

TEST REPORT

Test report no.: 1-4262/17-01-02-A

Testing laboratory

CTC advanced GmbH

e-mail:

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany +49681598-0 Phone: +49 681 5 98 - 9075 Fax: Internet: http://www.ctcadvanced.com

mail@ctcadvanced.com **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Sick AG

Erwin-Sick-Str. 1

79183 Waldkirch / GERMANY Phone: +49 (0) 7681 202 0 +49 7681 202-3600 Fax: Contact: Wolfgang Hettich

Wolfgang.Hettich@sick.de e-mail: +49 7681 202-5925 Phone:

Manufacturer

Sick AG

Erwin-Sick-Str. 1

79183 Waldkirch / GERMANY

Test standard/s

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency 47 CFR Part 15

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

Spectrum Management and Telecommunications Radio Standards Specifications -RSS - Gen Issue 4

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Photoelectric sensor

Model name: WLG16 FCC ID: 2AHDR-W16 IC: 21147-W16

Frequency: DTS band 2400 MHz to 2483.5 MHz

Bluetooth® LE Technologytested: Antenna: Integrated antenna

24.0 V DC by external power supply Power supply:

-40°C to +60°C Temperature range:

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o.	
Stefan Bös Lab Manager	Mihail Dorongovskij Lab Manager

Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	. 3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5		em	
•	5.1	General description	
	5.2	Additional information	
6	Seque	nce of testing	6
	6.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	. 6
	6.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	7
	6.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	6.4	Sequence of testing radiated spurious above 18 GHz	9
7	Measu	rement uncertainty	10
8	Descri	ption of the test setup	11
	8.1	Shielded semi anechoic chamber	
	8.2	Shielded fully anechoic chamber	
	8.3	Radiated measurements > 18 GHz	
	8.4	Conducted measurements C.BER system	
	8.5	AC conducted	
9		ary of measurement results	
10	A	dditional comments	18
11	M	easurement results	19
	11.1	Power spectral density	
	11.2	DTS bandwidth - 6 dB bandwidth	
	11.3	Occupied bandwidth - 99% emission bandwidth	
	11.4	Maximum output power	
	11.5	Detailed spurious emissions @ the band edge - conducted	
	11.6	Band edge compliance radiated	
	11.7	TX spurious emissions conducted	
	11.8	Spurious emissions radiated below 30 MHz	
	11.9	Spurious emissions radiated 30 MHz to 1 GHz	
	11.10 11.11	Spurious emissions radiated above 1 GHz	
12		bservations	
	nex A	Glossary	
		Document history	
	ex B	Accreditation Certificate	57
Anr	14Y (:	ACCIDATATION L'ATTITICATA	2/

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4262/17-01-02 and dated 2017-08-08.

2.2 Application details

Date of receipt of order: 2017-06-01

Date of receipt of test item: 2017-07-05

Start of test: 2017-07-10

End of test: 2017-07-18

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 57

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	V04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 57

4 Test environment

		Tnom	+22 °C during room temperature tests
Temperature	:	T _{max}	No tests under extreme conditions required.
		Tmin	No tests under extreme conditions required.
Relative humidity content :			55 %
Barometric pressure			1021 hpa
		Vnom	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Photoelectric sensor
Type identification :	WLG16
HMN :	-/-
PMN :	WLG16 Bluetooth
HVIN :	WLG16P-2416212BA00
FVIN :	-/-
S/N serial number :	17190038AB
HW hardware status :	0.3.1D
SW software status :	0.3.1D
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)
Type of radio transmission: Use of frequency spectrum:	DSSS
Type of modulation :	GFSK
Number of channels :	40
Antenna :	Integrated antenna
Power supply :	24.0 V DC by external power supply
Temperature range :	-40°C to +60°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1163/16-01-01_AnnexA

