

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: 2021-11-03

Report Template Version: V05

Test Report

Report No.: CQASZ20230400550E-01

Applicant: Shenzhen DO Intelligent Technology Co., Ltd

Address of Applicant: 11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua

District, Shenzhen, China

Equipment Under Test (EUT):

Product: Smart Watch

Model No.: IDW17

Test Model No.: IDW17

Brand Name: IDO

FCC ID: 2AHFT498

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2023-04-18

Date of Test: 2023-04-18 to 2023-04-28

Date of Issue: 2023-05-17
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By: Jack Ai)

Report No.: CQASZ20230400550E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20230400550E-01	Rev.01	Initial report	2023-05-17

Note:

The difference between 1# and 2# is the supplier of the screen, the supplier of the battery, and the supplier of the motor

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	1	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section ANSI C63.10-2013		PASS
Conducted Peak Output Power	47 CFR Part 15.207	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	4
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 ADDITIONAL INSTRUCTIONS	
4.4 TEST ENVIRONMENT	8
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 Antenna Requirement	
5.1 ANTENNA REQUIREMENT 5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK OUTPUT POWER.	
5.4 20DB OCCUPIED BANDWIDTH	_
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 HOPPING CHANNEL NUMBER	36
5.7 DWELL TIME	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 Radiated Emission	85
6.2 CONDUCTED EMISSION	
7 DUOTOGRADUS EUT CONSTRUCTIONAL DETAILS	97

Report No.: CQASZ20230400550E-01

4 General Information

4.1 Client Information

Applicant:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Factory:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	IDW17
Test Model No.:	IDW17
Trade Mark:	IDO
Software Version:	V1.00.03
Hardware Version:	V1.1
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.3
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Transfer Rate:	1Mbps/2Mbps/3Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT:	FCC
Antenna Type:	FPC antenna
Antenna Gain:	-1.47dBi
Power Supply:	Li-ion battery: DC 3.8V 300mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

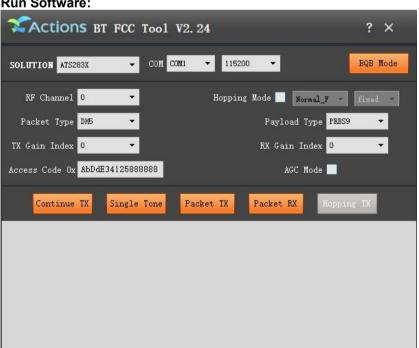
Report No.: CQASZ20230400550E-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



Report No.: CQASZ20230400550E-01

4.3 Additional Instructions

EUT Test Software S	ettings:				
Mode:		 ⊠ Special software is used. ☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 			
EUT Power level:	(Power level is built-in set parameters selected)	(Power level is built-in set parameters and cannot be changed and selected)			
Use test software to set the	lowest frequency, the middle frequency and	I the highest frequency keep			
transmitting of the EUT.					
Mode	Channel	Frequency(MHz)			
	CH0	2402			
DH1/DH3/DH5	CH39	2441			
	CH78	2480			
	CH0	2402			
2DH1/2DH3/2DH5	CH39	2441			
	CH78	2480			
	CH0	2402			
3DH1/3DH3/3DH5	CH39	2441			
	CH78	2480			

Run Software:

Report No.: CQASZ20230400550E-01

4.4 Test Environment

Operating Environment:	Operating Environment:			
Temperature:	25 °C			
Humidity:	54% RH			
Atmospheric Pressure:	1009mbar			
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
Adapter	MI	/	/	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8℃
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Report No.: CQASZ20230400550E-01

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			14	0-1:1	0-1:1
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU26	CQA-038	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU40	CQA-075	2022/09/09	2023/09/08
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2022/09/09	2023/09/08
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2022/09/09	2023/09/08
Preamplifier	EMCI	EMC184055SE	CQA-089	2022/09/09	2023/09/08
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2022/09/09	2023/09/08
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2022/09/09	2023/09/08
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2022/09/09	2023/09/08
Antenna Connector	CQA	RFC-01	CQA-080	2022/09/09	2023/09/08
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2022/09/09	2023/09/08
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2022/09/09	2023/09/08
Power meter	R&S	NRVD	CQA-029	2022/09/09	2023/09/08
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2022/09/09	2023/09/08
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
LISN	R&S	ENV216	CQA-003	2022/09/09	2023/09/08
Coaxial cable	CQA	N/A	CQA-C009	2022/09/09	2023/09/08
DC power	KEYSIGHT	E3631A	CQA-028	2022/09/09	2023/09/08

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

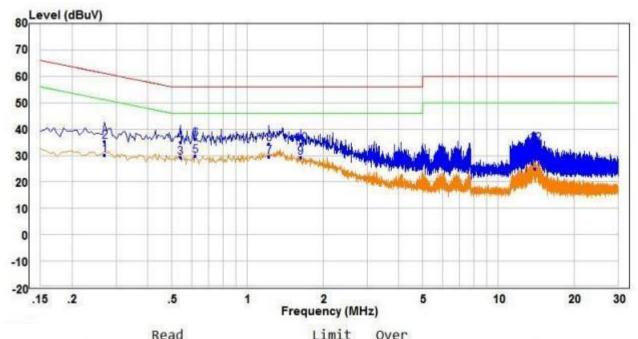
The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment

This is either permanently attachment or a unique coupling that satisfies the requirement.

