

FCC Test Report

Equipment	:	Mevo
Brand Name	:	Mevo
Model No.	:	A10101A
FCC ID	:	2AHGTA10101A
Standard	:	47 CFR FCC Part 15.247
Frequency	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DTS
Applicant	:	Livestream, Inc. 195 Morgan Ave, Brooklyn, NY 11237
Manufacturer	:	Chicony Electronics (Dong Guan) Co.,Ltd. San Zhong Guan Li Qu, Qingxi Town, Dongguan City Guangdong 523651 China

The product sample received on Feb. 18, 2016 and completely tested on May 03, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	6dB Bandwidth	15
3.3	RF Output Power	17
3.4	Power Spectral Density	
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Radiated Unwanted Emissions	
4	TEST EQUIPMENT AND CALIBRATION DATA	49

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.2475810MHz 47.38 (Margin 14.46dB) - QP 41.50 (Margin 10.34dB) - AV	FCC 15.207	Complied		
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M:6.84	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 22.06	Power [dBm]:30	Complied		
3.4	15.247(e)	Power Spectral Density	PSD [dBm/100kHz]: - 7.36	PSD [dBm/3kHz]:8	Complied		
3.5	15.247(d)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.82 MHz: 33.46 dB Restricted Bands [dBuV/m at 3m]: 2486.80 MHz 55.76 (Margin 18.24 dB) - PK 44.16 (Margin 9.84 dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		
3.6	15.247(d)	Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 959.26 MHz 42.94 (Margin 3.06 dB) - QP	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR621807AC	Rev. 01	Initial issue of report	Jun. 24, 2016

General Description 1

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊺x})	RF Output Power (dBm)	
2400-2483.5	b	2412-2462	1-11 [11]	1	18.11	
2400-2483.5	g	2412-2462	1-11 [11]	1	22.06	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	1	22.01	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power. Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Information

	Antenna Category					
\square	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	External antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					

	Antenna General Information					
No.	Ant. Cat.	Ant. Type	Connector Type	Gain _(dBi)		
1	Integral	PIFA	Fixed on board	0.79		

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pres	sentation of Equipment	Production ; D Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)Power Duty Factor [dB] – (10 log 1/x)					
⊠ 100.00% - IEEE 802.11b	0.00				
⊠ 96.66%- IEEE 802.11g	0.15				
⊠ 98.94%- IEEE 802.11n (HT20)	0.05				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Transformer	From System	External DC adapter

1.2 Accessories and Support Equipment

Accessories Information					
AC Adaptor	Brand Name	Mevo	Model Name	KSA29B0500200D5	
AC Adapter	Power Rating	I/P: 100-240V ~50/60Hz 0.5A MAX; O/P: 5.0V=== 2.0A			
USB Cable Signal Line 3 meter, D-shielded cable, with w/o ferrite core					

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment - RF Conducted						
No.	No. Equipment Brand Name Model Name FCC ID					
1	Notebook	DELL	E5540	DoC		
2	Adapter for Notebook	DELL	HA65NM130	DoC		

	Support I	Equipment - AC Conduct	tion and Radiated Emiss	ion
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E5540	DoC
2	Adapter for Notebook	DELL	LA65NS2-01	DoC

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v03r05
- FCC KDB 662911 D01 v02r01

1.4 Testing Location Information

				Testing	Location	
\bowtie	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
		TEL	:	886-3-327-3456 FA	X : 886-3-327-0973	
				Test Site Registrati	on Number: 553509	
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment
	AC Conduc	ction		CO04-HY	Ryan	24°C / 58%
	RF Condu	cted		TH01-HY	Howard	23°C / 63%
F	Radiated Err	nission		03CH09-HY	Thor	23℃ / 62%

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

N	leasurement Uncertainty	
Test Item		Uncertainty
C power-line conducted emissions		±2.3 dB
Emission bandwidth, 6dB bandwidth		±0.6 %
RF output power, conducted		±0.1 dB
Power density, conducted		±0.6 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.6 dB
	1 – 18 GHz	±0.5 dB
	18 – 40 GHz	±0.5 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±5 %
DC and low frequency voltages		±0.9%
Time		±1.4 %
Duty Cycle		±0.6 %

2 Test Configuration of EUT

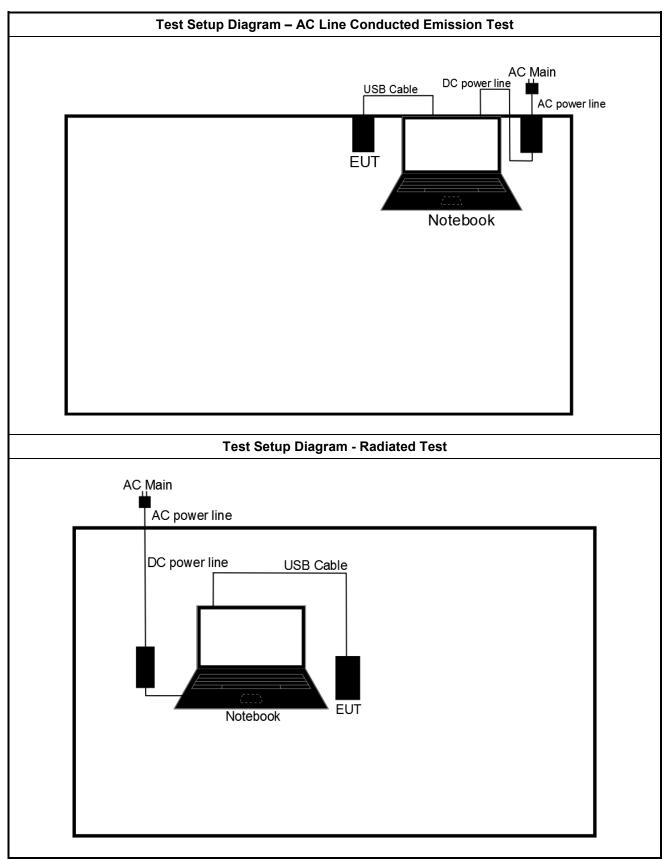
2.1 The Worst Case Modulation Configuration

	Worst Modulation Used f	or Conformance Testing	
Modulation Mode	Transmit Chains (N_{TX})	Data Rate / MCS	Worst Data Rate / MCS
11b,1-11Mbps	1	1-11 Mbps	1 Mbps
11g,6-54Mbps	1	6-54 Mbps	6 Mbps
HT20, M0-7	1	MCS 0-7	MCS 0
Worst modulation Note 2: Modulation modes 11b: IEEE 802.11b	modulation consists of HT2 mode of Guard Interval (GI) consist below configuration , 11g: IEEE 802.11g, HT20: pecifies that Maximum Peal	is 800ns. :: IEEE 802.11n	

2.2 The Worst Case Power Setting Parameter

The W	/orst C	ase Power Setting Para	meter (2400-2483.5MHz	band)
Test Software			Putty	
			Test Frequency (MHz)	
Modulation Mode	N _{TX}		NCB: 20MHz	
		2412	2437	2462
11b	1	Default	Default	Default
11g	1	Default	Default	Default
HT20	1	Default	Default	Default

2.3 The Worst Case Measurement Configuration


Tł	ne Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Adapter Mode
2	USB Mode(EUT with Notebook via USB Cable)
The operating mode 2 is t	he worst case and it was record in this test report.

Tł	The Worst Case Mode for Following Conformance Tests	
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth	
Test Condition	Conducted measurement at transmit chains	
Modulation Mode	11b, 11g, HT20	

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts	
Tests Item		Fransmitter Radiated Unwanted Emissions Fransmitter Radiated Bandedge Emissions		
Test Condition	Radiated measurement			
	EUT will be placed in	fixed position.		
User Position		mobile position and operati ree orthogonal planes.	ng multiple positions. EUT	
	EUT will be a hand-he operating multiple pos		pattery-powered devices and	
Operating Mode	Operating Mode Description	n		
	1. Adapter Mode			
Radiated Emissions (Below 1GHz)	2. USB Mode (EUT with Notebook via USB Cable)			
()	The operating mode 2 is the worst case and it was record in this test report.			
Modulation Mode	11b, 11g, HT20			
	X Plane	Y Plane	Z Plane	
Orthogonal Planes of EUT				
Worst Planes of EUT	V			

