

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: 2021-11-03

Report Template Version: V05

Test Report

Report No.: CQASZ20240300557E-02

Applicant: Shenzhen DO Intelligent Technology Co., Ltd

Address of Applicant: 11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua

District, Shenzhen, China

Equipment Under Test (EUT):

Product: Smart Watch

Model No.: ID205G Pro, IDW27

Test Model No.: ID205G Pro

Brand Name: IDO

FCC ID: 2AHFT850

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2024-03-26

Date of Test: 2024-03-26 to 2024-04-16

Date of Issue: 2024-05-10
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By:

(Alex Wang)

Report No.: CQASZ20240300557E-02

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20240300557E-02	Rev.01	Initial report	2024-05-10

Note:

Here the product 1#2# means model: ID205G Pro, the product 3#4# means model: IDW27). The difference between product 1# and product 2# is that the battery model, flash model. The key differences are the appearance and the model number. These changes do not affect RF performance. The difference between product 3# and product 4# is that the battery model, flash model, loudspeaker model. The key differences are the appearance and the model number. These changes do not affect RF performance.

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION	4
4.2 GENERAL DESCRIPTION OF EUT	
4.3 ADDITIONAL INSTRUCTIONS	
4.4 TEST ENVIRONMENT	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 DEVIATION FROM STANDARDS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 Antenna Requirement	
5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	60
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	61
7 DUOTOGRADUS - EUT CONSTRUCTIONAL DETAILS	6

4 General Information

4.1 Client Information

Applicant:	Shenzhen DO Intelligent Technology Co., Ltd		
Address of Applicant:	1th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China		
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd		
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China		
Factory:	Shenzhen DO Intelligent Technology Co., Ltd		
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China		

4.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	ID205G Pro, IDW27
Test Model No.:	ID205G Pro
Trade Mark:	IDO
Software Version:	V01.00.07
Hardware Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.3
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable
Test Software of EUT:	sscom5.13.1
Antenna Type:	ID205G Pro:FPC antenna IDW27:LDS antenna
Antenna Gain:	ID205G Pro:-4.38dBi IDW27:-1.52dBi
EUT Power Supply:	Li-ion battery DC 3.85V 350mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	│ ⊠ Simultaneous TX is not supported.

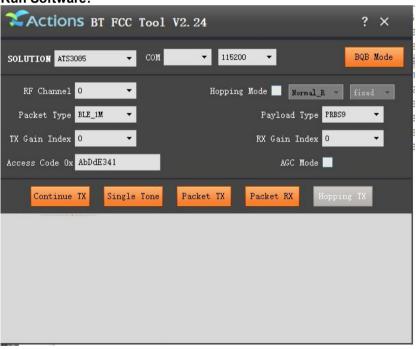
Report No.: CQASZ20240300557E-02

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz



Report No.: CQASZ20240300557E-02

4.3 Additional Instructions

EUT Test Software Settings:						
Mode:	⊠ Special software is used.	⊠ Special software is used.				
		☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*				
EUT Power level:	Class2 (Power level is built-in set para selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the lo	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep					
transmitting of the EUT.						
Mode	Channel	Frequency(MHz)				
	CH0 2402					
GFSK CH19 2440						
	CH39 2480					

Run Software:

Report No.: CQASZ20240300557E-02

4.4 Test Environment

Operating Environment:	Operating Environment:			
Temperature:	24.5°C			
Humidity:	59% RH			
Atmospheric Pressure:	1009mbar			
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	MI	1	1	CQA
2) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
,		,	,	,

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8℃
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Report No.: CQASZ20240300557E-02

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			1 4 4	0-1:1	0-1:14:
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU26	CQA-038	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU40	CQA-075	2023/09/08	2024/09/07
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2023/09/08	2024/09/07
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2023/09/08	2024/09/07
Preamplifier	EMCI	EMC184055SE	CQA-089	2023/09/08	2024/09/07
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2023/09/08	2024/09/07
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2023/09/08	2024/09/07
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2023/09/08	2024/09/07
Antenna Connector	CQA	RFC-01	CQA-080	2023/09/08	2024/09/07
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2023/09/08	2024/09/07
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2023/09/08	2024/09/07
Power meter	R&S	NRVD	CQA-029	2023/09/08	2024/09/07
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2023/09/08	2024/09/07
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
LISN	R&S	ENV216	CQA-003	2023/09/08	2024/09/07
Coaxial cable	CQA	N/A	CQA-C009	2023/09/08	2024/09/07
DC power	KEYSIGHT	E3631A	CQA-028	2023/09/08	2024/09/07

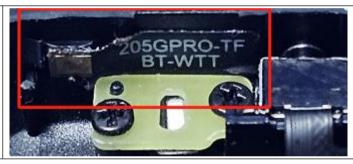
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

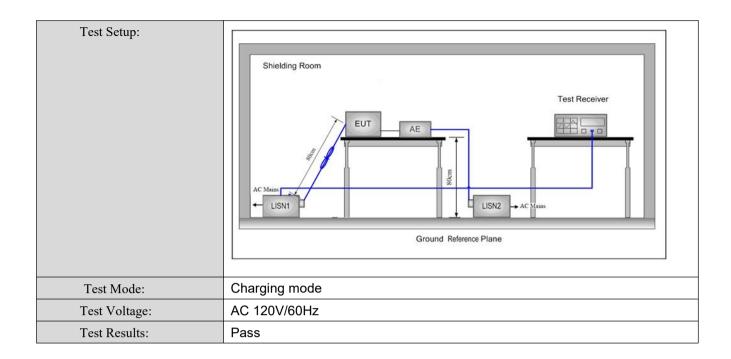
This is either permanently attachment or a unique coupling that satisfies the requirement.

EUT Antenna:

The antenna is LDS antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

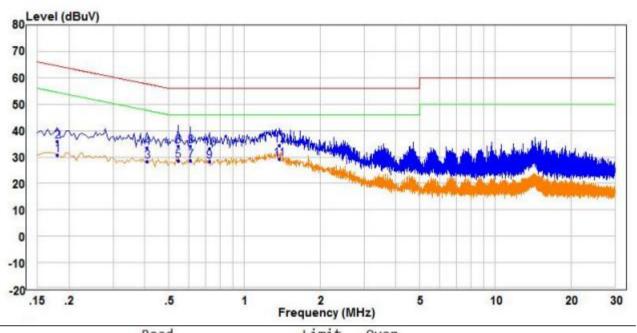
This is either permanently attachment or a unique coupling that satisfies the requirement.



Report No.: CQASZ20240300557E-02

5.2 Conducted Emissions

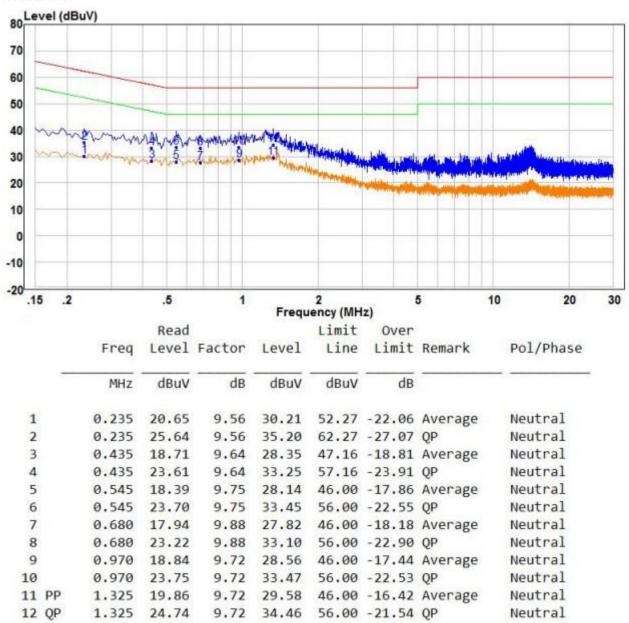
Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	E (MIL)	Limit (d	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm o	f the frequency.		•		
Test Procedure:	The mains terminal disturl room.	bance voltage test was	s conducted in a shie	elded		
	The EUT was connected to Impedance Stabilization N	•	•	near		
	impedance. The power cal	, ,	•	ilcai		
	connected to a second LIS					
	reference plane in the sam	ne way as the LISN 1 fo	or the unit being			
	measured. A multiple sock	•	·			
	power cables to a single Li exceeded.	ISN provided the rating	of the LISN was not	•		
	3) The tabletop EUT was place	ced upon a non-metallio	c table 0.8m above th	he		
	ground reference plane. A	•	rangement, the EUT	was		
	placed on the horizontal gr	•				
	4) The test was performed wi	•	•			
	of the EUT shall be 0.4 m to vertical ground reference p	•	•	ie		
	reference plane. The LISN		•	he		
	unit under test and bonded	•	•			
	mounted on top of the grou	•	•			
	between the closest points	of the LISN 1 and the	EUT. All other units	of		
	the EUT and associated ed	• •		2.		
	5) In order to find the maximu		•			
	equipment and all of the in		changed according	to		
	ANSI C63.10: 2013 on con	iducted measurement.				