1-4262/17-01-01_AnnexB 1-4262/17-01-01_AnnexD

© CTC advanced GmbH Page 5 of 57

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 6 of 57

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 7 of 57

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 57

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 9 of 57

7 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

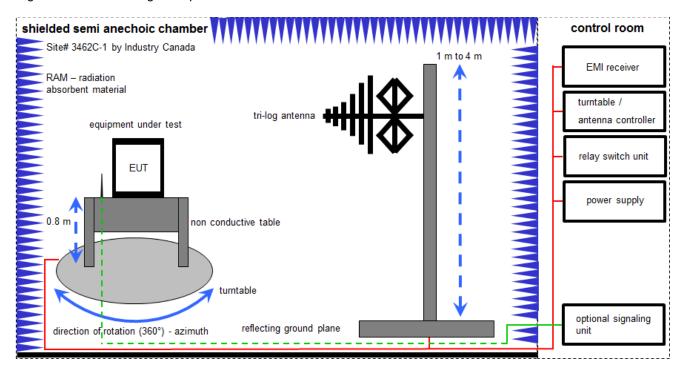
© CTC advanced GmbH Page 10 of 57

8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered/currently in progress

© CTC advanced GmbH Page 11 of 57

8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

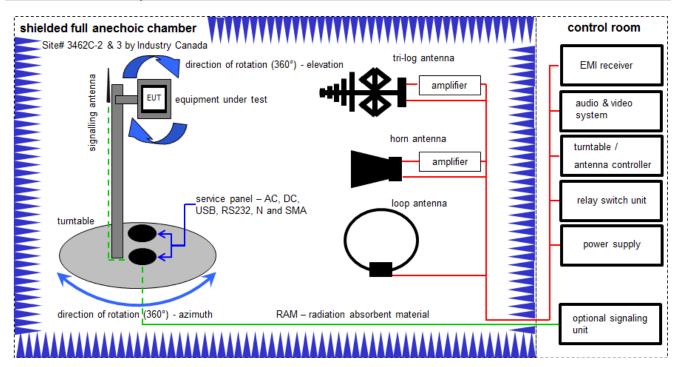
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	101042	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	А	Analy zer-Ref erence- Sy stem (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 12 of 57

8.2 Shielded fully anechoic chamber

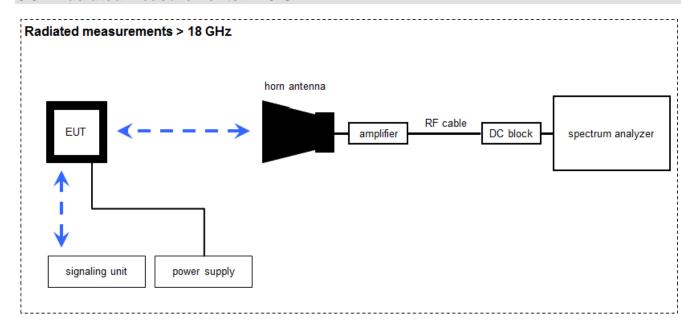
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2017	20.05.2019
2	А	Double-Ridged Wav eguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
3	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	A, B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
7	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000032	300004510	ne	-/-	-/-
9	A, B, C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Huber & Suhner	2V2403033A54 21	300004591	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	Batch no. 14844	300004682	ne	-/-	-/-
11	A, B, C	Anechoic chamber	ESH3-Z5	TDK	893045/004	300003726	ne	-/-	-/-
12	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	v IKI!	13.09.2016	13.03.2018

© CTC advanced GmbH Page 13 of 57

8.3 Radiated measurements > 18 GHz

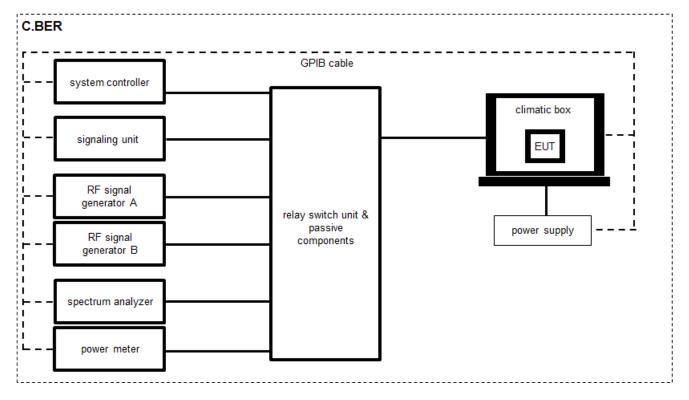
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017
2	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
3	А	Microwav e System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 14 of 57

