GH	z -1.9 z -42.7 z -57.3 z -56.1	941 dBm 758 dBm		FUNCTION WIDTH			
KR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8 9			2.412 GH 25.653 GH 4.980 GH 7.256 GH	z -1.9 z -42.7 z -57.3 z -56.1	941 dBm 758 dBm 319 dBm 122 dBm		FUNCTION WIDTH			
KR MODE 1 N 2 N 3 N 4 N 5 N			2.412 GH 25.653 GH 4.980 GH 7.256 GH	z -1.9 z -42.7 z -57.3 z -56.1	941 dBm 758 dBm 319 dBm 122 dBm		FUNCTION WIDTH			

Middle channel

		Analyzer - Swept SA												
R	RF	50 Ω AC			SENSE:	PULSE		AL	IGN AUTO	<u> </u>	_			9 PM Aug 12, 2
enter Fi	req ′	13.265000	000 GHz	PNO: Fast IFGain:Low		Trig: Free #Atten: 30			Avg Ty Avg Hol					RACE 1 2 3 4 TYPE MWWW DET PNNN
dB/div		Offset 2.02 df 20.00 dBn										М		.439 GI 868 dB
^g	Ke	20.00 001					Y						_	
0.0		1												
														-30.46
.0				,										
.0			<u> </u>	<u> </u>	5			مرابعه المع	مهميهاداريس	and the second	ومليعيد وسينوه	- Markaland	has to real fills	
.0	المصلوريهم	whent	who made we also	hermanne	and the second	^ي ايان مريوالير إمرارين	and and a second							
1.0														
art 0.03 les BW				#	VBW :	300 kHz					Sw	eep 2	Stop 2.530 s	26.50 G (1001 p
	C SCL		х		Y		CTION	FUNCT	TION WIDTH			FUNCTIO	N VALUE	
	f		2.439 GH 26.447 GH	z -1.	.868 dB .209 dB	m								
N 1	f		4.715 GH	z -56	.813 dB	m								
N 1	f		7.230 GH 9.665 GH		061 dB	m								
			9.000 Gr	-57	or o ub									
					_	m								•

Highest channel

UR.		RE	alyzer - Swept SA 50 Ω AC		SENSE:	PULSE		ALIGN AUTO		06:43:	
enter	Fre	eq 1	3.265000000 G	Hz PNO: Fa IFGain:L	ast 1	Trig: Free F #Atten: 30		Avg Ty Avg Hol	pe: Log-Pwr d: 10/10		TYPE NNN
0 dB/di			Dffset 2.04 dB 20.00 dBm								2.492 GH .601 dBi
			1								
0.0		Ĭ									
0.0											-31.71.d
0.0 0.0											
0.0	and the second s	hun	3	Marine marine	solution	المياسلين يعدوان	- Martine	a, the second second	میں اور اور میں اور میں میں اور میں اور میں اور میں اور میں اور میں اور میں میں اور میں میں اور میں میں اور می	التفسط اسيعول مستلهمان	
0.0											
tart 0.	.03 (#VBW 1	300 kHz			C u	Sto	26.50 GH
Res B	W 1	00 k	Hz						31	veep 2.530	s (1001 pt
			х		Y	FUNC	CTION	FUNCTION WIDTH	Sv	FUNCTION VALUE	s (1001 pt
			х	2 GHz 4 GHz		FUNC		FUNCTION WIDTH	51		s (1001 pt
			× 2.49 26.02 5.11	4 GHz	Y -1.601 dBr -42.443 dBr -55.460 dBr	FUNC m m m		FUNCTION WIDTH	50		s (1001 pt
KR MODE 1 N 2 N 3 N 4 N 5 N			× 2.49 26.02 5.11 7.57	4 GHz 2 GHz 4 GHz	Y -1.601 dBr -42.443 dBr	FUNC m m m m		FUNCTION WIDTH	54		s (1001 pt
Res B KR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8			× 2.49 26.02 5.11 7.57	4 GHz 2 GHz 4 GHz	Y -1.601 dBr -42.443 dBr -55.460 dBr -56.931 dBr	FUNC m m m m		FUNCTION WIDTH	34		s (1001 pt
KR MODE 1 N 2 N 3 N 4 N 5 N 6 7			× 2.49 26.02 5.11 7.57	4 GHz 2 GHz 4 GHz	Y -1.601 dBr -42.443 dBr -55.460 dBr -56.931 dBr	FUNC m m m m		FUNCTION WIDTH	34		s (1001 pt

10.ANTENNA REQUIREMENT

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is Chip antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details


11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******* END OF REPORT ******