1#

Measurement Data

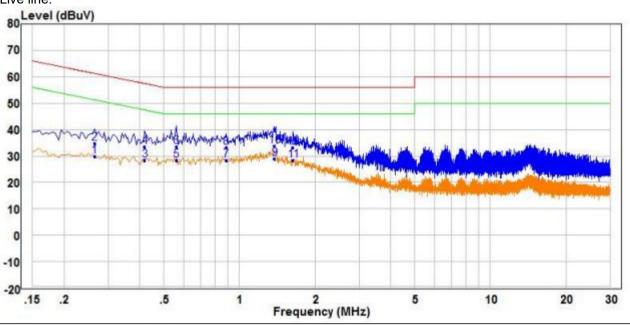
Live line:


	Freq	Level	Factor	Level	Limit	Over	Remark	Pol/Phase
-	MHz	dBuV	dB	dBuV	dBuV	dB	-	
1	0.180	21.27	9.64	30.91	54.49	-23.58	Average	Line
2	0.180	26.37	9.64	36.01	64.49	-28.48	QP	Line
3	0.410	18.68	9.62	28.30	47.65	-19.35	Average	Line
4	0.410	23.75	9.62	33.37	57.65	-24.28	QP	Line
	0.545	18.97	9.75	28.72	46.00	-17.28	Average	Line
6	0.545	24.33	9.75	34.08	56.00	-21.92	QP	Line
7	0.610	18.89	9.81	28.70	46.00	-17.30	Average	Line
8	0.610	24.44	9.81	34.25	56.00	-21.75	QP	Line
9	0.725	18.39	9.88	28.27	46.00	-17.73	Average	Line
10	0.725	23.22	9.88	33.10	56.00	-22.90	QP	Line
11 PP	1.375	18.70	10.59	29.29	46.00	-16.71	Average	Line
12 QP	1.375	23.77	10.59	34.36	56.00	-21.64	QP	Line

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

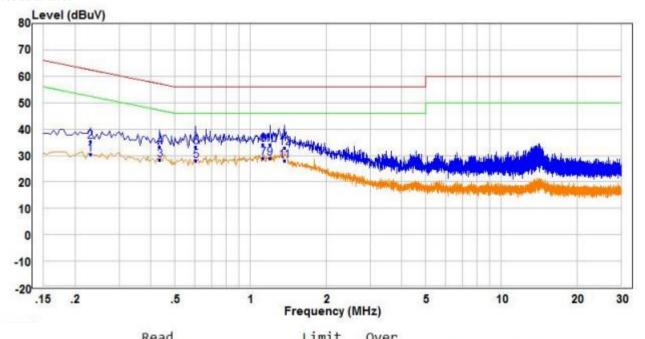
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



2#

Measurement Data

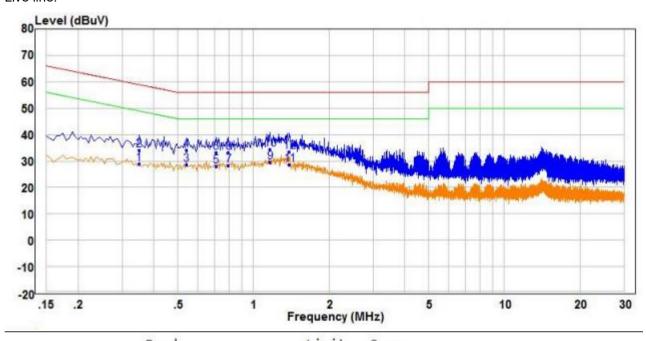
Live line:


	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
_	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.265	20.29	9.53	29.82	51.27	-21.45	Average	Line
2	0.265	25.30	9.53	34.83	61.27	-26.44	QP	Line
3	0.420	18.79	9.63	28.42	47.45	-19.03	Average	Line
4	0.420	23.75	9.63	33.38	57.45	-24.07	QP	Line
5	0.560	18.56	9.76	28.32	46.00	-17.68	Average	Line
6	0.560	23.80	9.76	33.56	56.00	-22.44	QP	Line
7	0.885	18.58	9.78	28.36	46.00	-17.64	Average	Line
7 8	0.885	23.31	9.78	33.09	56.00	-22.91	QP	Line
9 PP	1.380	18.34	10.60	28.94	46.00	-17.06	Average	Line
10 QP	1.380	23.24	10.60	33.84	56.00	-22.16	QP	Line
11	1.635	17.16	11.08	28.24	46.00	-17.76	Average	Line
12	1.635	22.12	11.08	33.20	56.00	-22.80	QP	Line

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

		Read			LIMIL	over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	MHZ	dBuV	dB	dBuV	dBuV	dB		-
	0.230	20.80	9.56	30.36	52.45	-22.09	Average	Neutral
	0.230	25.63	9.56	35.19	62.45	-27.26	QP	Neutral
	0.435	18.60	9.64	28.24	47.16	-18.92	Average	Neutral
	0.435	23.52	9.64	33.16	57.16	-24.00	QP	Neutral
	0.605	18.20	9.81	28.01	46.00	-17.99	Average	Neutral
	0.605	23.34	9.81	33.15	56.00	-22.85	QP	Neutral
PP	1.125	19.36	9.71	29.07	46.00	-16.93	Average	Neutral
	1.125	24.32	9.71	34.03	56.00	-21.97	QP	Neutral
	1.195	19.26	9.71	28.97	46.00	-17.03	Average	Neutral
QP	1.195	24.44	9.71	34.15	56.00	-21.85	QP	Neutral
	1.365	18.32	9.72	28.04	46.00	-17.96	Average	Neutral
	1.365	23.10	9.72	32.82	56.00	-23.18	QP	Neutral
		MHz 0.230 0.230 0.435 0.435 0.605 0.605 PP 1.125 1.125 1.195 QP 1.195 1.365	MHz dBuV 0.230 20.80 0.230 25.63 0.435 18.60 0.435 23.52 0.605 18.20 0.605 23.34 PP 1.125 19.36 1.125 24.32 1.195 19.26 QP 1.195 24.44 1.365 18.32	MHZ dBuV dB 0.230 20.80 9.56 0.230 25.63 9.56 0.435 18.60 9.64 0.435 23.52 9.64 0.605 18.20 9.81 0.605 23.34 9.81 PP 1.125 19.36 9.71 1.125 24.32 9.71 1.195 19.26 9.71 QP 1.195 24.44 9.71 1.365 18.32 9.72	MHZ dBuV dB dBuV 0.230 20.80 9.56 30.36 0.230 25.63 9.56 35.19 0.435 18.60 9.64 28.24 0.435 23.52 9.64 33.16 0.605 18.20 9.81 28.01 0.605 23.34 9.81 33.15 PP 1.125 19.36 9.71 29.07 1.125 24.32 9.71 34.03 1.195 19.26 9.71 28.97 QP 1.195 24.44 9.71 34.15 1.365 18.32 9.72 28.04	MHz dBuV dB dBuV dBuV 0.230 20.80 9.56 30.36 52.45 0.230 25.63 9.56 35.19 62.45 0.435 18.60 9.64 28.24 47.16 0.435 23.52 9.64 33.16 57.16 0.605 18.20 9.81 28.01 46.00 0.605 23.34 9.81 33.15 56.00 PP 1.125 19.36 9.71 29.07 46.00 1.125 24.32 9.71 34.03 56.00 1.195 19.26 9.71 28.97 46.00 QP 1.195 24.44 9.71 34.15 56.00 1.365 18.32 9.72 28.04 46.00	MHz dBuV dB dBuV dBuV dB 0.230 20.80 9.56 30.36 52.45 -22.09 0.230 25.63 9.56 35.19 62.45 -27.26 0.435 18.60 9.64 28.24 47.16 -18.92 0.435 23.52 9.64 33.16 57.16 -24.00 0.605 18.20 9.81 28.01 46.00 -17.99 0.605 23.34 9.81 33.15 56.00 -22.85 PP 1.125 19.36 9.71 29.07 46.00 -16.93 1.125 24.32 9.71 34.03 56.00 -21.97 1.195 19.26 9.71 28.97 46.00 -17.03 QP 1.195 24.44 9.71 34.15 56.00 -21.85 1.365 18.32 9.72 28.04 46.00 -17.96	MHz dBuV dB dBuV dBuV dB 0.230 20.80 9.56 30.36 52.45 -22.09 Average 0.230 25.63 9.56 35.19 62.45 -27.26 QP 0.435 18.60 9.64 28.24 47.16 -18.92 Average 0.435 23.52 9.64 33.16 57.16 -24.00 QP 0.605 18.20 9.81 28.01 46.00 -17.99 Average 0.605 23.34 9.81 33.15 56.00 -22.85 QP PP 1.125 19.36 9.71 29.07 46.00 -16.93 Average 1.125 24.32 9.71 34.03 56.00 -21.97 QP 1.195 19.26 9.71 28.97 46.00 -17.03 Average QP 1.195 24.44 9.71 34.15 56.00 -21.85 QP 1.365 18.32 9.72 28.04 46.00 -17.96 Average


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

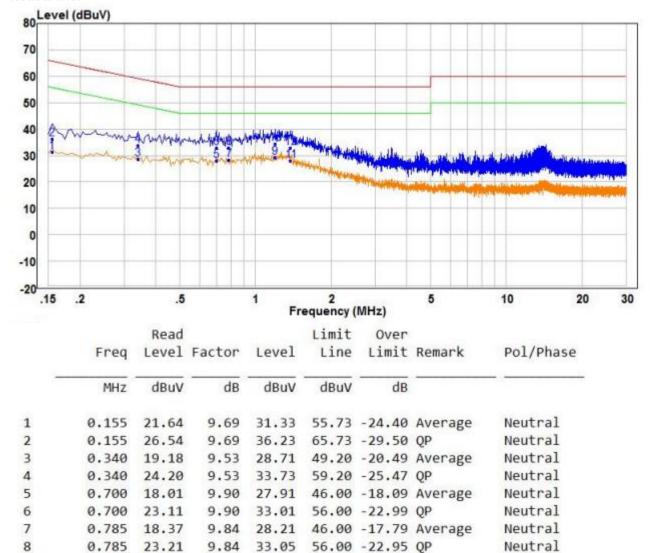
3#

Measurement Data

Live line:

	Freq	Read Level	Factor	Level	Limit	Over	Remark	Pol/Phase
_	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.350	19.44	9.55	28.99	48.96	-19.97	Average	Line
2	0.350	24.43	9.55	33.98	58.96	-24.98	QP	Line
3	0.540	18.76	9.74	28.50	46.00	-17.50	Average	Line
4	0.540	24.52	9.74	34.26	56.00	-21.74	QP	Line
5	0.710	18.29	9.89	28.18	46.00	-17.82	Average	Line
6	0.710	23.29	9.89	33.18	56.00	-22.82	QP	Line
7	0.795	18.46	9.84	28.30	46.00	-17.70	Average	Line
8	0.795	23.38	9.84	33.22	56.00	-22.78	QP	Line
9 PP	1.165	19.48	10.13	29.61	46.00	-16.39	Average	Line
10 QP	1.165	24.38	10.13	34.51	56.00	-21.49	QP	Line
11	1.390	18.17	10.62	28.79	46.00	-17.21	Average	Line
12	1.390	23.01	10.62	33.63	56.00	-22.37	QP	Line

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral

Neutral

Neutral Neutral

Neutral line:

29.37 46.00 -16.63 Average

9.71 34.45 56.00 -21.55 QP

9.72 28.00 46.00 -18.00 Average

32.76 56.00 -23.24 QP

Remark:

9 PP

10 QP

12

1.195

1.380

19.66

23.04

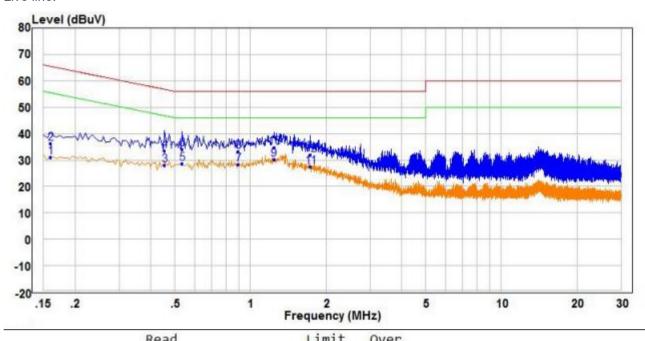
1.195 24.74

1.380 18.28

1. The following Quasi-Peak and Average measurements were performed on the EUT:

9.71

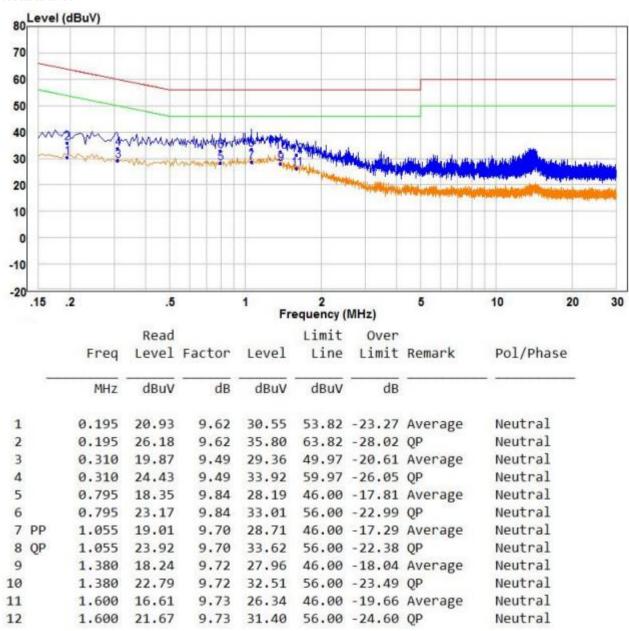
9.72


- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

4#

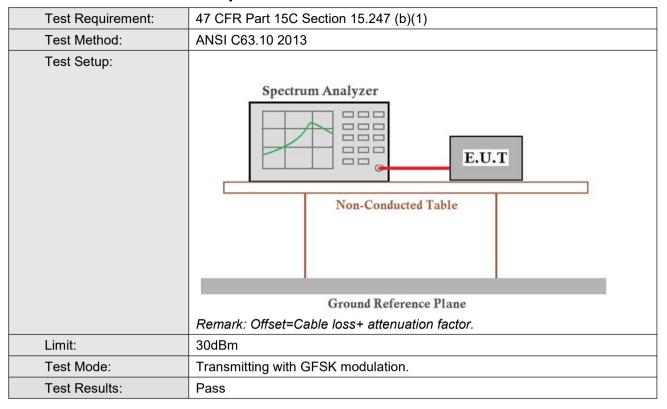
Measurement Data

Live line:

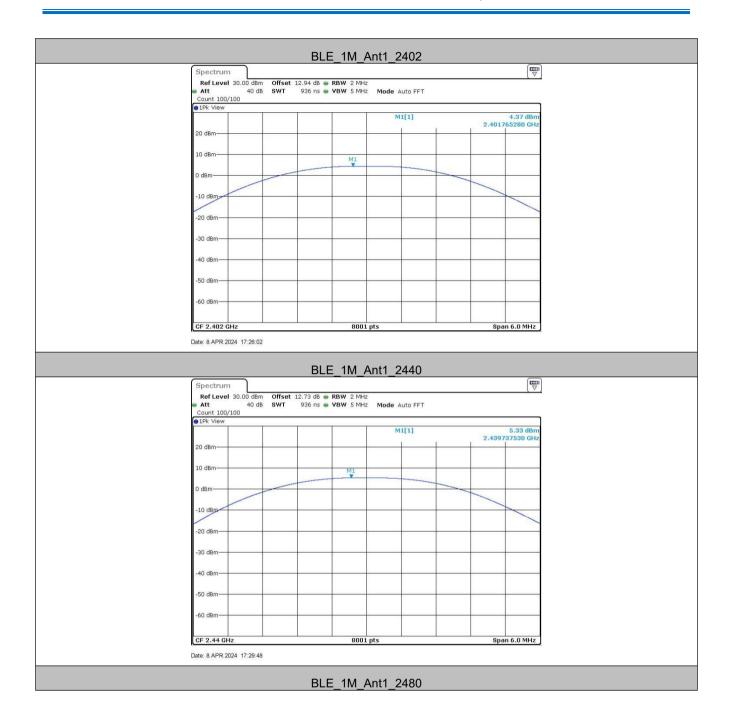

	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
_	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.160	21.38	9.68	31.06	55.46	-24.40	Average	Line
2	0.160	26.48	9.68	36.16	65.46	-29.30	QP	Line
3	0.455	18.52	9,66	28.18	46.78	-18.60	Average	Line
4	0.455	23.78	9.66	33.44	56.78	-23.34	QP	Line
	0.535	18.80	9.74	28.54	46.00	-17.46	Average	Line
6	0.535	24.23	9.74	33.97	56.00	-22.03	QP	Line
7	0.895	18.53	9.77	28.30	46.00	-17.70	Average	Line
8	0.895	23.47	9.77	33.24	56.00	-22.76	QP	Line
9 PP	1.240	19.73	10.30	30.03	46.00	-15.97	Average	Line
10 QP	1.240	24.49	10.30	34.79	56.00	-21.21	QP	Line
11	1.735	16.25	11.25	27.50	46.00	-18.50	Average	Line
12	1.735	20.84	11.25	32.09	56.00	-23.91	QP	Line

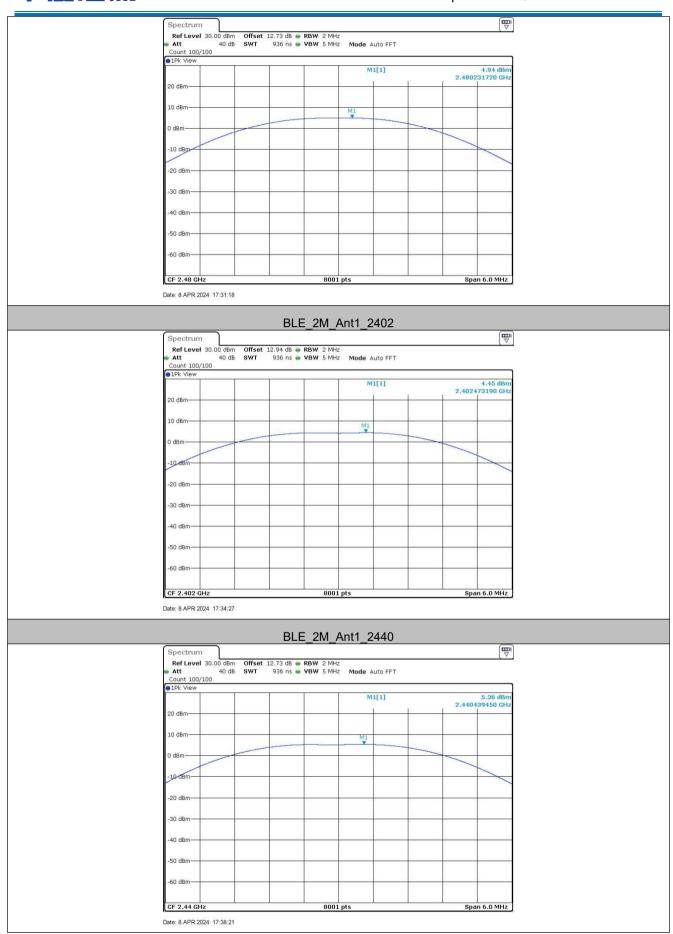
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