2.4 Test Setup Diagram

Transmitter Test Result 3

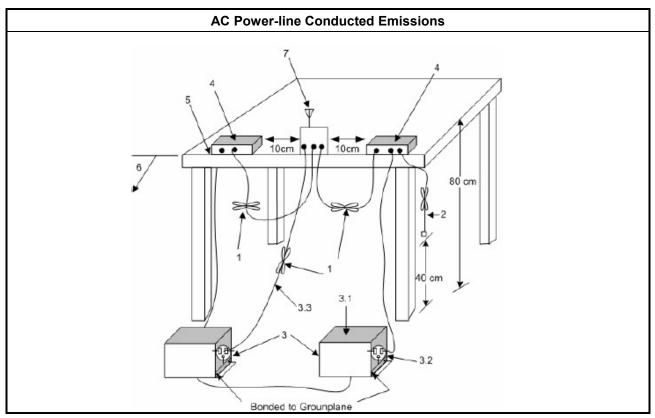
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Powe	er-line Conducted Emissions L	_imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm c	of the frequency	

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

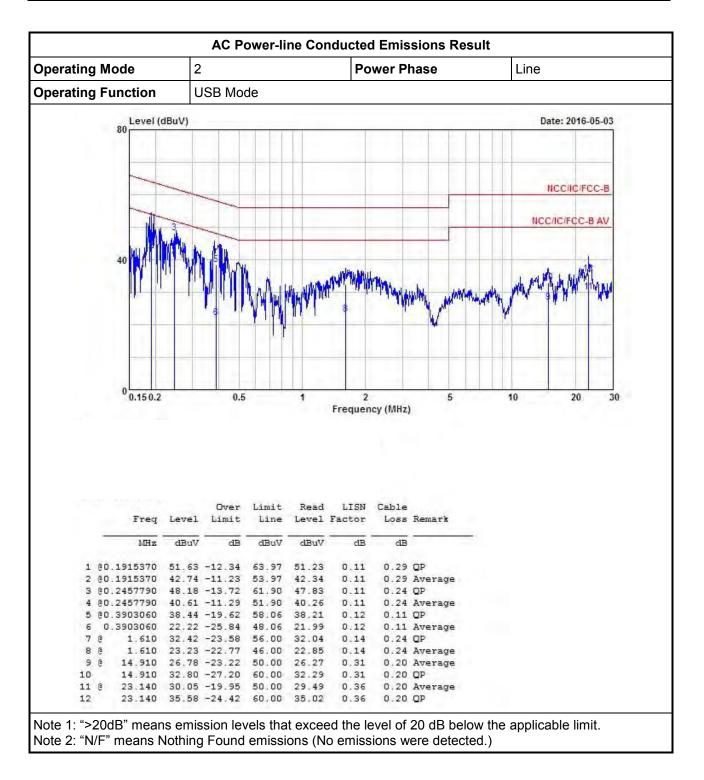

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



perating Mode	2	Power Phase	Neutral
perating Function	USB Mode		·
Level (dB	uV)		Date: 2016-05-03
			NCC/IC/FCC-B
			NCC/IC/FCC-B AV
40			
	M. M. A.	I have also be the the section of th	tu alle
	W UN THE WAY	AND WEATHING TO AN AND THE ARMINING THE ARMI	Mun why will u
	L THE CONTRACTOR AND A DESCRIPTION OF A DES		
			A A A A A A A A A A A A A A A A A A A
the second s		a second a second se	and the later of the second
0 0.15 0.2	0.5	1 2 5 Frequency (MHz)	10 20 3
0.150.2	0.5 Over Limit	Frequency (MHz)	10 20 3
		Frequency (MHz) Read LISN Cable	10 20 3
	Over Limit	Frequency (MHz) Read LISN Cable Level Factor Loss Remark	10 20 3
Freq L	Over Limit evel Limit Line dBuV dB dBuV	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB	10 20 3
Freq 1 MHz 1 80.1813950 4 2 80.1813950 4	Over Limit Level Limit Line dBuV dB dBuV 19.88 -14.54 64.42 10.42 -14.00 54.42	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average	10 20 3
Freq L MHz 1 80.1813950 4 2 80.1813950 4 3 80.2475810 4	Over Limit evel Limit Line dBuV dB dBuV 19.88 -14.54 64.42 10.42 -14.00 54.42 7.38 -14.46 61.84	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP	10 20 3
Freq L MHz 1 §0.1813950 4 2 §0.1813950 4 3 §0.2475810 4 4 §0.2475810 4	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 17.38 -14.46 61.84 11.50 -10.34 51.84	Frequency (MHz)ReadLISNCableLevelFactorLossdBuVdBdB49.500.110.2740.040.110.2747.030.110.2441.150.110.24	10 20 3
Freq L MHz 1 80.1813950 4 2 80.1813950 4 3 80.2475810 4 4 80.2475810 4 5 80.4188480 4	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 17.38 -14.46 61.84 11.50 -10.34 51.84	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 40.92 0.12 0.10 QP	10 20 3
Freq L MHz 1 00.1813950 4 2 00.1813950 4 3 00.2475810 4 4 00.2475810 4 5 00.4188480 4 6 0.4188480 3 7 0 1.740 3	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 1.50 -10.34 51.84 1.14 -16.33 57.47 0.02 -17.45 47.47 5.74 -20.26 56.00	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 40.92 0.12 0.10 QP 29.80 0.12 0.10 Average 35.33 0.15 0.26 QP	10 20 3
Freq 1 MHz 1 @0.1813950 4 2 @0.1813950 4 3 @0.2475810 4 4 @0.2475810 4 5 @0.4188480 4 6 @0.4188480 3 7 @ 1.740 3 8 @ 1.740 2	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 1.50 -10.34 51.84 1.14 -16.33 57.47 10.02 -17.45 47.47 5.74 -20.26 56.00 38.05 -17.95 46.00	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 40.92 0.12 0.10 QP 29.80 0.12 0.10 Average 35.33 0.15 0.26 QP 27.64 0.15 0.26 Average	10 20 3
Freq L MHz 1 80.1813950 4 2 80.1813950 4 3 80.2475810 4 4 80.2475810 4 5 80.4188480 3 7 8 1.740 3 8 8 1.740 3 9 3.620 3	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 7.38 -14.46 61.84 1.10 -10.34 51.84 1.14 -16.33 57.47 0.02 -17.45 47.47 5.74 -20.26 56.00 88.05 -17.95 46.00	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 40.92 0.12 0.10 QP 29.80 0.12 0.10 QP 27.64 0.15 0.26 QP 27.64 0.15 0.26 Average 30.15 0.13 QP	10 20 3
Freq 1 MHz 1 80.1813950 4 2 80.1813950 4 3 80.2475810 4 4 80.2475810 4 5 80.4188480 4 6 80.4188480 4 6 80.4188480 3 7 8 1.740 3 8 8 1.740 3 8 8 1.740 3 8 8 1.740 3 8 8 1.740 3	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 7.38 -14.46 61.84 1.50 -10.34 51.84 1.14 -16.33 57.47 0.02 -17.45 47.47 5.74 -20.26 56.00 8.05 -17.95 46.00 0.46 -25.54 56.00 4.83 -21.17 46.00	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 40.92 0.12 0.10 QP 29.80 0.12 0.10 Average 35.33 0.15 0.26 QP 27.64 0.15 0.26 QP 24.52 0.18 0.13 Average	10 20 3
Freq L MHz 1 §0.1813950 4 2 §0.1813950 4 3 §0.2475810 4 4 <u>80.2475810 4</u> 5 §0.4188480 3 7 § 1.740 3 8 § 1.740 3 8 § 1.740 3 10 § 3.620 3	Over Limit evel Limit Line dBuV dB dBuV 9.88 -14.54 64.42 0.42 -14.00 54.42 7.38 -14.46 61.84 1.10 -10.34 51.84 1.14 -16.33 57.47 0.02 -17.45 47.47 5.74 -20.26 56.00 88.05 -17.95 46.00	Frequency (MHz) Read LISN Cable Level Factor Loss Remark dBuV dB dB 49.50 0.11 0.27 QP 40.04 0.11 0.27 Average 47.03 0.11 0.24 QP 41.15 0.11 0.24 Average 30.33 0.15 0.26 QP 27.64 0.15 0.26 Average 30.15 0.18 0.13 QP 24.52 0.18 0.13 Average 30.34 0.40 0.20 QP	10 20 3

3.1.5 Test Result of AC Power-line Conducted Emissions

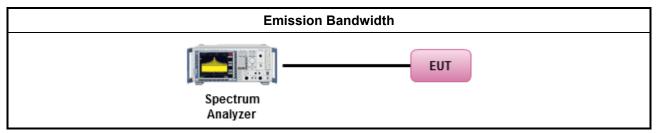
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