5.2 Conducted Emissions

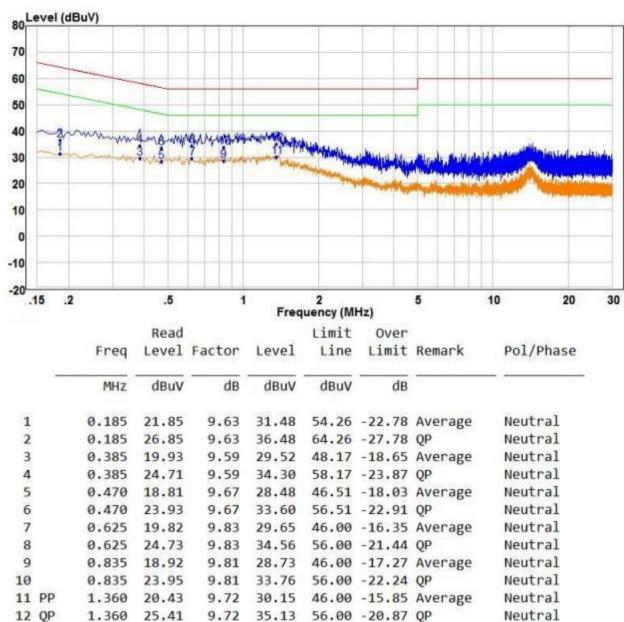
47 CFR Part 15C Section 15.207			
ANSI C63.10: 2013			
150kHz to 30MHz			
Frequency range (MUz)	Limit (d	lBuV)	
Frequency range (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithn	n of the frequency.		
 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 			
1		changed according to	
Shielding Room EUT AC Mains LISN1	AE LISN2 AC Mai	Test Receiver	
	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm 1) The mains terminal disturt room. 2) The EUT was connected to Impedance Stabilization Nimpedance. The power calconnected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Liexceeded. 3) The tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated experience plane associated experience for the find the maximum equipment and all of the in ANSI C63.10: 2013 on conservations.	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was room. 2) The EUT was connected to AC power source through the frequency of the EUT was connected to a Second LISN 2, which was bonder reference plane in the same way as the LISN 1 for measured. A multiple socket outlet strip was used power cables to a single LISN provided the rating exceeded. 3) The tabletop EUT was placed upon a non-metalling ground reference plane. And for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane, and for floor-standing are placed on the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the EUT shall be 0.4 m from the vertical ground reference plane. The between the closest points of the LISN 1 and the the EUT and associated equipment was at least (5) In order to find the maximum emission, the relative equipment and all of the interface cables must be ANSI C63.10: 2013 on conducted measurement.	


Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

1#

Measurement Data

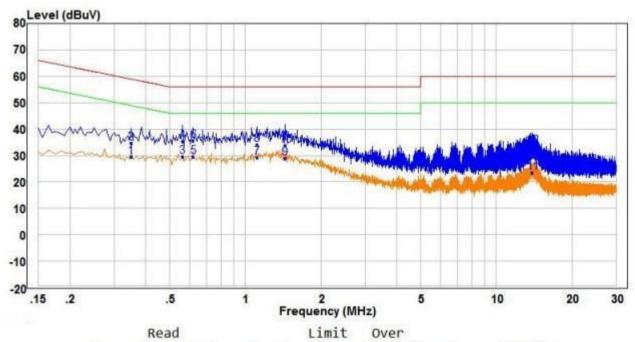
Live line:



	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB	dBuV	dBuV	dB		
1	0.270	20.82	9.49	30.31	51.12	-20.81	Average	Line
2	0.270	25.89	9.49	35.38	61.12	-25.74	QP	Line
3	0.540	19.54	9.59	29.13	46.00	-16.87	Average	Line
4	0.540	25.36	9.59	34.95	56.00	-21.05	QP	Line
5 PP	0.620	20.23	9.74	29.97	46.00	-16.03	Average	Line
6 QP	0.620	26.39	9.74	36.13	56.00	-19.87	QP	Line
7	1.220	20.10	9.53	29.63	46.00	-16.37	Average	Line
8	1.220	24.92	9.53	34.45	56.00	-21.55	QP	Line
9	1.630	19.77	9.52	29.29	46.00	-16.71	Average	Line
10	1.630	24.83	9.52	34.35	56.00	-21.65	QP	Line
11	13.995	15.18	9.87	25.05	50.00	-24.95	Average	Line
12	13.995	24.66	9.87	34.53	60.00	-25.47	QP	Line

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

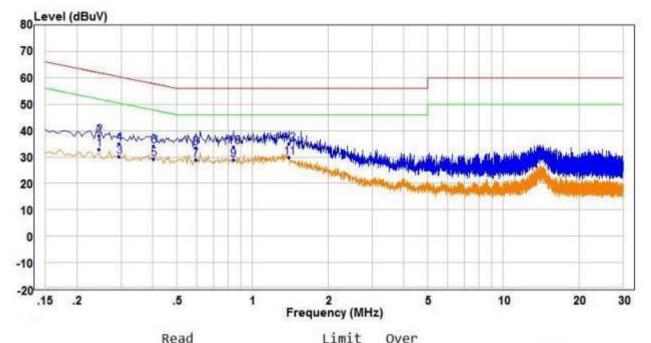
Neutral line:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

2#

Measurement Data

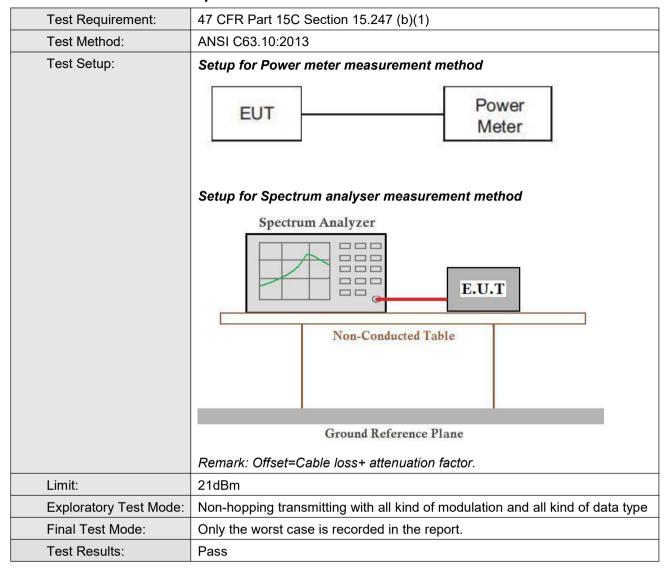
Live line:



L/Phase	Pol/F	Remark	Limit	Line	Level	Factor	Level	Freq	
	-		dB	dBuV	dBuV	dB	dBuV	MHz	-
ne	Line	Average	-19.25	48.96	29.71	9.50	20.21	0.350	1
ne e	Line	QP	-24.30	58.96	34.66	9.50	25.16	0.350	2
ne	Line	Average	-16.53	46.00	29.47	9.63	19.84	0.560	3
ie	Line	QP	-20.65	56.00	35.35	9.63	25.72	0.560	4
ne	Line	Average	-16.52	46.00	29.48	9.74	19.74	0.620	5 PP
ie	Line	QP	-20.40	56.00	35.60	9.74	25.86	0.620	6 QP
ne .	Line	Average	-16.65	46.00	29.35	9.53	19.82	1.110	7
ie	Line	QP	-21.80	56.00	34.20	9.53	24.67	1.110	8
ne .	Line	Average	-17.11	46.00	28.89	9.52	19.37	1.440	9
ie	Line	QP	-22.15	56.00	33.85	9.52	24.33	1.440	0
ie	Line	Average	-26.38	50.00	23.62	9.88	13.74	13.915	1
ie	Line	QP	-26.48	60.00	33.52	9.88	23.64	13.915	2
16	Line Line Line Line Line Line	Average QP Average QP Average QP Average	-16.52 -20.40 -16.65 -21.80 -17.11 -22.15 -26.38	46.00 56.00 46.00 56.00 46.00 56.00 50.00	29.48 35.60 29.35 34.20 28.89 33.85 23.62	9.74 9.74 9.53 9.53 9.52 9.52 9.88	19.74 25.86 19.82 24.67 19.37 24.33 13.74	0.620 0.620 1.110 1.110 1.440 1.440 13.915	5 PP 6 QP 7 8 9 0

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:


	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
2.0	MHZ	dBuV	dB	dBuV	dBuV	dB		
1	0.245	23.34	9.54	32.88	51.92	-19.04	Average	Neutral
2	0.245	28.40	9.54	37.94	61.92	-23.98	QP	Neutral
3	0.295	20.58	9.49	30.07	50.38	-20.31	Average	Neutral
4	0.295	25.47	9.49	34.96	60.38	-25.42	QP	Neutral
5	0.405	19.58	9.61	29.19	47.75	-18.56	Average	Neutral
6	0.405	24.48	9.61	34.09	57.75	-23.66	QP	Neutral
7	0.595	19.05	9.80	28.85	46.00	-17.15	Average	Neutral
8	0.595	23.78	9.80	33.58	56.00	-22.42	QP	Neutral
9	0.840	19.19	9.81	29.00	46.00	-17.00	Average	Neutral
10	0.840	23.90	9.81	33.71	56.00	-22.29	QP	Neutral
11 PP	1.400	20.16	9.72	29.88	46.00	-16.12	Average	Neutral
12 QP	1.400	25.38	9.72	35.10	56.00	-20.90	QP	Neutral

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: CQASZ20230400550E-01

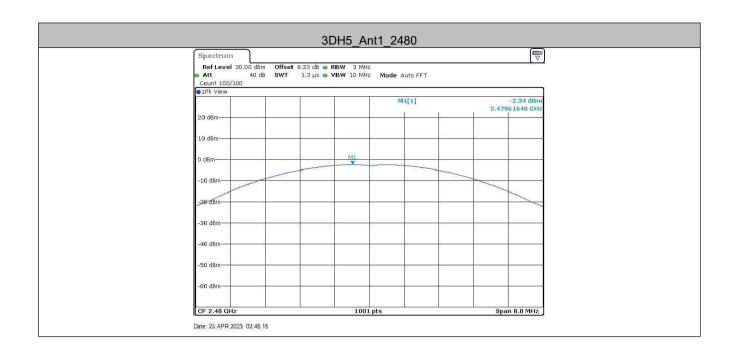
5.3 Conducted Peak Output Power

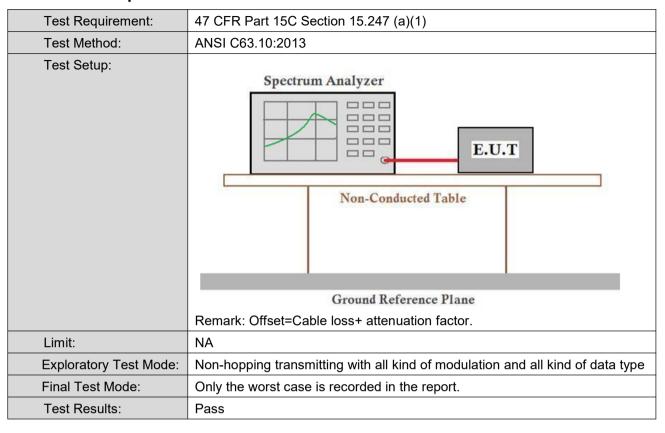

Report No.: CQASZ20230400550E-01

Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.68	21.00	Pass		
Middle	-2.29	21.00	Pass		
Highest	-2.05	21.00	Pass		
	π/4DQPSK m	ode			
Test channel	Test channel Peak Output Power (dBm)		Result		
Lowest	Lowest -2.75		Pass		
Middle	-2.37	21.00	Pass		
Highest	-1.98	21.00	Pass		
	8DPSK mod	e			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest			Pass		
Middle	-2.24	21.00	Pass		
Highest	-2.34	21.00	Pass		

Test plot as follows:





Report No.: CQASZ20230400550E-01

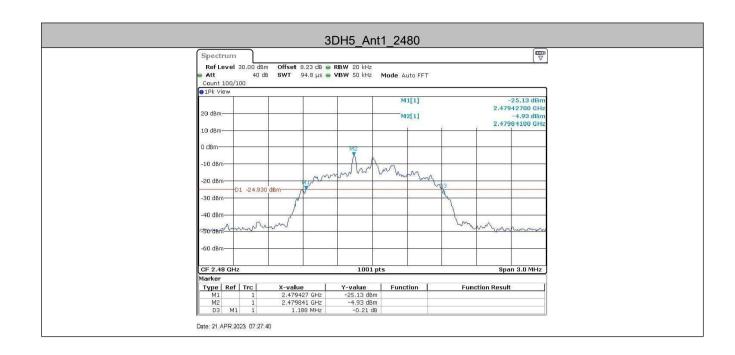
5.4 20dB Occupied Bandwidth

Measurement Data

Test channel	20dB Occupy Bandwidth (MHz)				
rest channel	GFSK	π/4DQPSK	8DPSK		
Lowest	0.94	1.21	1.19		
Middle	0.94	1.21	1.19		
Highest	0.94	1.21	1.19		