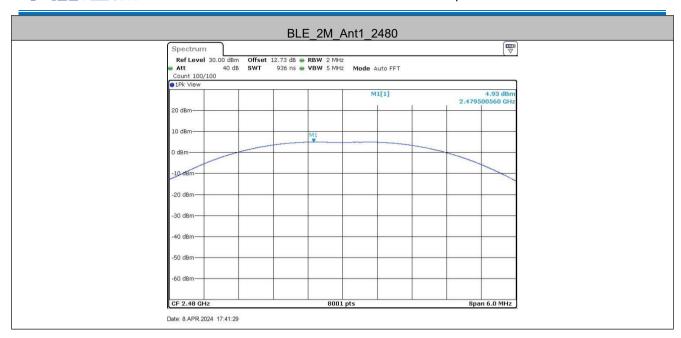


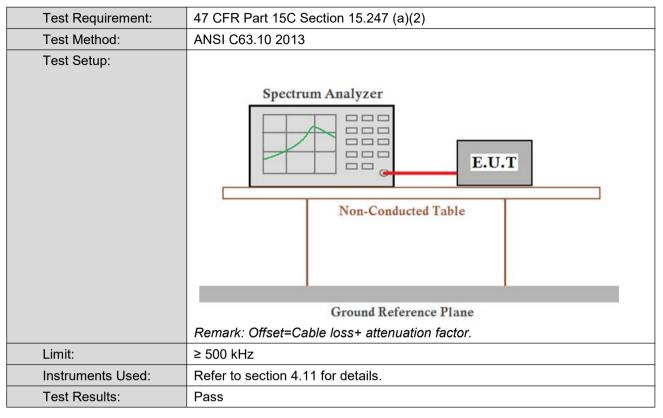
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

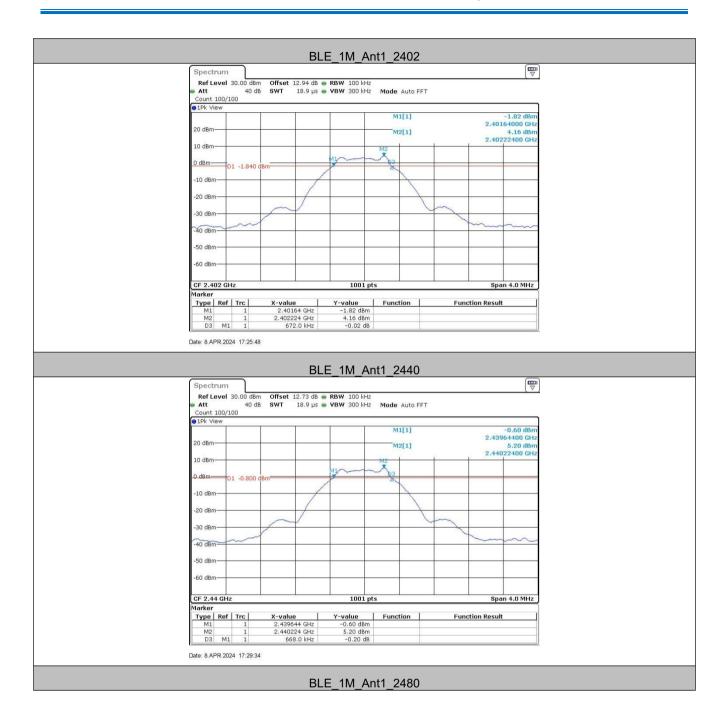

5.3 Conducted Peak Output Power

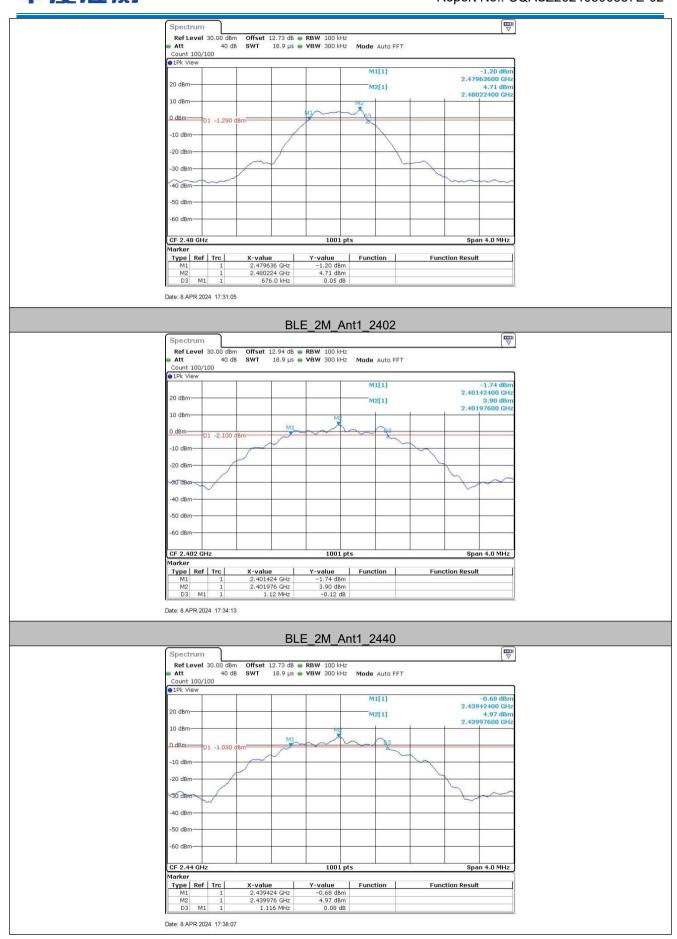

Measurement Data

	dodi onione bata							
	GFSK mode (1Mbps)							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	4.37	30.00	Pass					
Middle	5.33	30.00	Pass					
Highest	4.94	30.00	Pass					
	GFSK mode (2	Mbps)						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	4.45	30.00	Pass					
Middle	5.36	30.00	Pass					
Highest	4.93	30.00	Pass					