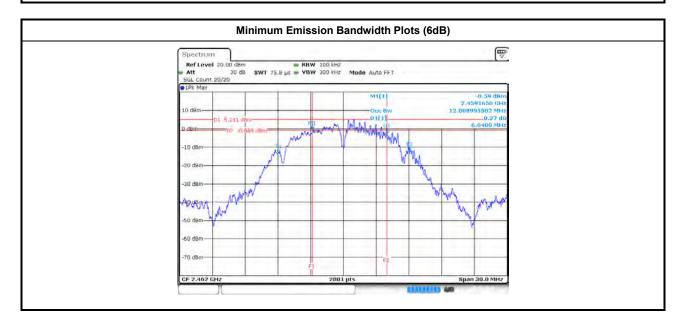
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:
	\boxtimes	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain 1.
		The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
		The EUT supports multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Condition			Emission Bar	ndwidth (MHz)
		Freq.	99% Bandwidth	6dB Bandwidth
Iodulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 1
11b	1	2412	12.09	7.65
11b	1	2437	12.06	7.95
11b	1	2462	12.00	6.84
11g	1	2412	16.38	16.33
11g	1	2437	16.35	16.32
11g	1	2462	16.29	14.79
HT20	1	2412	17.52	17.61
HT20	1	2437	17.48	17.47
HT20	1	2462	17.51	17.58
Lim	t		N/A	≥500 kHz
Result			Com	plied

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit						
Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit							
\square	240	0-2483.5 MHz Band:						
	\square	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$						
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm						
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Smart antenna system (SAS):						
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$						
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm						
e.i.r	.р. Р	ower Limit:						
\square	240	0-2483.5 MHz Band						
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)						
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$						
		Smart antenna system (SAS)						
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$						
		Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$						
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$						
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.						

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Maximum Peak Conducted Outpu	t Power
	Refer as FCC KDB 558074, o	clause 9.1.1 (RBW ≥ EBW method).
	Refer as FCC KDB 558074, o	clause 9.1.2 (peak power meter for VBW \geq DTS BW).
\square	Maximum Conducted Output Powe	er
	[duty cycle ≥ 98% or external vide	o / power trigger]
	Refer as FCC KDB 558074, o	clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
	Refer as FCC KDB 558074, o	clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle < 98% and average over	er on/off periods with duty factor
	Refer as FCC KDB 558074, o	clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Refer as FCC KDB 558074, o	clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over	r on/off periods with duty factor or gated trigger
	Refer as FCC KDB 558074, o	clause 9.2.3 Method AVGPM (using an RF average power meter).
\square	For conducted measurement.	
	The EUT supports single trar	nsmit chain and measurements performed on this transmit chain 1.
	The EUT supports diversity tr	ransmitting and the results on transmit chain port 2 is the worst case.
	Refer as FCC KDB 6629	ansmit chains using options given below: 11, In-band power measurements. Using the measure-and-sum smit ports individually. Sum the power (in linear power units e.g., mW) I sample and save them.
	$P_{\text{total}} = P_1 + P_2 + \dots + P_n$	RP calculation could be following as methods:] and transfer to log unit [dBm])

3.3.4 Test Setup

	Maximum Peak Conducted Output Power Result										
Condit	Condition				RF Output Power (dBm)						
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit			
11b	1	2412	17.52	17.52	30.00	0.79	18.31	36.00			
11b	1	2437	17.80	17.80	30.00	0.79	18.59	36.00			
11b	1	2462	18.11	18.11	30.00	0.79	18.90	36.00			
11g	1	2412	21.96	21.96	30.00	0.79	22.75	36.00			
11g	1	2437	21.89	21.89	30.00	0.79	22.68	36.00			
11g	1	2462	22.06	22.06	30.00	0.79	22.85	36.00			
HT20	1	2412	21.70	21.70	30.00	0.79	22.49	36.00			
HT20	1	2437	21.97	21.97	30.00	0.79	22.76	36.00			
HT20	1	2462	22.01	22.01	30.00	0.79	22.80	36.00			
Resu	ilt	•			Com	plied					

3.3.5 Test Result of Maximum Peak Conducted Output Power

3.3.6 Test Result of Maximum Average Conducted Output Power

	Maximum Conducted Output Power Result								
Condi	tion		RF Output Power (dBm)						
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11b	1	2412	14.31	14.31	30.00	0.79	15.10	36.00	
11b	1	2437	14.51	14.51	30.00	0.79	15.30	36.00	
11b	1	2462	14.91	14.91	30.00	0.79	15.70	36.00	
11g	1	2412	11.18	11.18	30.00	0.79	11.97	36.00	
11g	1	2437	11.21	11.21	30.00	0.79	12.00	36.00	
11g	1	2462	11.51	11.51	30.00	0.79	12.30	36.00	
HT20	1	2412	11.03	11.03	30.00	0.79	11.82	36.00	
HT20	1	2437	11.24	11.24	30.00	0.79	12.03	36.00	
HT20	1	2462	11.46	11.46	30.00	0.79	12.25	36.00	
Resi	ılt				Com	olied			

Power Spectral Density 3.4

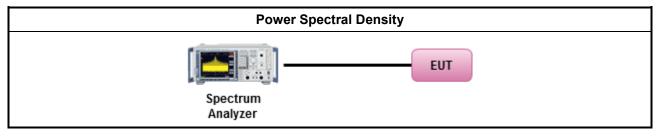
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

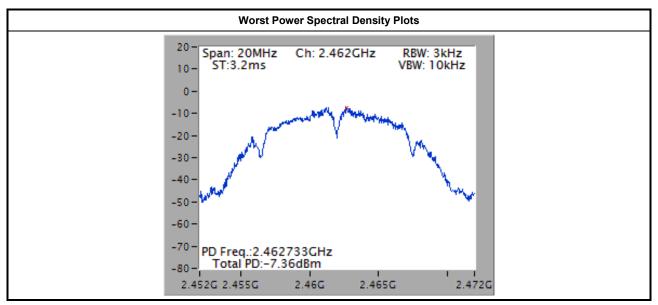
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 **Test Procedures**

Г

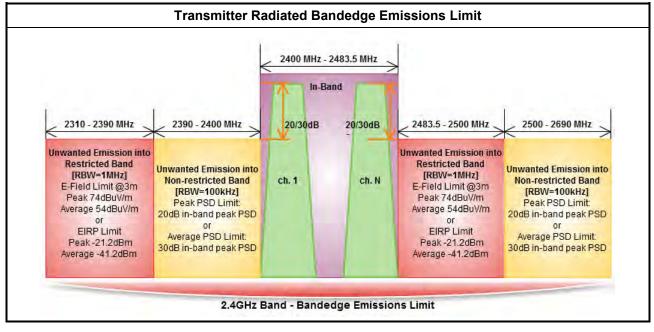
		Test Method
\boxtimes	outp the o cond of th	k power spectral density procedures that the same method as used to determine the conducted out power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one he average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak).
	[dut	y cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain 1.
		The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
		The EUT supports multiple transmit chains using options given below:
		□ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

	Power Spectral Density Result						
Condi	tion		Power Spe	ctral Density			
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)			
11b	1	2412	-7.89	8.00			
11b	1	2437	-7.64	8.00			
11b	1	2462	-7.36	8.00			
11g	1	2412	-12.99	8.00			
11g	1	2437	-13.47	8.00			
11g	1	2462	-12.21	8.00			
HT20	1	2412	-13.42	8.00			
HT20	1	2437	-12.53	8.00			
HT20	1	2462	-12.43	8.00			
Resu	ılt		Con	plied			



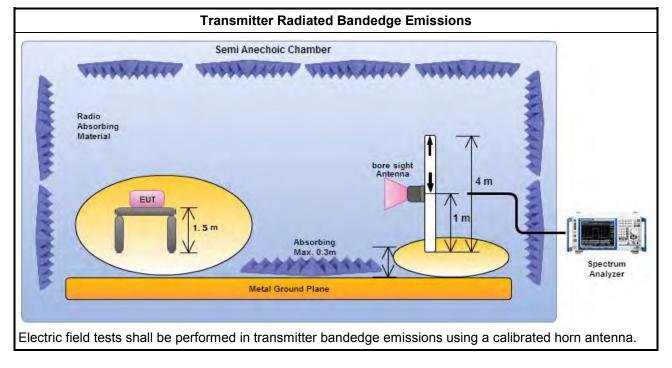
Note: 15.2dBm has been offset for 3kHz data.

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

		Test Method						
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].						
\square	Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
\square	For the transmitter unwanted emissions shall be measured using following options below:							
	\square	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.						
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.						
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)						
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).						
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).						
		□ Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.						
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.						
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.						
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:						
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).						
		Refer as ANSI C63.10, clause 6.10 for band-edge testing.						
	\square	Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.						
\boxtimes		radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.						