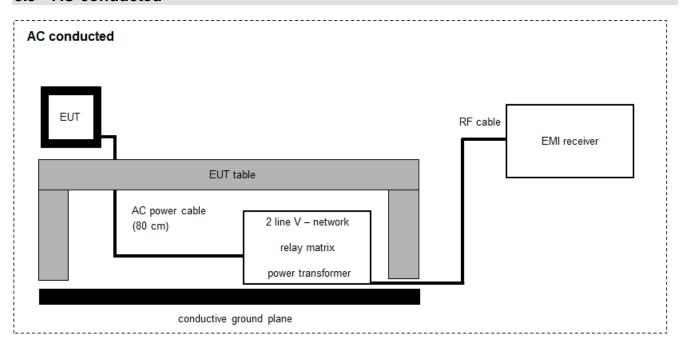
8.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch / Control Unit	3488A	HP	-/-	300000929	ne	-/-	-/-
2	Α	USB/GPIB interface	82357B	Agilent Technologies	MY 52103346	300004390	ne	-/-	-/-
3	Α	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	30.01.2017	29.01.2019
4	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
5	Α	Powersplitter	6005-3	Inmet Corp.	-/-	300002841	ev	-/-	-/-
6	Α	Messplatzrechner	Tecline	F+W	-/-	300003580	ne	-/-	-/-
7	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
8	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-
9	Α	Power Supply	NGSM 32/10	R&S	3939	400000192	v IKI!	31.01.2017	30.01.2020
10	Α	Shielding Box	JRE2218	JRE Test LLC	0001110	400001265	ne	-/-	-/-

© CTC advanced GmbH Page 15 of 57

8.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	31.01.2017	30.01.2018
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	Α	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	18.05.2001	-/-
4	Α	AC- Spannungsquelle v ariabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	11.12.2017
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	-/-
6	Α	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY 51210197	300004405	k	16.08.2016	16.08.2017

© CTC advanced GmbH Page 16 of 57

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained			
	There were deviations from the technical specifications ascertained			
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.			

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2017-11-29	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(e) RSS - 247 / 5.2 (b)	Pow er spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	GFSK	\boxtimes				*1
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandw idth – 6 dB bandw idth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK	\boxtimes				*1
RSS Gen clause 4.6.1	Occupied bandw idth	-/-	Nominal	Nominal	GFSK	\boxtimes				*1
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output pow er	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				*1
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	GFSK	\boxtimes				*1
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK	\boxtimes				*1
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-

^{*1):} NOTE: The tests were performed with a radiated sample with the output power normalized to the E.I.R.P values which were measured at the anechoic chamber.

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 17 of 57

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	1-1163/16-01-01_AnnexA						
Special test descriptions:		ated sample was used for the conducted measurements. The values were lized to E.I.R.P values which were measured at the anechoic chamber					
Configuration descriptions:	static I RX/Sta	sts: were performed with LE packets (37 byte payload) and PRBS pattern. andby tests: BT enabled, TX Idle d frequencies: lowest: 2402 MHz middle: 2440 MHz highest: 2480 MHz					
Test mode:		Bluetooth LE Test mode enabled (EUT is controlled over CBT)					
		Special software is used. EUT is transmitting pseudo random data by itself					
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) 					
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.					
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.					

© CTC advanced GmbH Page 18 of 57

11 Measurement results

11.1 Power spectral density

Description:

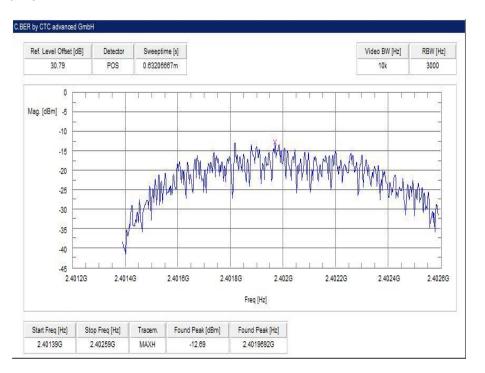
Measurement of the power spectral density of a digital modulated system.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 kHz			
Video bandwidth	10 kHz			
Span	≥ EBW			
Trace mode	Max hold			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