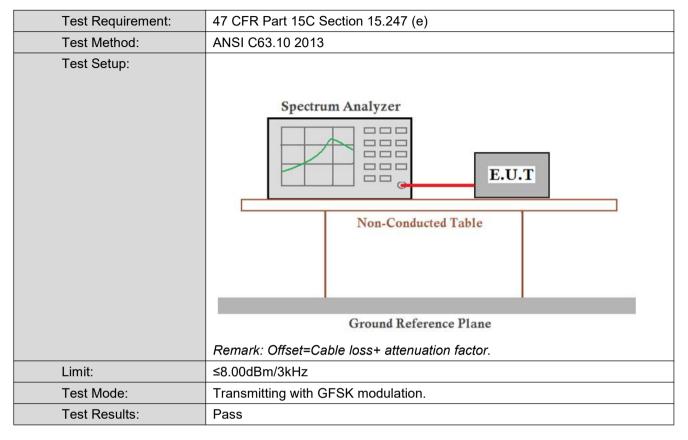




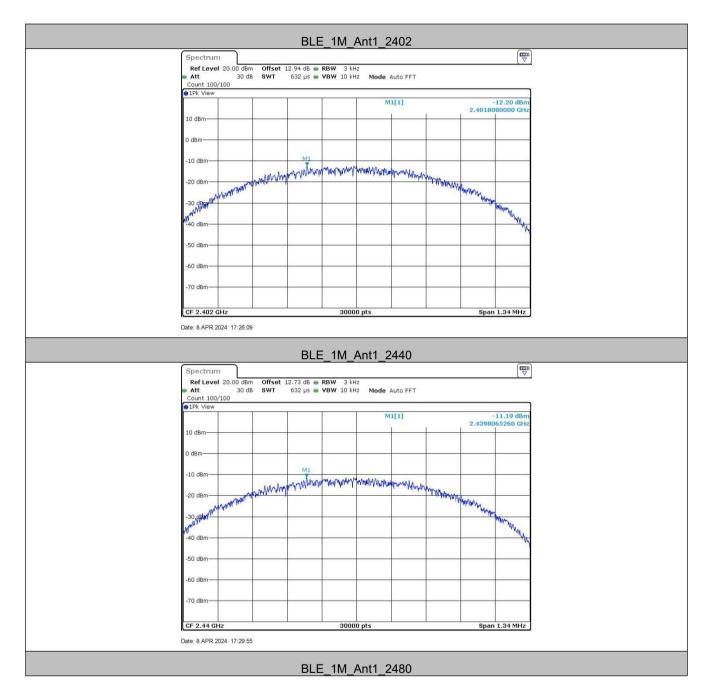

5.4 6dB Occupy Bandwidth


Measurement Data

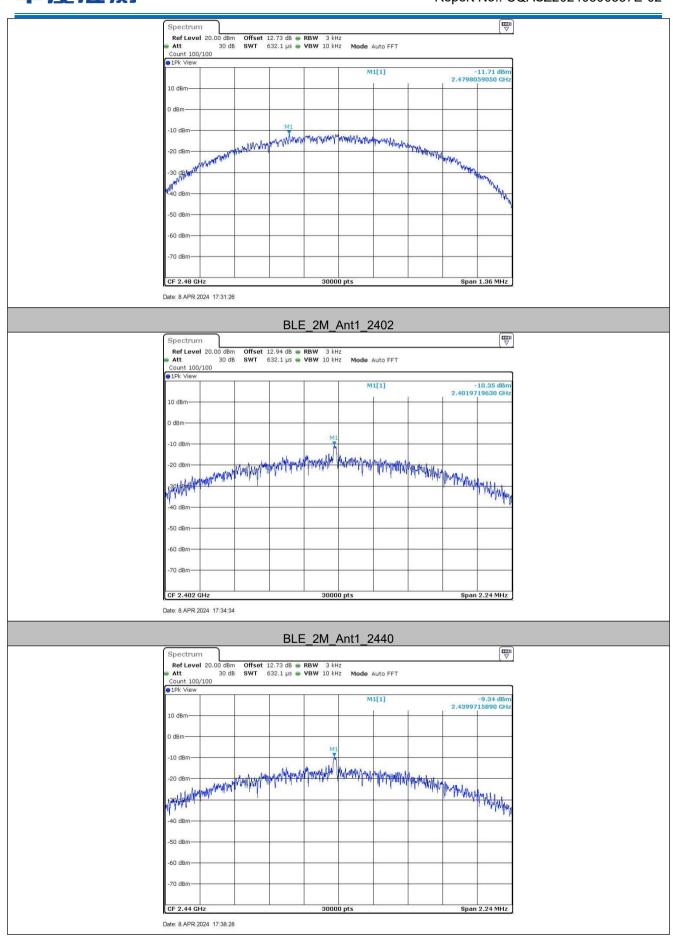
	GFSK mode (1Mbps)							
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result					
Lowest	0.67	≥500	Pass					
Middle	0.67	≥500	Pass					
Highest	0.68	≥500	Pass					
	GFSK mode (2Mbps)							
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result					
Lowest	1.12	≥500	Pass					
Middle	1.12	≥500	Pass					
Highest	1.12	≥500	Pass					

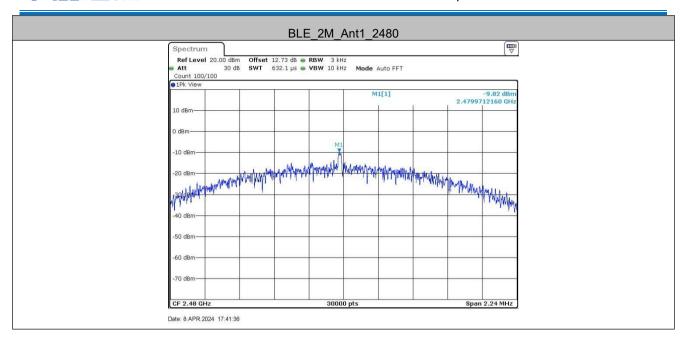


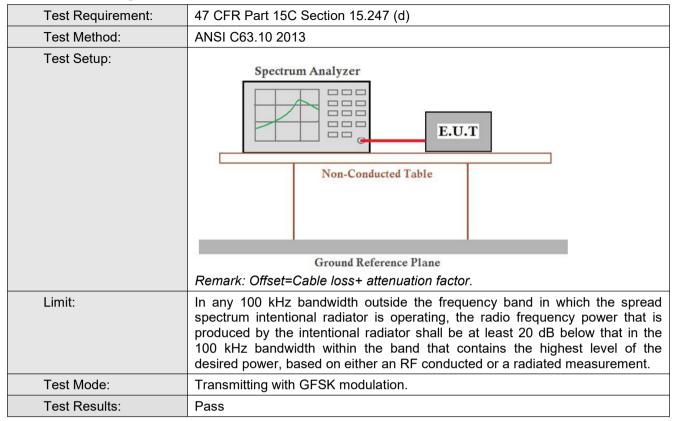
5.5 Power Spectral Density



Measurement Data

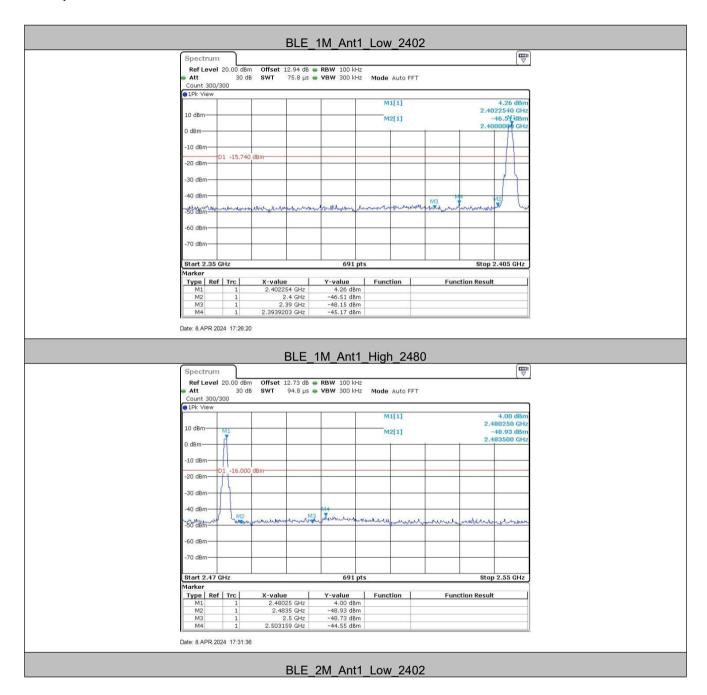

	incustration but							
	GFSK mode (1Mbps)							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result					
Lowest	-12.2	≤8.00	Pass					
Middle	-11.19	≤8.00	Pass					
Highest	-11.71	≤8.00	Pass					
	GFSK mode (2Mbps)							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result					
Lowest	-10.35	≤8.00	Pass					
Middle	-9.34	≤8.00	Pass					
Highest	-9.82	≤8.00	Pass					


Test plot as follows:



Report No.: CQASZ20240300557E-02

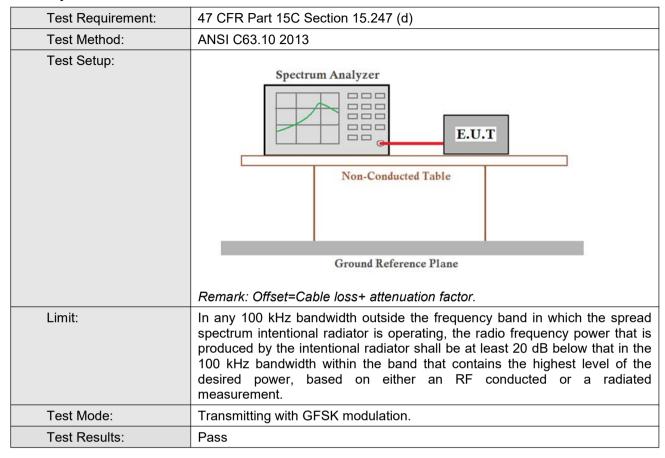
5.6 Band-edge for RF Conducted Emissions

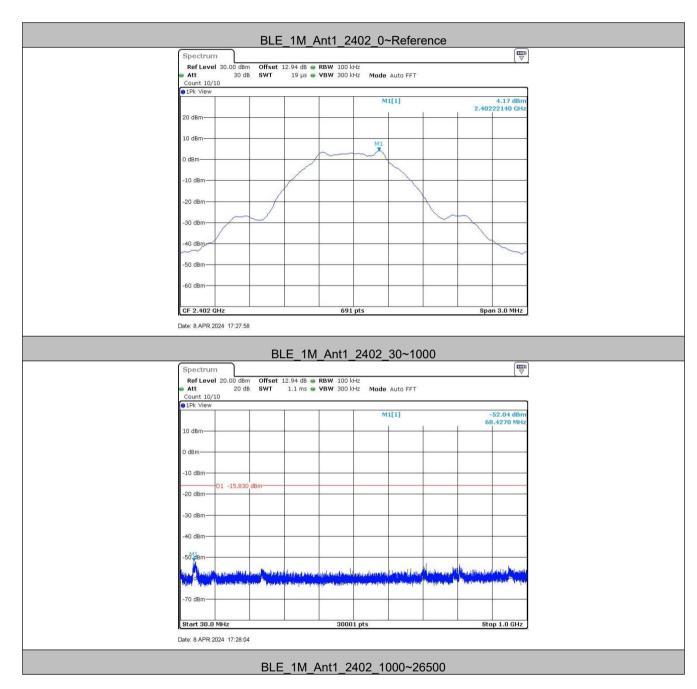


TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	4.26	-45.17	≤-15.74	PASS
BLE_1M	High	2480	4.00	-44.55	≤-16	PASS
	Low	2402	4.01	-29.25	≤-15.99	PASS
BLE_2M	High	2480	4.52	-41.21	≤-15.48	PASS