3.5.4 Test Setup

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	87.80	2396.91	50.04	37.76	20	Н
11b	1	2462	85.75	2501.80	46.16	39.59	20	Н
11g	1	2412	82.25	2400.00	48.42	33.83	20	Н
11g	1	2462	79.47	2550.40	45.43	34.04	20	Н
HT20	1	2412	82.07	2399.82	48.61	33.46	20	Н
HT20	1	2462	79.70	2523.40	45.83	33.87	20	Н

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2313.81	54.78	74	2386.16	43.87	54	Н
11b	1	2462	3	2498.40	55.76	74	2486.80	44.16	54	Н
11g	1	2412	3	2318.29	55.04	74	2389.97	43.61	54	Н
11g	1	2462	3	2489.40	54.86	74	2484.20	43.93	54	Н
HT20	1	2412	3	2342.48	54.71	74	2389.52	43.19	54	Н
HT20	1	2462	3	2494.20	54.67	74	2496.20	43.89	54	Н

3.6 Radiated Unwanted Emissions

3.6.1 Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

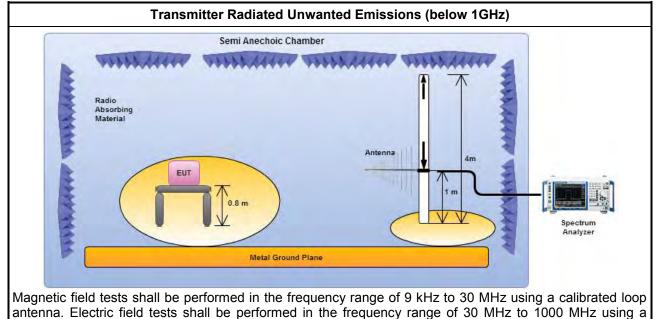
Un-restricted Band Emissions Limit					
RF output power procedure	Limit (dB)				
Peak output power procedure	20				
Average output power procedure	30				
Note 1: If the peak output power procedure is used to measure the fundamental emission power to					

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

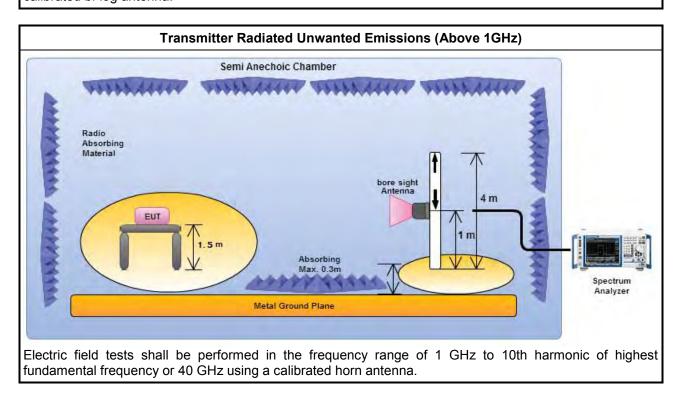
Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

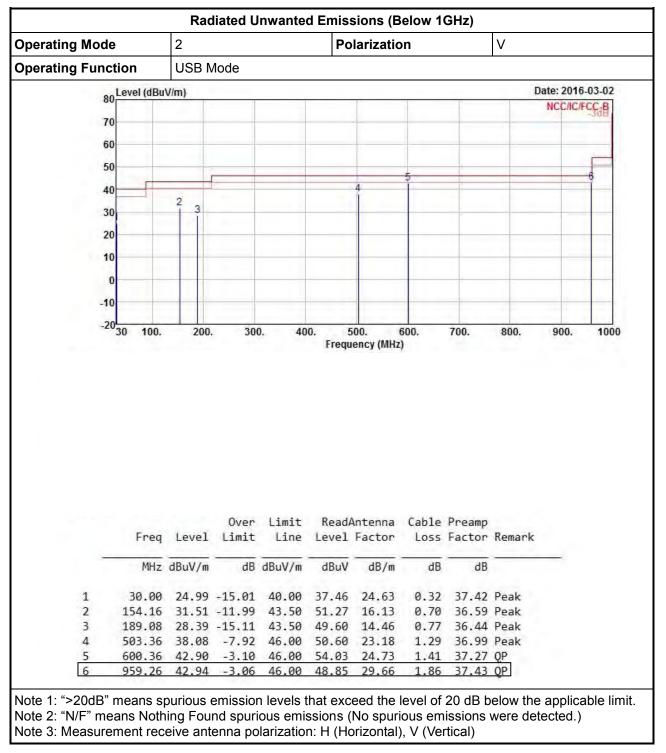
Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

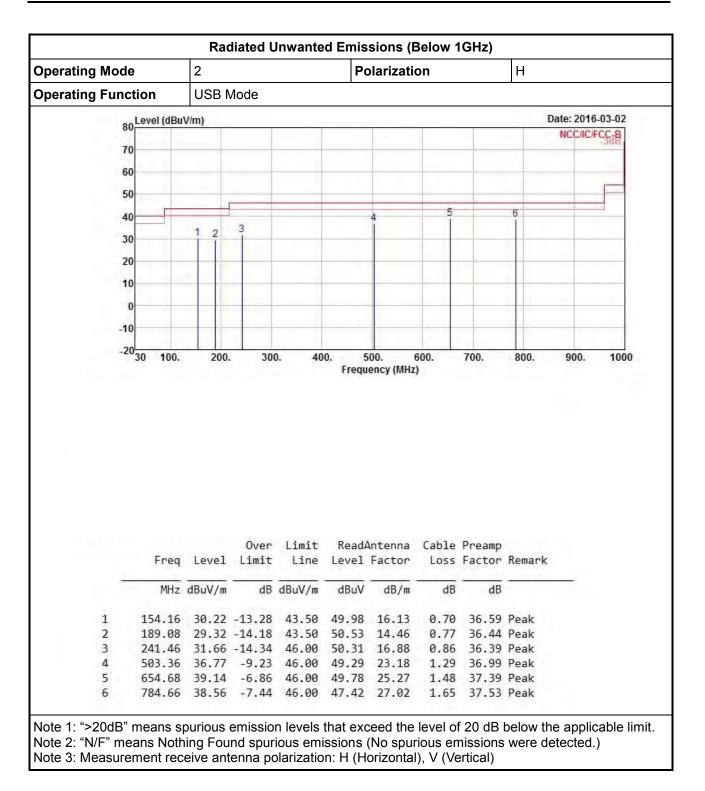

		Test Method					
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).						
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].					
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:					
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.					
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.					
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)					
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).					
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).					
		□ Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.					
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.					
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.					
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.					
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.					
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.					
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.					
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.					
\square	The	any unwanted emissions level shall not exceed the fundamental emission level.					
		implitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.					

3.6.4 Test Setup

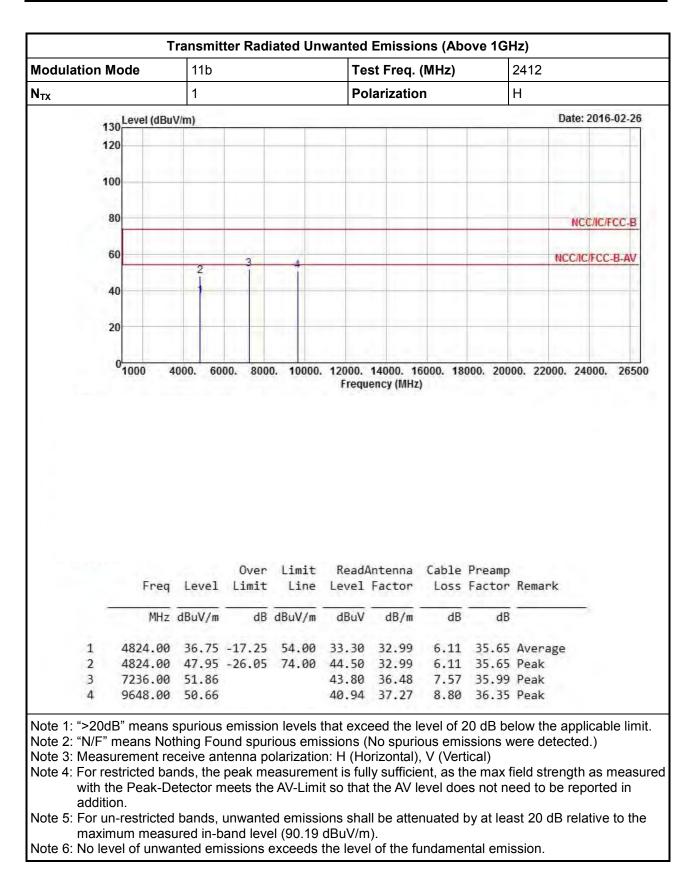

calibrated bi-log antenna.