Report No.: CQASZ20230400550E-01

Test plot as follows:



Report No.: CQASZ20230400550E-01

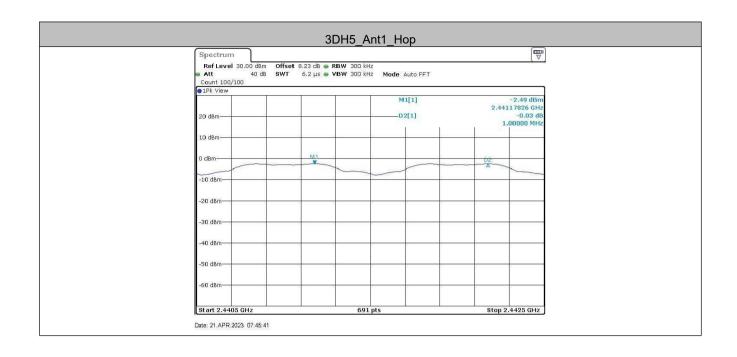
5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		

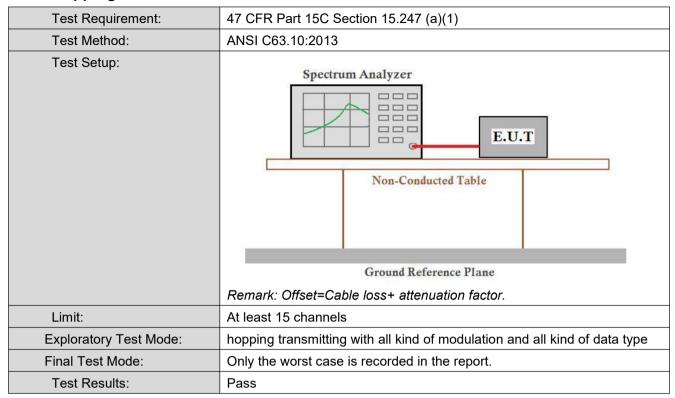
Report No.: CQASZ20230400550E-01

Measurement Data

TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	0.997	≥0.627	PASS
2DH5	Нор	1.006	≥0.807	PASS
3DH5	Нор	1	≥0.793	PASS

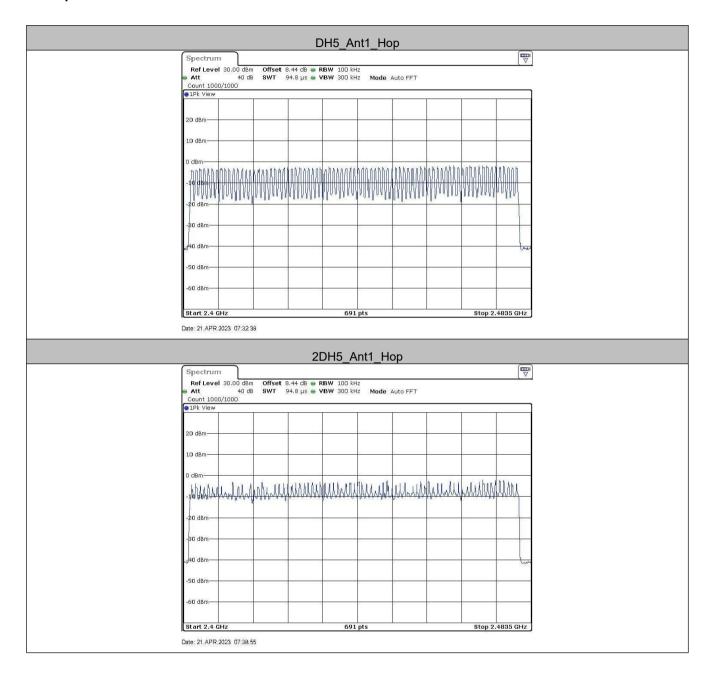

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	0.94	≥0.627
π/4DQPSK	1.21	≥0.807
8DPSK	1.19	≥0.793

Test plot as follows:

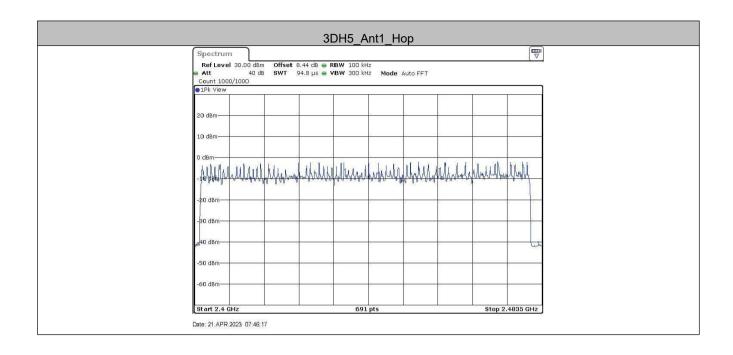


Report No.: CQASZ20230400550E-01

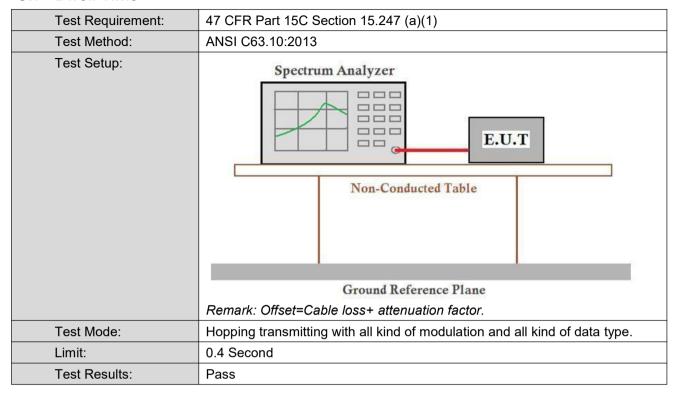
5.6 Hopping Channel Number



Measurement Data


	Mode	Hopping channel numbers	Limit			
	GFSK	79	≥15			
	π/4DQPSK	79	≥15			
	8DPSK	79	≥15			