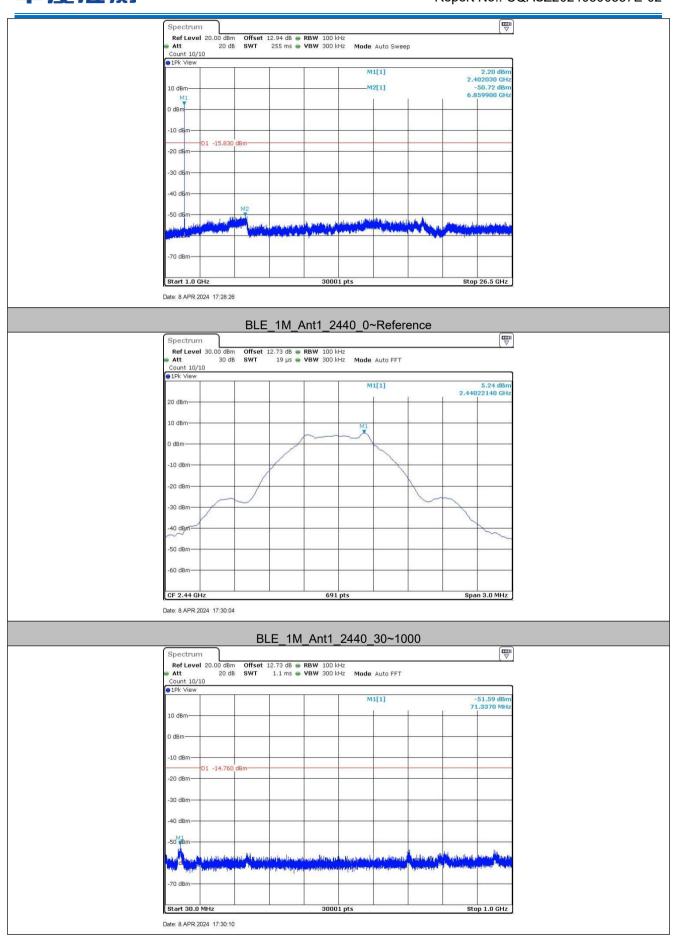
Report No.: CQASZ20240300557E-02

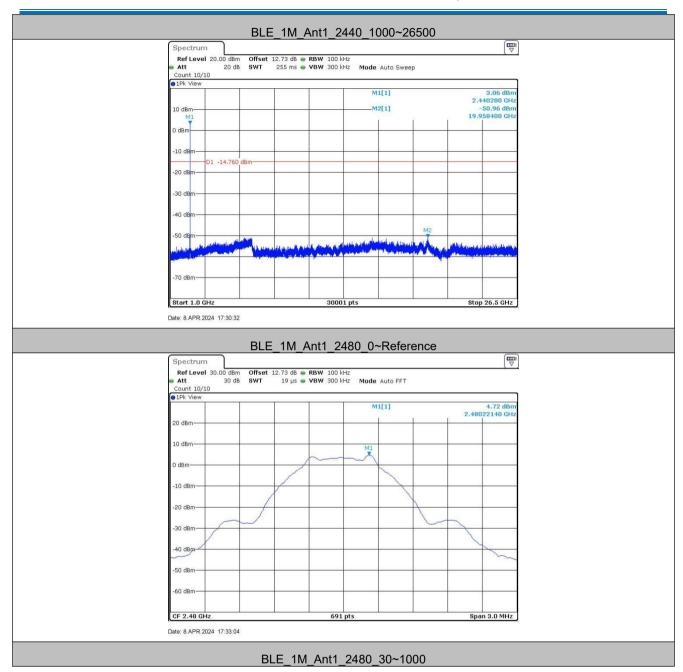
Test plot as follows:

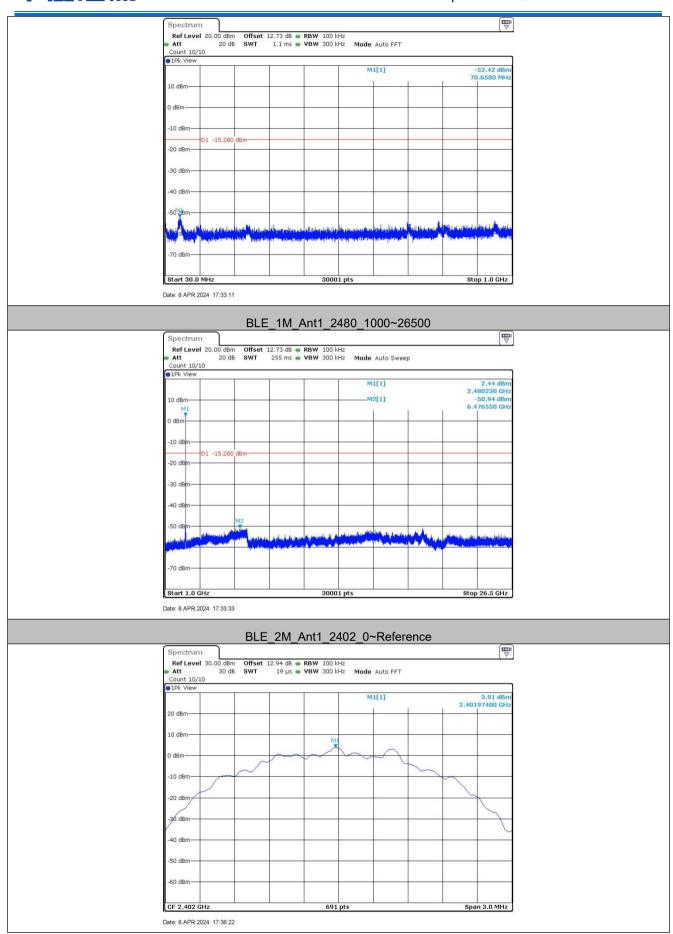


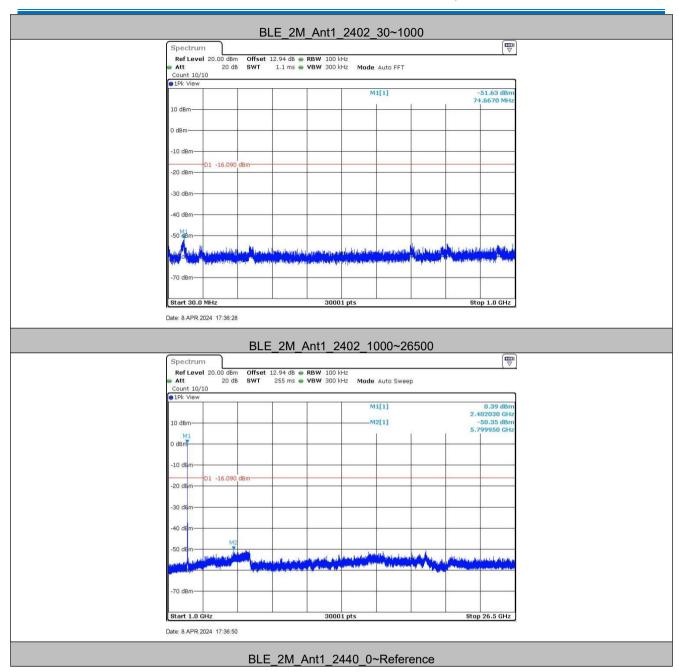


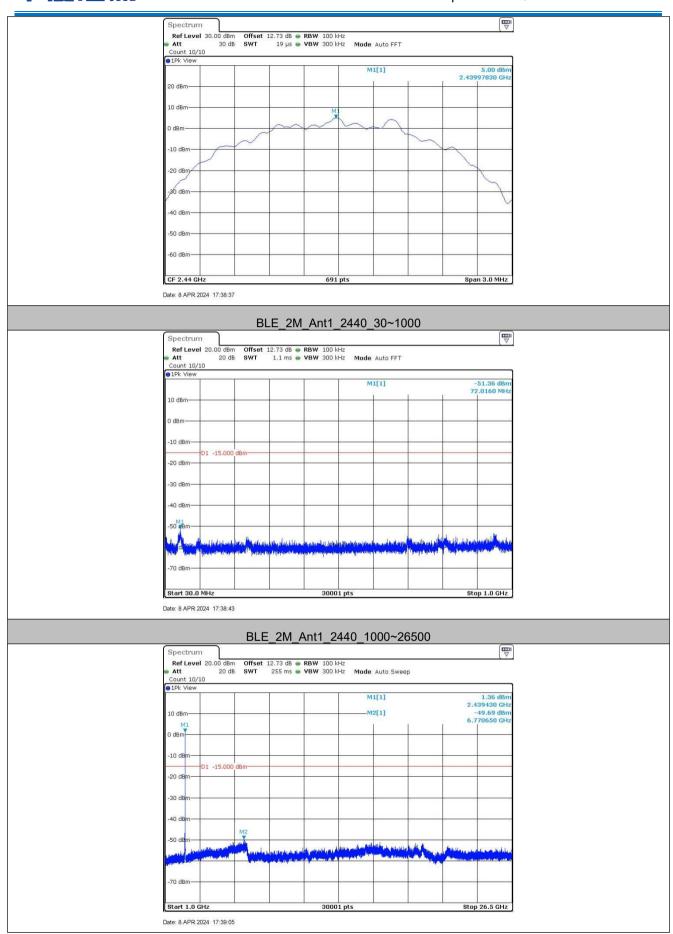
5.7 Spurious RF Conducted Emissions

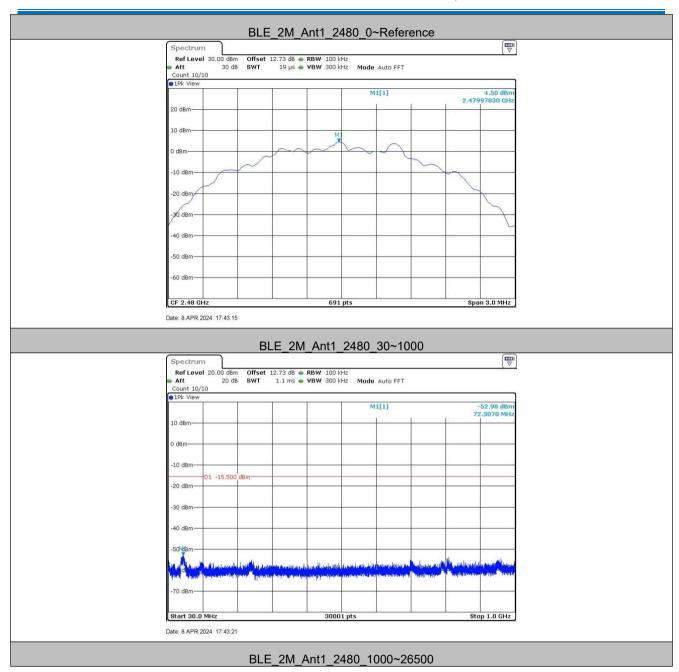


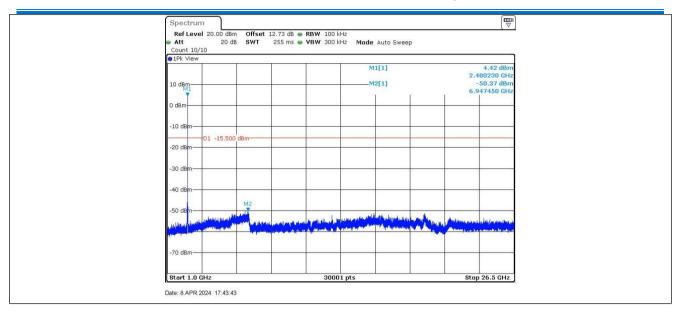

Test plot as follows:











Report No.: CQASZ20240300557E-02

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.8 Radiated Spurious Emission & Restricted bands

5.8.1 Spurious Emiss	ions								
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205					
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	<u>z</u>	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	<u>z</u>	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	<u>z</u>	30kHz	Quasi-peak		
	0.110MHz-0.490MH	Z	Peak	10kHz	<u>z</u>	30kHz	Peak		
	0.110MHz-0.490MH	Z	Average	10kHz	7	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	7	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	lz (300kHz	Quasi-peak		
	A1 4011-		Peak	1MHz	·	3MHz	Peak		
	Above 1GHz		Peak	1MHz	<u>.</u>	10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	R	Remark	Measuremen distance (m		
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-		-	30		
	1.705MHz-30MHz		30	-		-	30		
	30MHz-88MHz		100	40.0	Qua	asi-peak	3		
	88MHz-216MHz		150	43.5	Qua	asi-peak	3		
	216MHz-960MHz		200	46.0	Qua	asi-peak	3		
	960MHz-1GHz		500	54.0	Qua	asi-peak	3		
	Above 1GHz		500	54.0	A	verage	3		
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the oment under t	maximum est. This p	perm	nitted ave	erage emission		

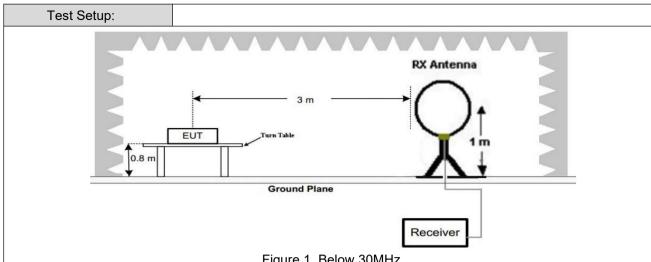
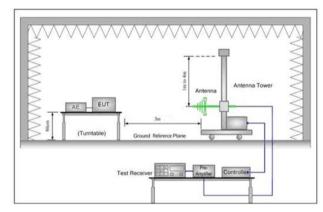



Figure 1. Below 30MHz

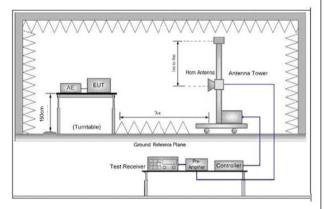


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

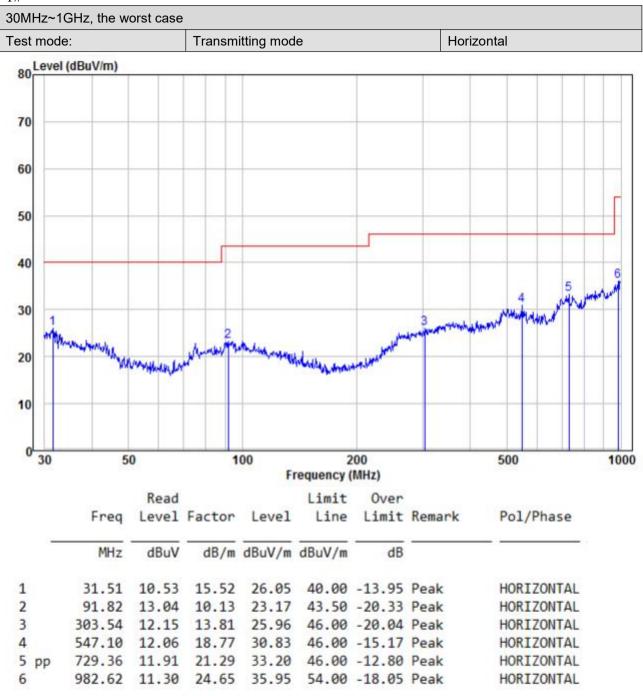
Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

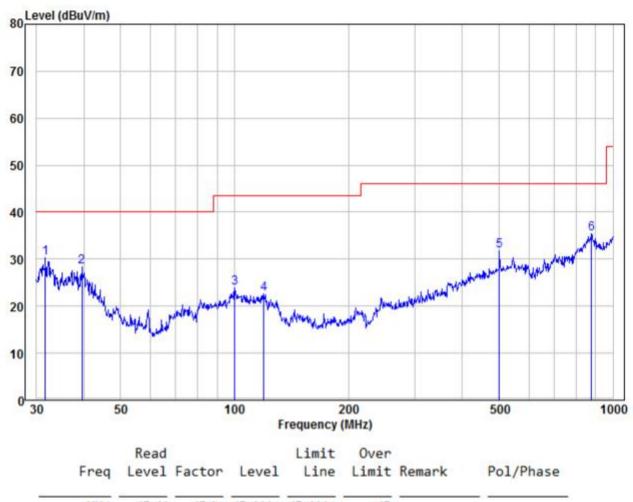
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

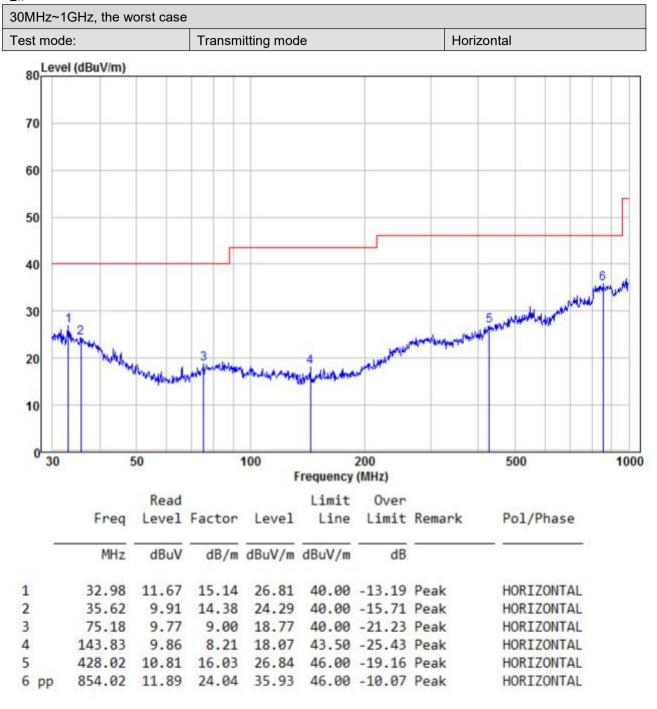
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both


	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

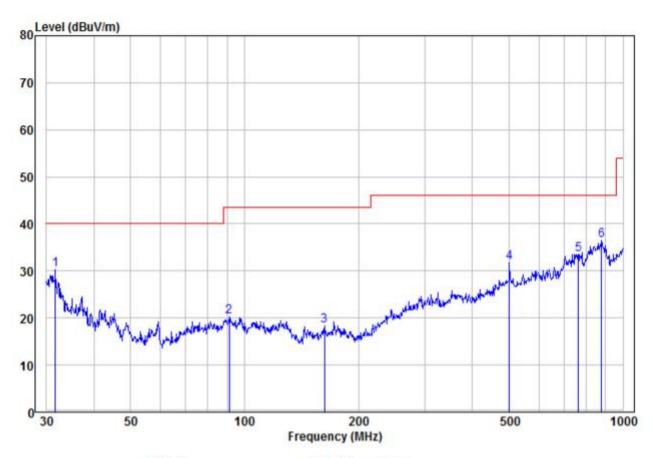
Radiated Emission below 1GHz


1#

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Vertical

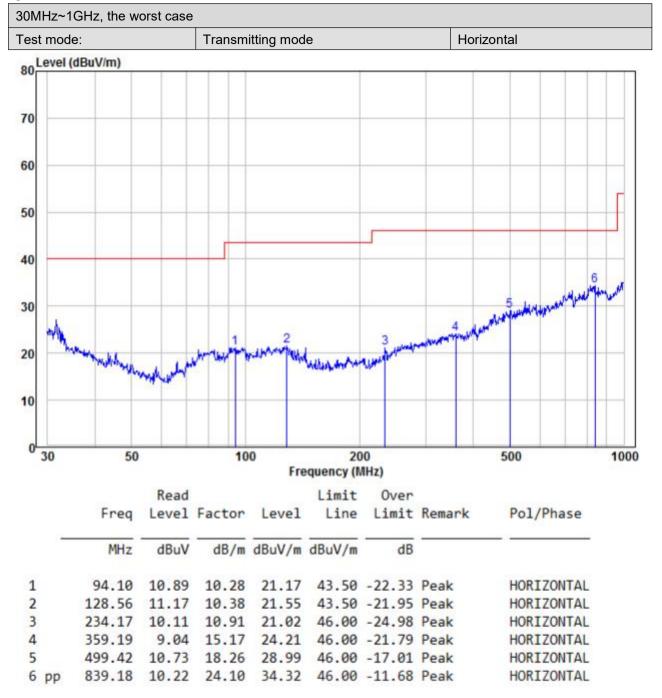


	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
_	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	
1 pp	31.62	14.77	15.49	30.26	40.00	-9.74	Peak	VERTICAL
2	39.58	15.36	12.95	28.31	40.00	-11.69	Peak	VERTICAL
3	100.23	13.36	10.64	24.00	43.50	-19.50	Peak	VERTICAL
4	119.44	11.86	10.67	22.53	43.50	-20.97	Peak	VERTICAL
5	501.18	13.42	18.29	31.71	46.00	-14.29	Peak	VERTICAL
6	878.32	11.51	23.93	35.44	46.00	-10.56	Peak	VERTICAL