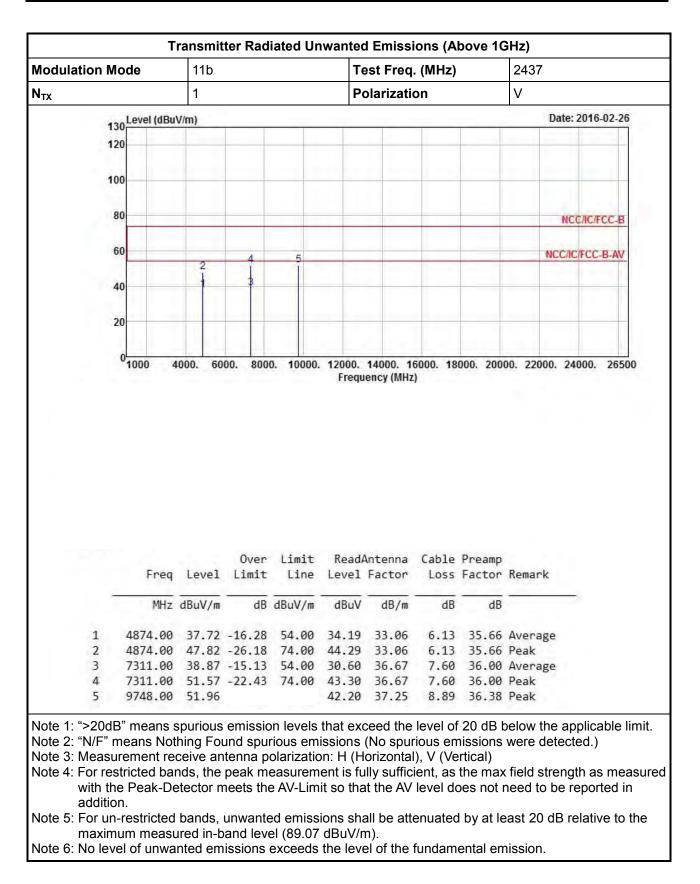
3.6.5 Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

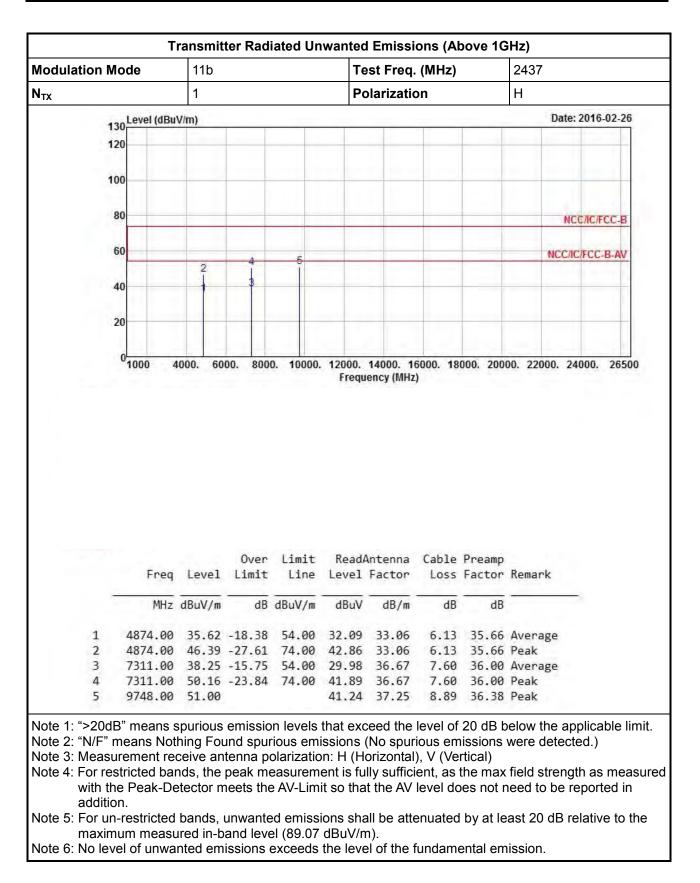


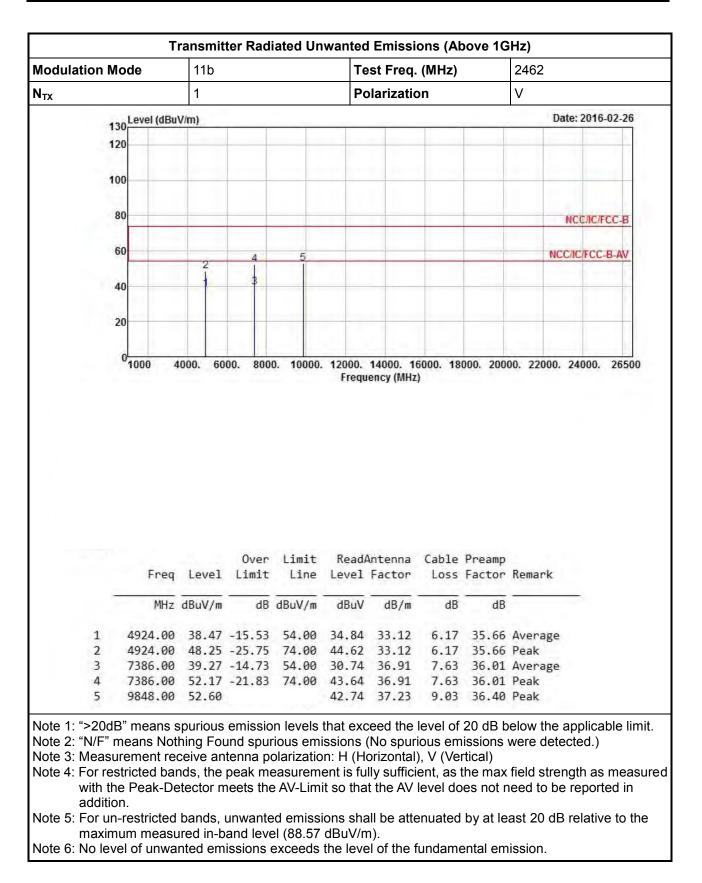
3.6.6 Radiated Unwanted Emissions (Below 1GHz)