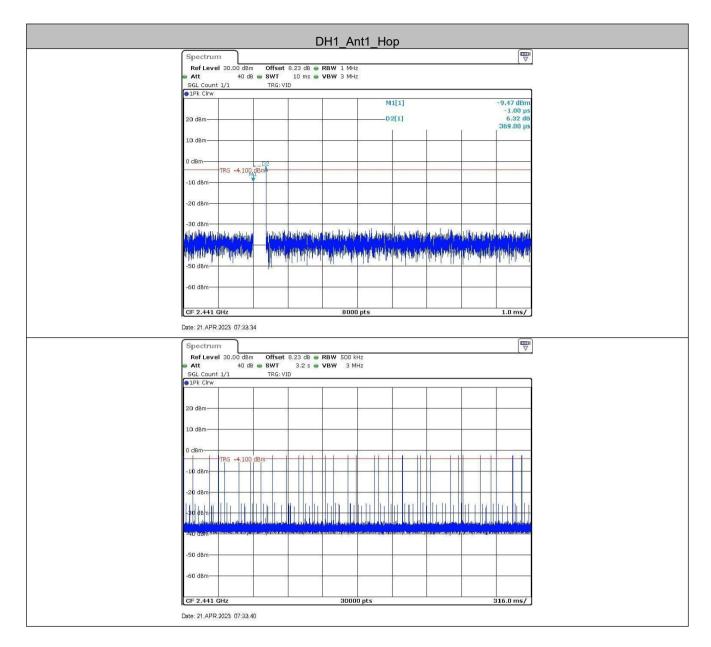
Test plot as follows:



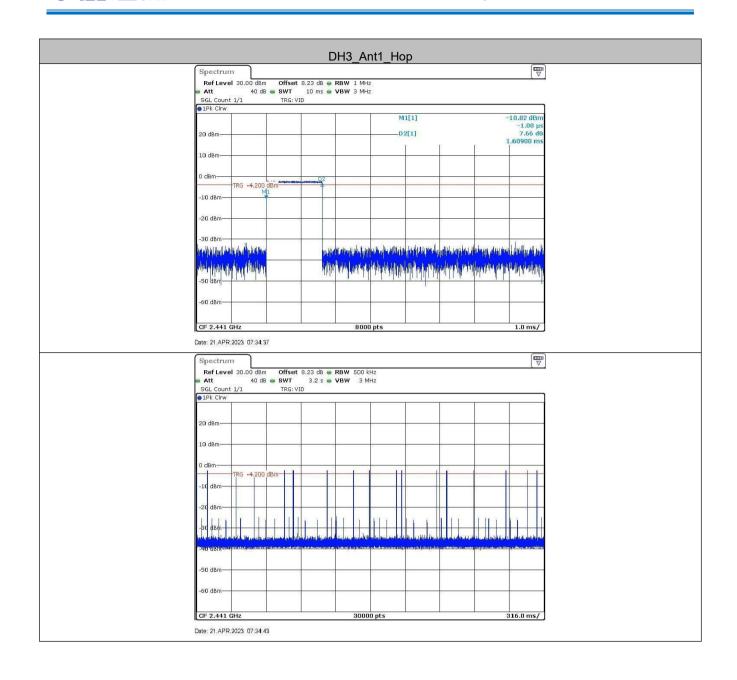
5.7 Dwell Time

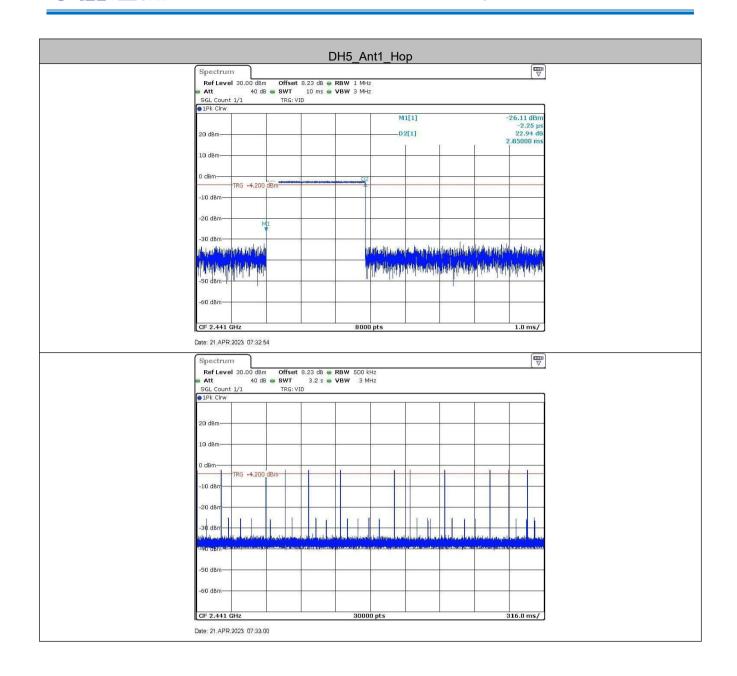
Report No.: CQASZ20230400550E-01

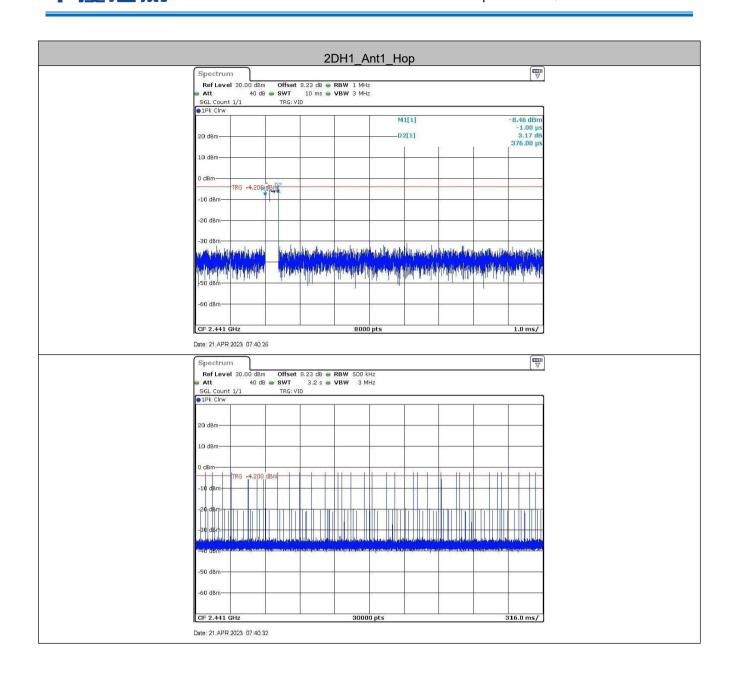
Measurement Data

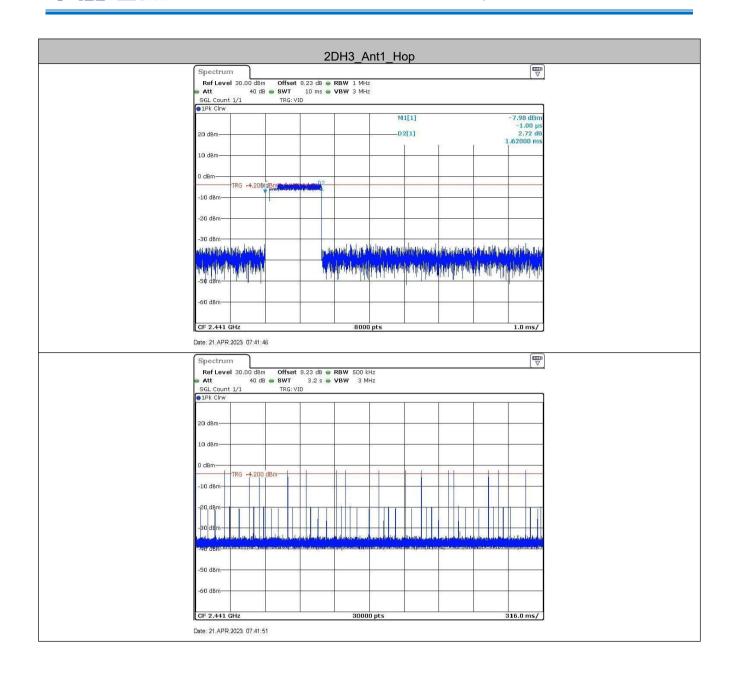

TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.369	320	0.118	≤0.4	PASS
DH3	Нор	1.609	170	0.274	≤0.4	PASS
DH5	Нор	2.850	120	0.342	≤0.4	PASS
2DH1	Нор	0.376	330	0.124	≤0.4	PASS
2DH3	Нор	1.620	160	0.259	≤0.4	PASS
2DH5	Нор	2.862	110	0.315	≤0.4	PASS
3DH1	Нор	0.378	330	0.125	≤0.4	PASS
3DH3	Нор	1.620	160	0.259	≤0.4	PASS
3DH5	Нор	2.863	110	0.315	≤0.4	PASS

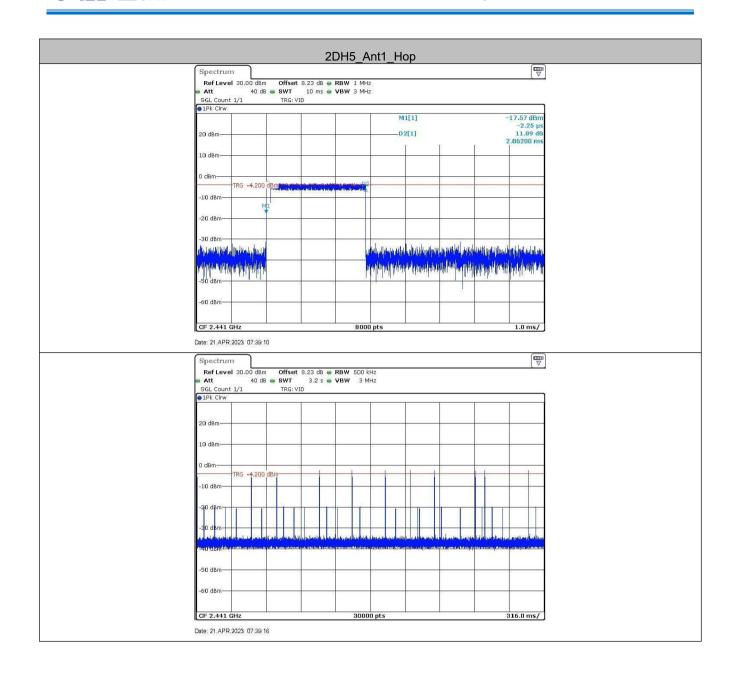
Remark:

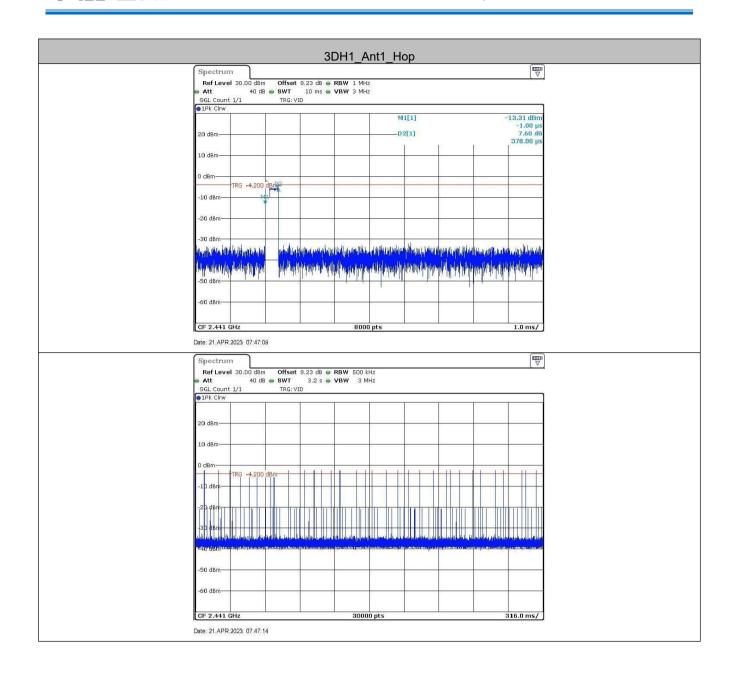

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

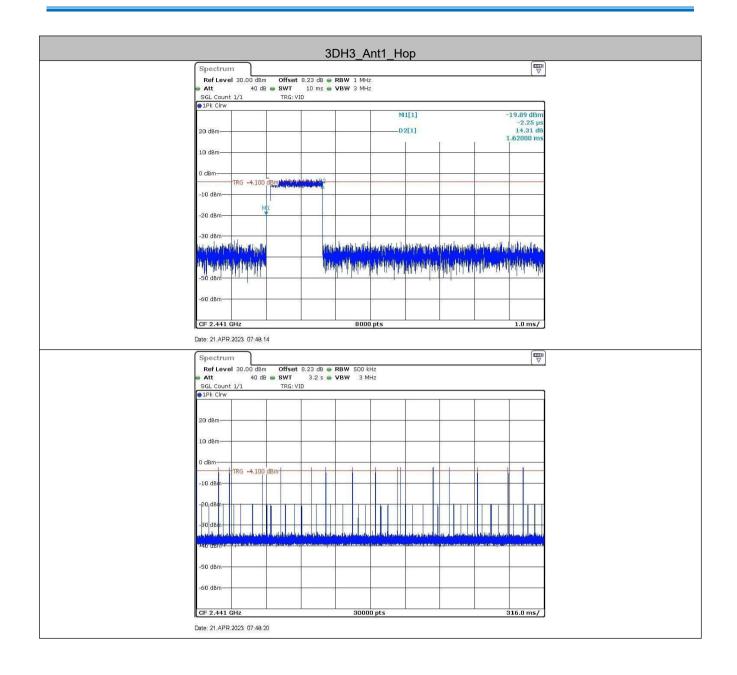

Test plot as follows:

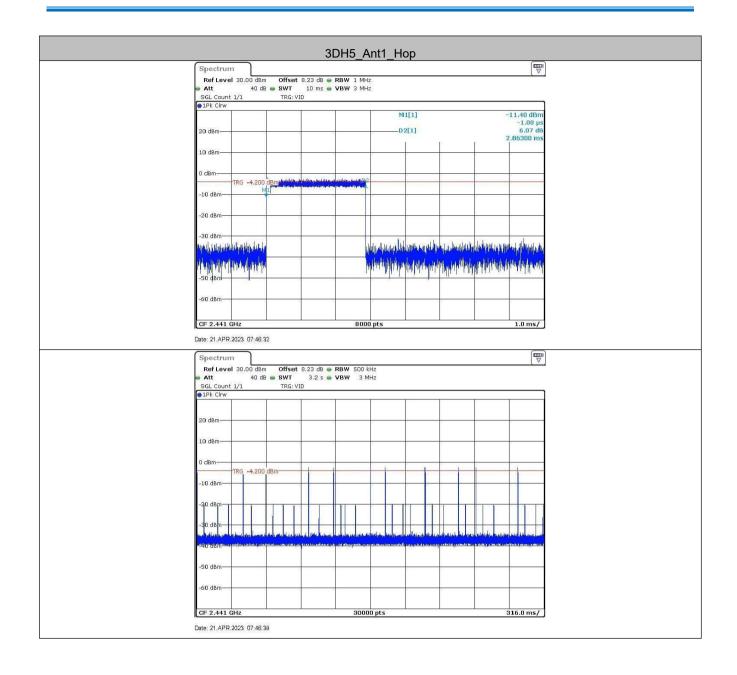








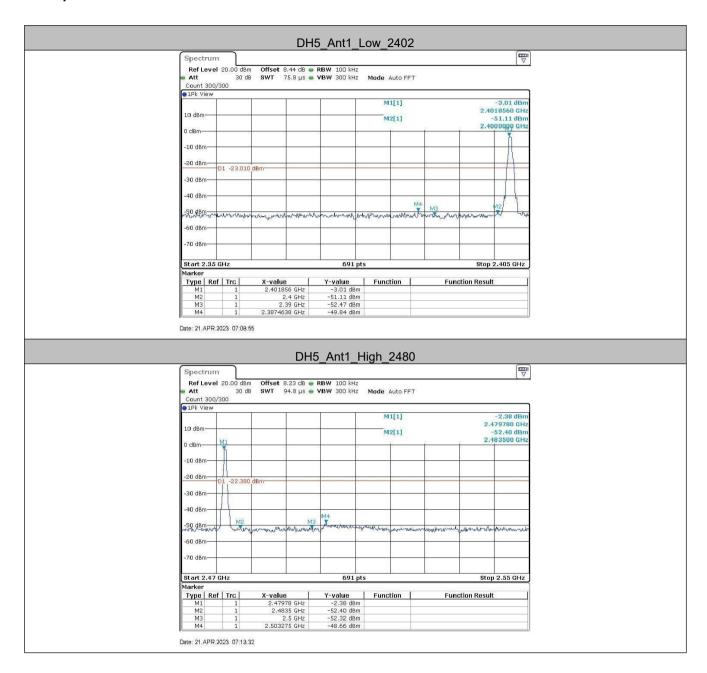




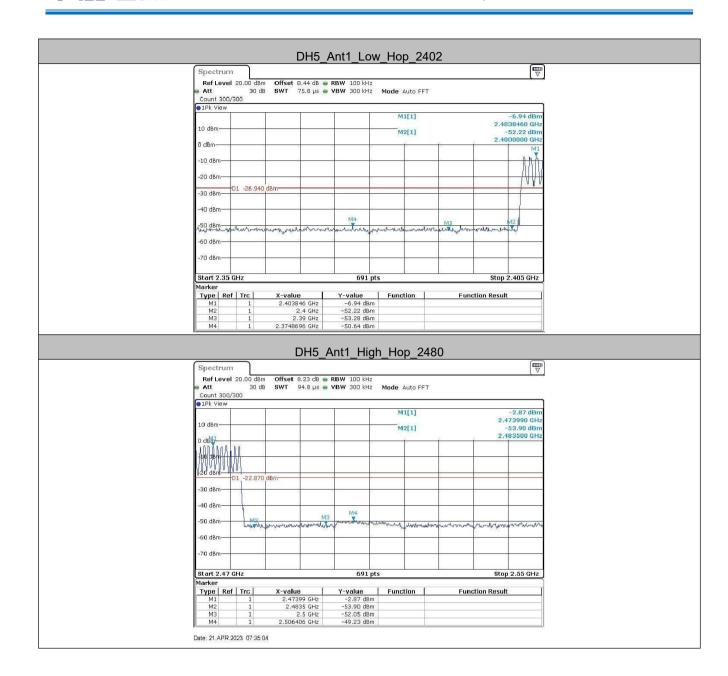
5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		

Report No.: CQASZ20230400550E-01


Measurement Data

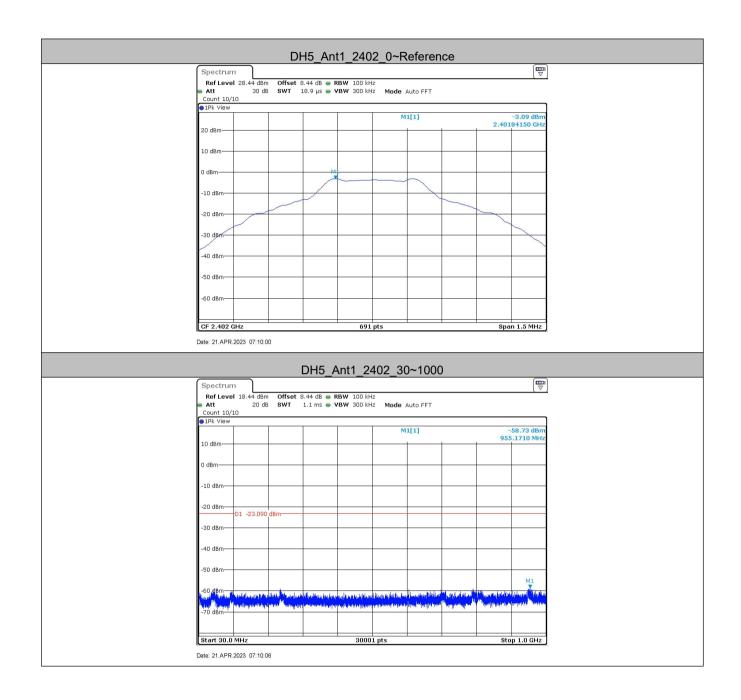
TestMode	ChName	Freq(MHz)	RefLevel	Result [dBm]	Limit [dBm]	Verdict
DH5	Low	2402	-3.01	-49.84	≤-23.01	PASS
	High	2480	-2.38	-48.66	≤-22.38	PASS
	Low	Hop_2402	-6.94	-50.64	≤-26.94	PASS
	High	Hop_2480	-2.87	-49.23	≤-22.87	PASS
2DH5	Low	2402	-3.74	-50.23	≤-23.74	PASS
	High	2480	-2.63	-48.98	≤-22.63	PASS
	Low	Hop_2402	-7.60	-50.47	≤-27.6	PASS
	High	Hop_2480	-3.86	-49.37	≤-23.86	PASS
3DH5	Low	2402	-3.02	-49.83	≤-23.02	PASS
	High	2480	-2.38	-49.28	≤-22.38	PASS
	Low	Hop_2402	-5.61	-50.8	≤-25.61	PASS
	High	Hop_2480	-3.45	-49.29	≤-23.45	PASS



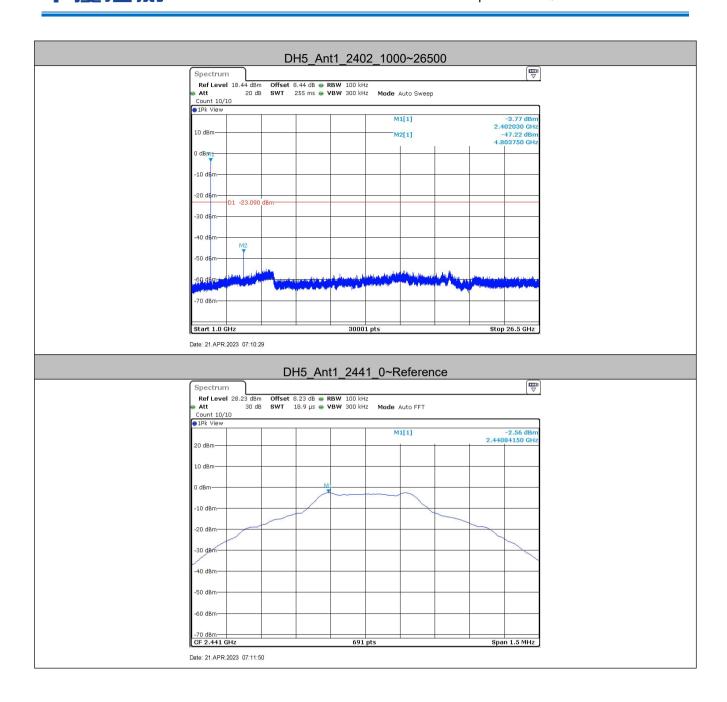
Report No.: CQASZ20230400550E-01

Test plot as follows:




Report No.: CQASZ20230400550E-01

5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		
Test Results:	Pass		