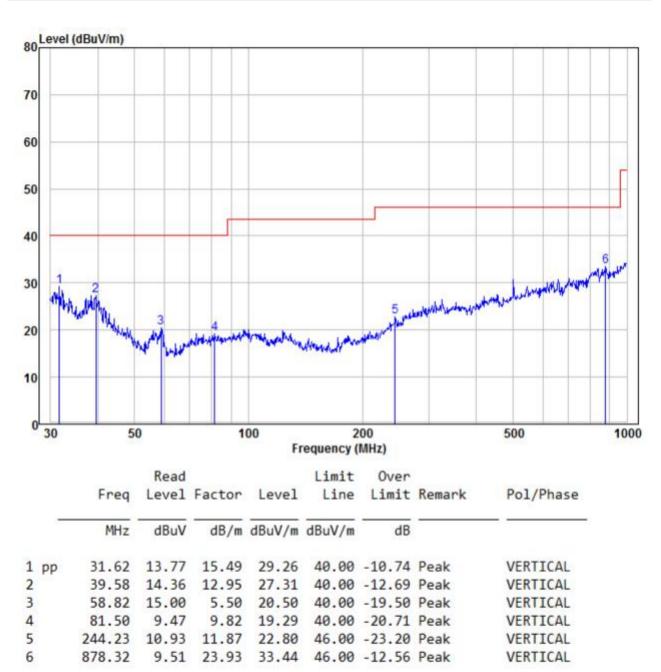


2#

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Vertical



	Freq	Read Level	Factor	Level	Limit Line		Remark	Pol/Phase
<u> </u>	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	31.62	14.77	15.49	30.26	40.00	-9.74	Peak	VERTICAL
2	91.17	10.11	10.09	20.20	43.50	-23.30	Peak	VERTICAL
3	162.61	10.49	7.75	18.24	43.50	-25.26	Peak	VERTICAL
4	501.18	13.42	18.29	31.71	46.00	-14.29	Peak	VERTICAL
5	763.38	11.53	22.03	33.56	46.00	-12.44	Peak	VERTICAL
6 pp	878.32	12.51	23.93	36.44	46.00	-9.56	Peak	VERTICAL



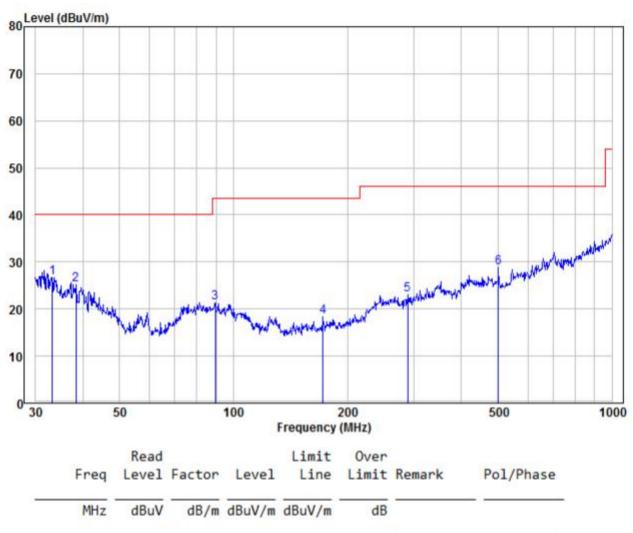
3#

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Vertical

HORIZONTAL

HORIZONTAL

5


		worst case							
est mo	ode:		Transm	itting mod	de		Horiz	zontal	
Le	evel (dBuV/m)								
80	ver (d.Daviii)								
70									
60									
50									
40			<u> </u>			+			6 .
30	1							S HANNE MAN AND MAN AN	James V. Salar
20	mapped and market	MA	2 Market provided again	3 mathematical magain	4 Whytelus And	harry Lipson Branger	and in the same of	Newshipman	
10		"Langeth thank							
0 30	0	50		100		200		500	10
	_			F	requency	(MHz)			
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase	
1	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB			
1	31.51	9.53	15.52	25.05	40.00	-14.95	Peak	HORIZONTAL	
2	75.18				40.00			HORIZONTAL	
3	99.88				43.50			HORIZONTAL	
4	143.83	11.86	8.21	20 07	43.50	23 43	Poak	HORIZONTAL	

547.10 10.06 18.77 28.83 46.00 -17.17 Peak

6 pp 854.02 10.89 24.04 34.93 46.00 -11.07 Peak

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Vertical

	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	9	_
1 pp	33.21	11.58	15.07	26.65	40.00	-13.35	Peak	VERTICAL
2	38.35	11.82	13.40	25.22	40.00	-14.78	Peak	VERTICAL
3	89.59	11.33	10.01	21.34	43.50	-22.16	Peak	VERTICAL
4	172.60	10.46	7.80	18.26	43.50	-25.24	Peak	VERTICAL
5	289.00	9.66	13.37	23.03	46.00	-22.97	Peak	VERTICAL
6	501 18	10 42	18 29	28 71	46 99	-17 29	Peak	VERTICAL

Report No.: CQASZ20240300557E-02

Transmitter Emission above 1GHz

Worse case m	orse case mode:		s)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.34	-9.2	45.14	74	-28.86	Peak	Н
2400	56.56	-9.39	47.17	74	-26.83	Peak	Н
4804	52.59	-4.33	48.26	74	-25.74	Peak	Н
7206	50.01	1.01	51.02	74	-22.98	Peak	Н
2390	52.33	-9.2	43.13	74	-30.87	Peak	V
2400	50.28	-9.39	40.89	74	-33.11	Peak	V
4804	53.69	-4.33	49.36	74	-24.64	Peak	V
7206	49.14	1.01	50.15	74	-23.85	Peak	V

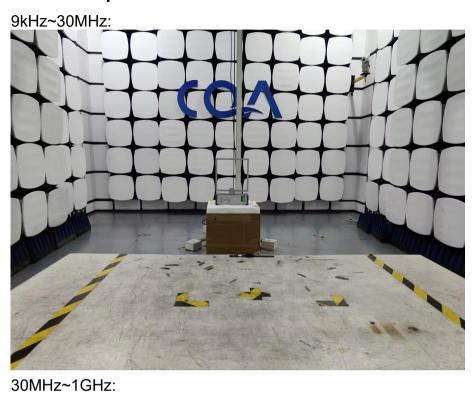
Worse case m	ode:	GFSK(1Mbps	s)	Test chann	el:	Middle		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
4880	52.84	-4.11	48.73	74	-25.27	peak	Н	
7320	49.96	1.51	51.47	74	-22.53	peak	Н	
4880	53.33	-4.11	49.22	74	-24.78	peak	V	
7320	50.22	1.51	51.73	74	-22.27	peak	٧	

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.84	-9.29	46.55	74	-27.45	Peak	Н
4960	50.76	-4.04	46.72	74	-27.28	Peak	Н
7440	48.67	1.57	50.24	74	-23.76	Peak	Н
2483.5	57.73	-9.29	48.44	74	-25.56	Peak	٧
4960	49.28	-4.04	45.24	74	-28.76	Peak	V
7440	50.27	1.57	51.84	74	-22.16	Peak	V

Report No.: CQASZ20240300557E-02

Worse case mode:		GFSK(2Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	56.14	-9.2	46.94	74	-27.06	Peak	Н
2400	54.81	-9.39	45.42	74	-28.58	Peak	Н
4804	52.00	-4.33	47.67	74	-26.33	Peak	Н
7206	50.78	1.01	51.79	74	-22.21	Peak	Н
2390	53.75	-9.2	44.55	74	-29.45	Peak	V
2400	52.82	-9.39	43.43	74	-30.57	Peak	V
4804	53.72	-4.33	49.39	74	-24.61	Peak	V
7206	50.30	1.01	51.31	74	-22.69	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	51.94	-4.11	47.83	74	-26.17	peak	Н
7320	50.13	1.51	51.64	74	-22.36	peak	Н
4880	52.83	-4.11	48.72	74	-25.28	peak	V
7320	50.28	1.51	51.79	74	-22.21	peak	V


Worse case mode:		GFSK(2Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.74	-9.29	45.45	74	-28.55	Peak	Н
4960	51.53	-4.04	47.49	74	-26.51	Peak	Н
7440	49.34	1.57	50.91	74	-23.09	Peak	Н
2483.5	55.65	-9.29	46.36	74	-27.64	Peak	V
4960	50.79	-4.04	46.75	74	-27.25	Peak	V
7440	48.26	1.57	49.83	74	-24.17	Peak	V

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emissions Test Setup

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20240300557E-01.

*** END OF REPORT ***