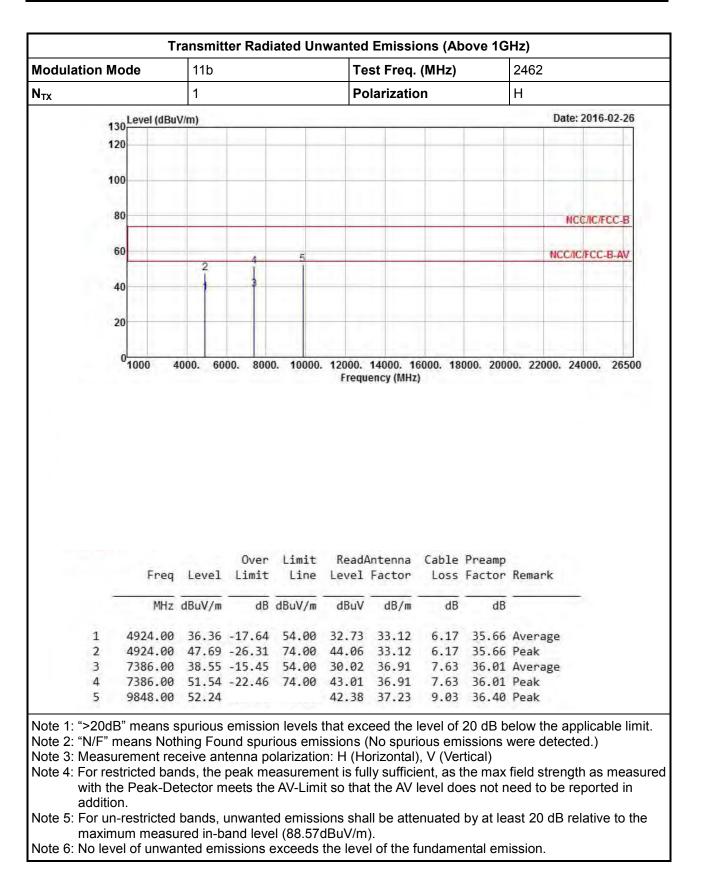


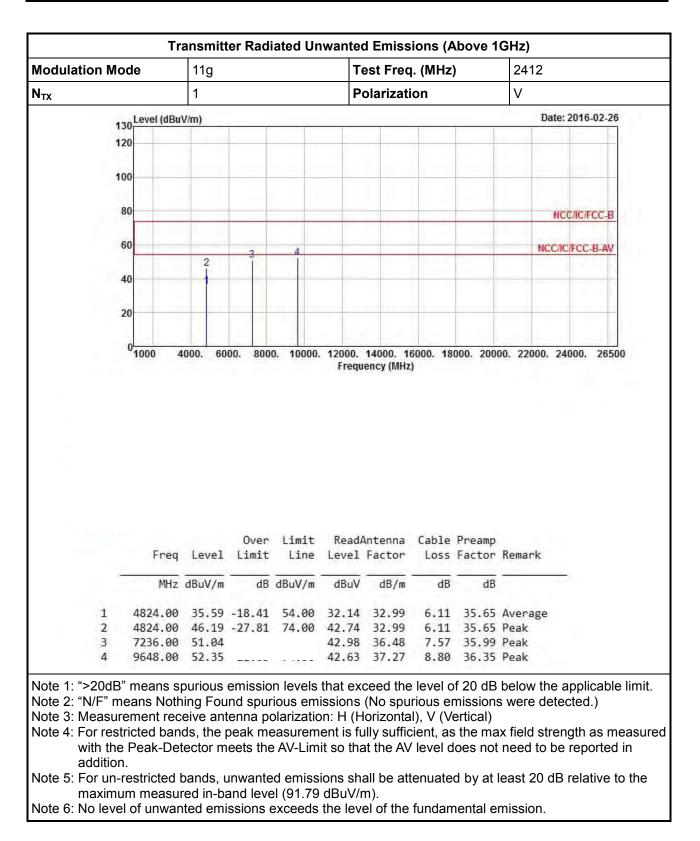

Modulation		11b			Tee	st Freq.	(MH7)		2412			
N _{TX}	inoue	1				arizatio			V			
						Foldilization						
	130 Level (dBu		//m)						Date: 2016-02-26			
	120											
	100											
	80									NCC/	IC/FCC-B	
	60											
	00	2	3	4					N	CC/IC/F	CC-B-AV	
	40	1										
	323											
	20											
	0	1000. 60	00. 800	0. 10000.		14000. 1) ency (MHz		000. 200	00. 22000). 2400	00. 2650	
	01000 4		Over	Limit	Frequ	ency (MHz ntenna) Cable	Preamp). 2400	00. 2650	
	01000 4	Level	Over	Limit	Frequ	ency (MHz ntenna) Cable	Preamp). 2400	00. 2650	
	0 1000 4		Over Limit	Limit	Frequ ReadA Level	ntenna Factor) Cable	Preamp). 2400	00. 2650	
1	0 1000 4 Freq MHz	Level dBuV/m	Over Limit 	Limit Line dBuV/m	ReadA Level dBuV	ntenna Factor dB/m) Cable Loss 	Preamp Factor dB	Remark		00. 2650	
1 2	0 1000 4	Level dBuV/m 39.25	Over Limit dB -14.75	Limit Line dBuV/m 54.00	ReadA Level dBuV 35.80	ntenna Factor dB/m 32.99	Cable Loss dB 6.11	Preamp Factor dB	Remark 		00. 2650	
	0 1000 4 Freq MHz 4824.00	Level dBuV/m 39.25 48.55 51.16	Over Limit dB -14.75 -25.45	Limit Line dBuV/m 54.00	Frequ ReadA Level dBuV 35.80 45.10 43.10	ntenna Factor dB/m 32.99	Cable Loss dB 6.11 6.11 7.57	Preamp Factor dB 35.65	Remark Average Peak Peak		00. 2650	

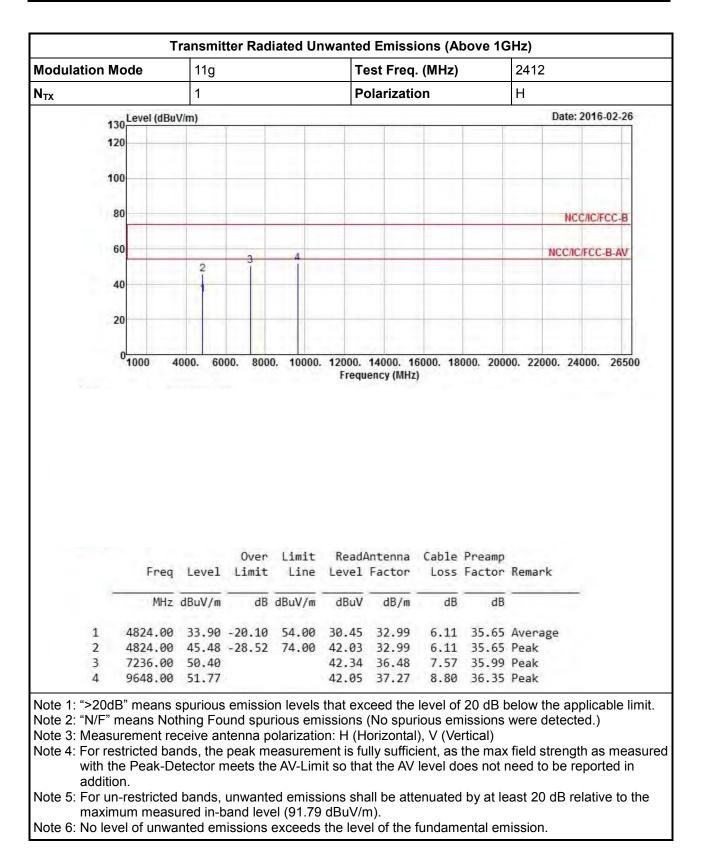
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

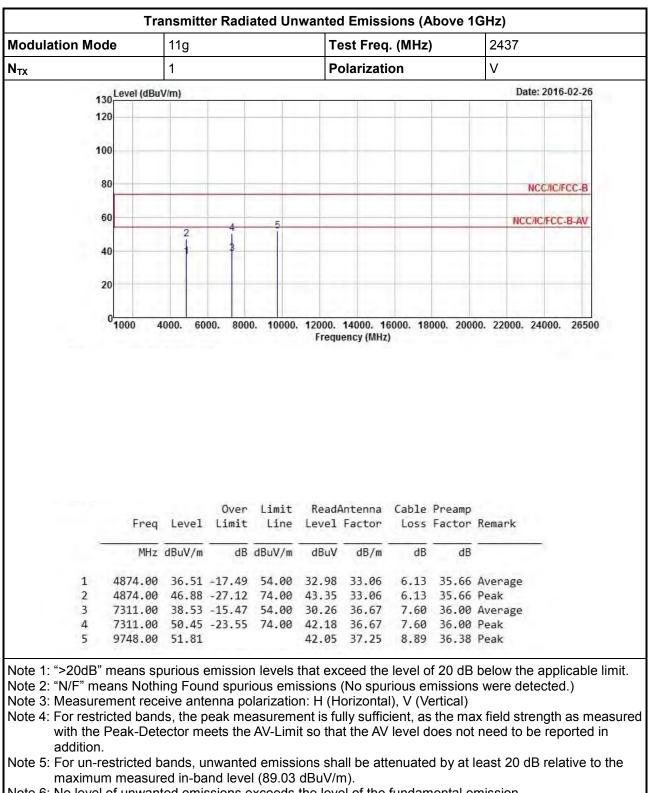


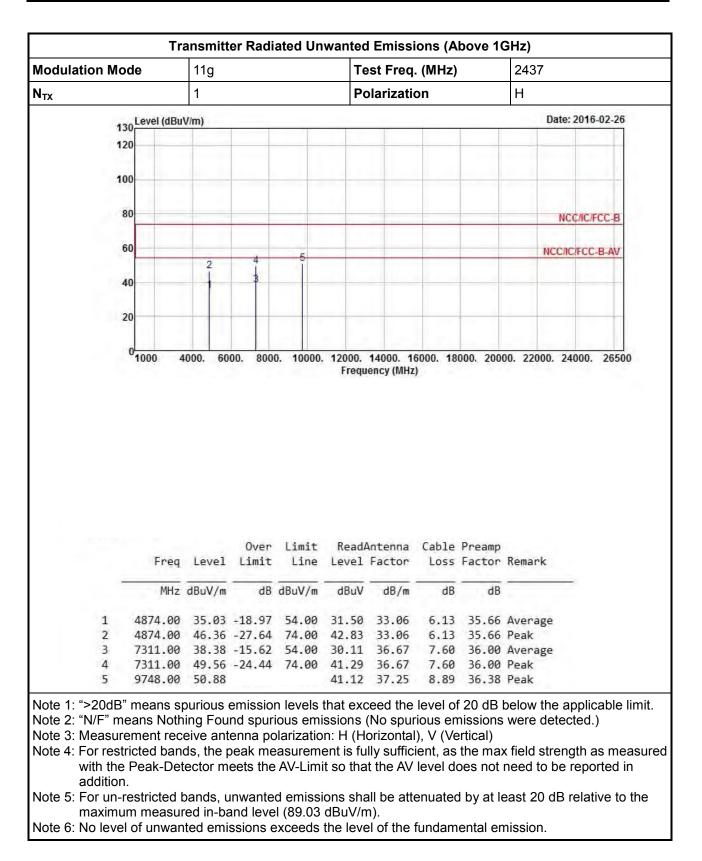


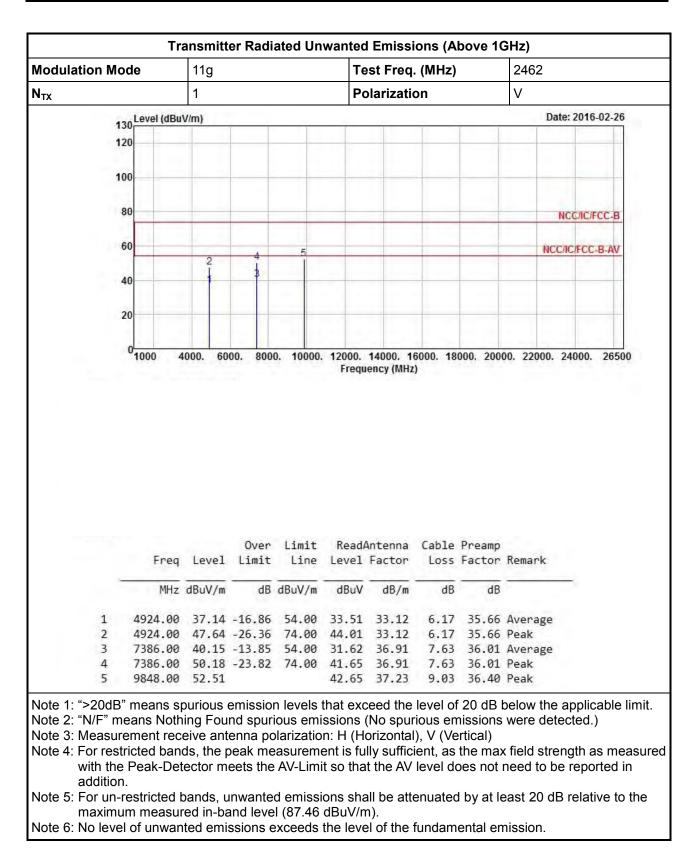


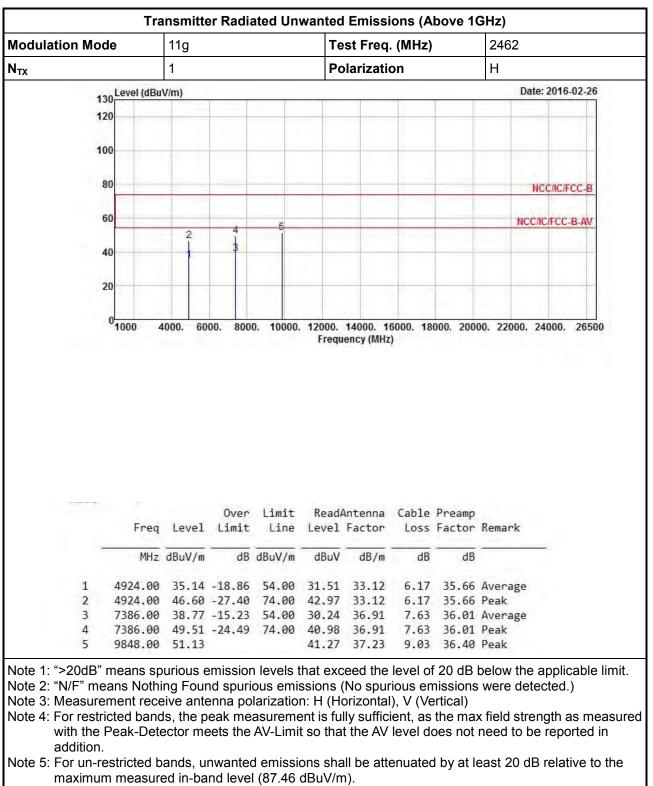


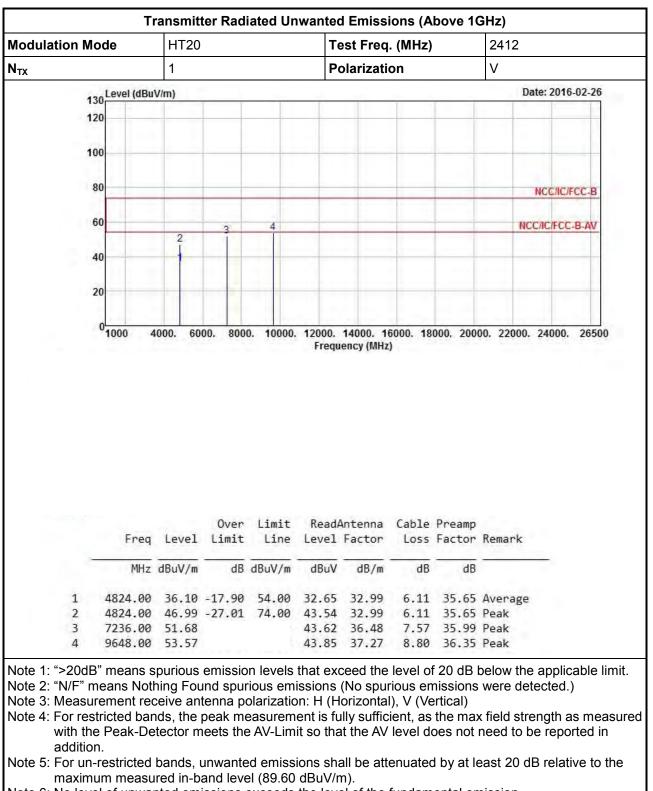


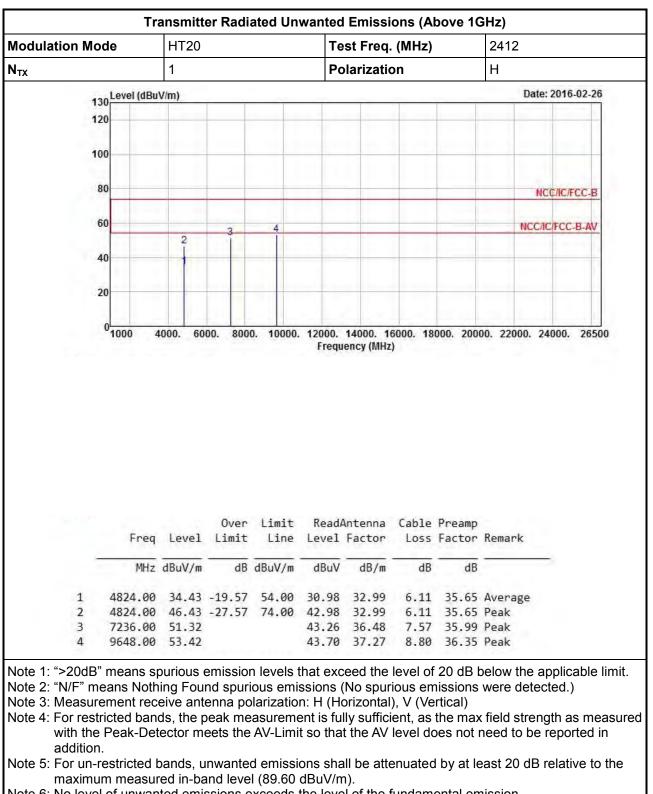




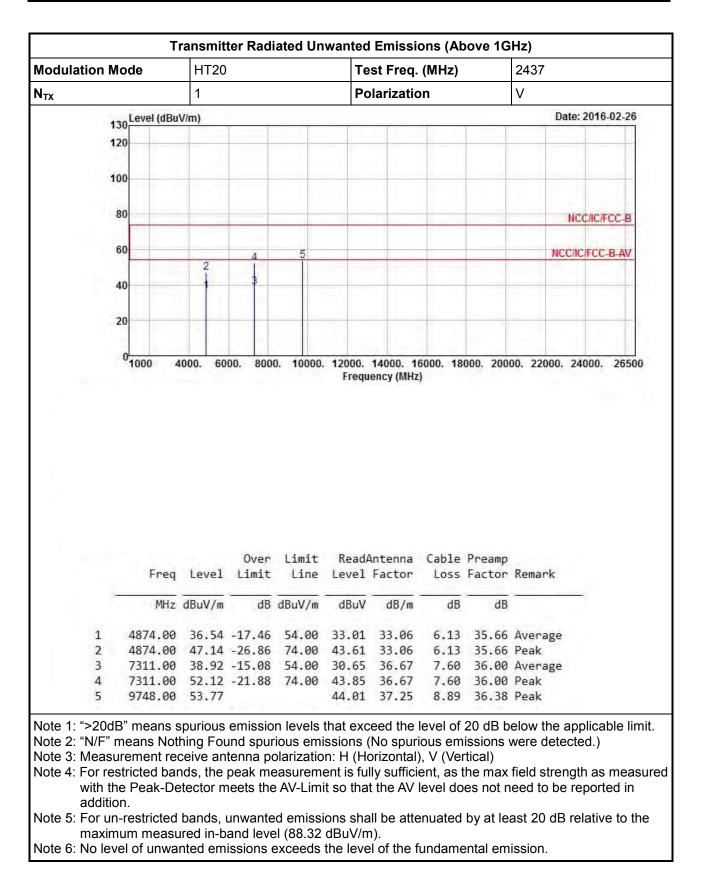


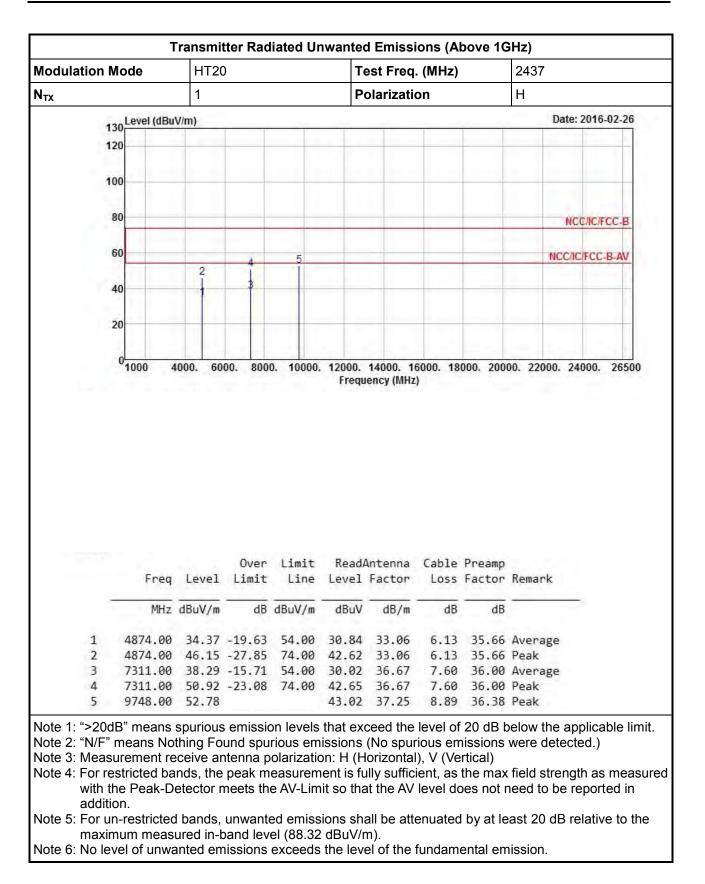


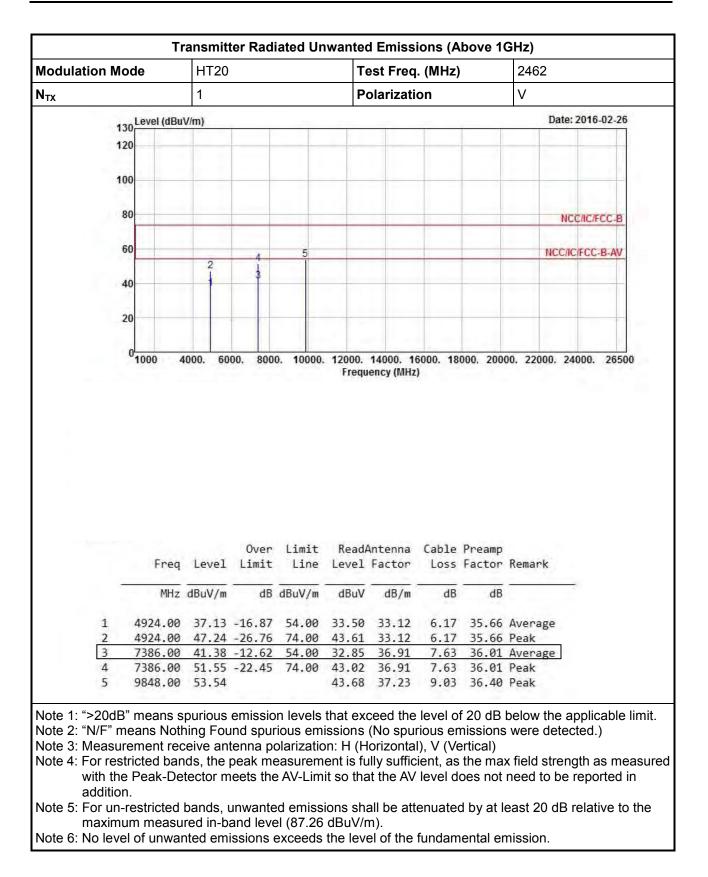


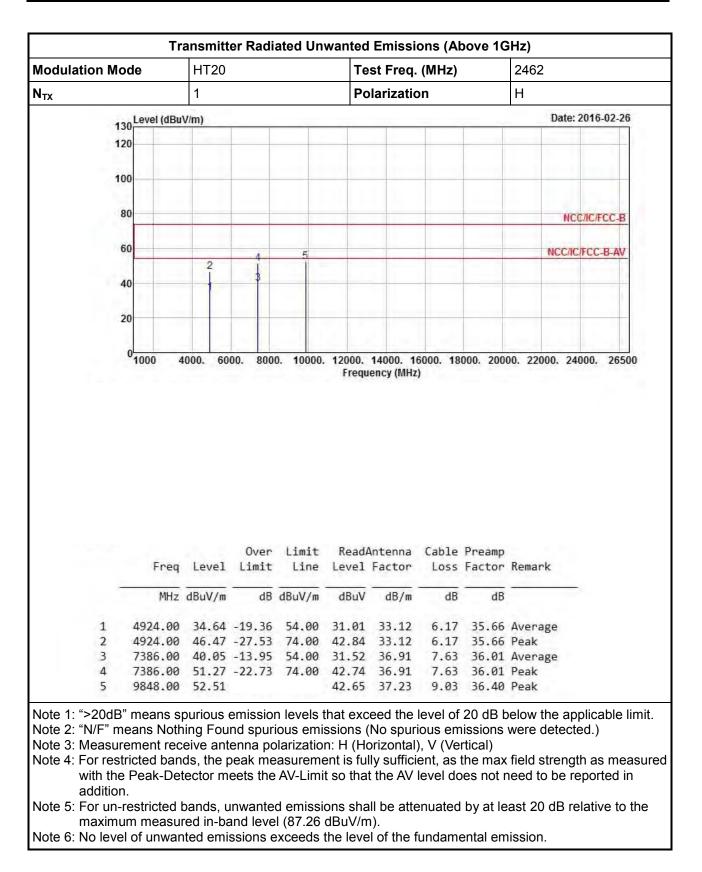


Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.









4 Test Equipment and Calibration Data

< AC Conduction >								
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date		
EMC Receiver	KETSIGHT	N9038A	MY54130031	20Hz ~ 8.4GHz	Apr. 14, 2016	Apr. 13, 2017		
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 26, 2016	Jan. 25, 2017		
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016		
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	N/A		

< RF Conducted >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 06, 2015	May 05, 2016
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 04 ,2016	Feb. 03, 2017
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 04, 2016	Feb. 03, 2017
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016

< Radiated Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	Jul. 01, 2015	Jun. 30, 2016
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Jun. 30, 2016
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan. 29, 2016	Jan. 28, 2017
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Apr. 09, 2015	Apr. 08, 2016
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Jul. 14, 2016
Bilog Antenna	SCHAFFNER	CBL 6112B	2723	30MHz ~ 1GHz	Oct. 05, 2015	Oct. 04, 2016
Horn Antenna	AARONIA AG	POWERLOG 70180	05192	1GHz ~ 18GHz	Jan. 08, 2016	Jan. 07, 2017
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170614	18GHz ~ 40GHz	Jan. 04, 2016	Jan. 03, 2017

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Loop Antenna	ROHDE&SCHWARZ	HFH2-Z2	100330	9 kHz~30 MHz	Nov. 10, 2014	Nov. 09, 2016