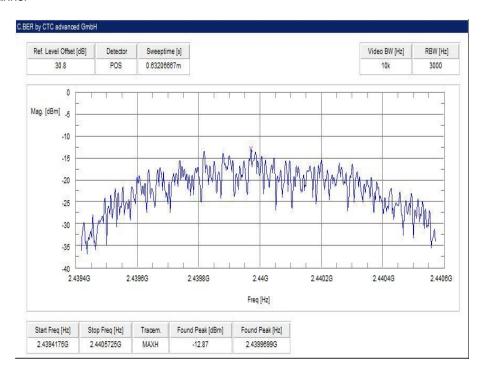
Limits:

FCC	IC			
Power spectral density				
For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.				

Results:

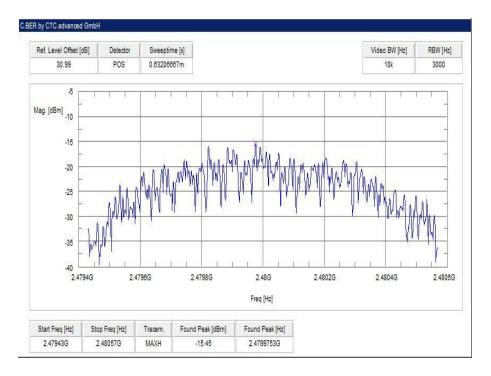

	Frequency			
	2402 MHz	2440 MHz	2480 MHz	
Power spectral density [dBm / 3kHz]	-12.7	-12.9	-15.5	

© CTC advanced GmbH Page 19 of 57



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 20 of 57

Plot 3: highest channel

© CTC advanced GmbH Page 21 of 57

11.2 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement parameters					
According to DTS clause: 8.1					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	100 kHz				
Video bandwidth	300 kHz				
Span	5 MHz				
Measurement procedure	Using 3 marker (max + 2x-6dB)				
Trace mode	Max hold (allow trace to stabilize)				
Test setup	See sub clause 6.4 A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC			
DTS bandwidth – 6 dB bandwidth				
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.				

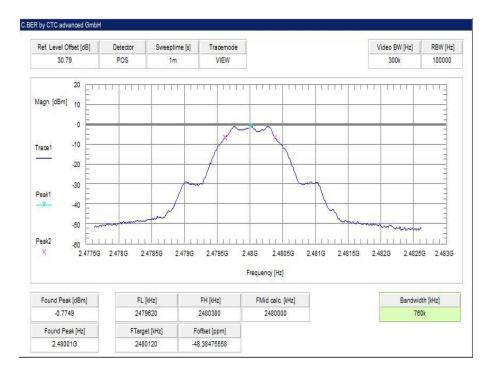
Results:

	Frequency			
	2402 MHz	2440 MHz	2480 MHz	
6 dB bandwidth [kHz]	800	770	760	

© CTC advanced GmbH Page 22 of 57

Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 23 of 57

Plot 3: highest channel

© CTC advanced GmbH Page 24 of 57

11.3 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	30 kHz			
Video bandwidth	100 kHz			
Span	5 MHz			
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer			
Trace mode	Max hold (allow trace to stabilize)			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

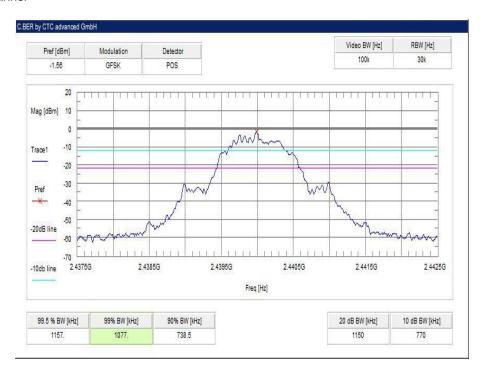
Usage:

-/-	IC	
Occupied bandwidth – 99% emission bandwidth		
OBW is necessary for emission designator		

Results:

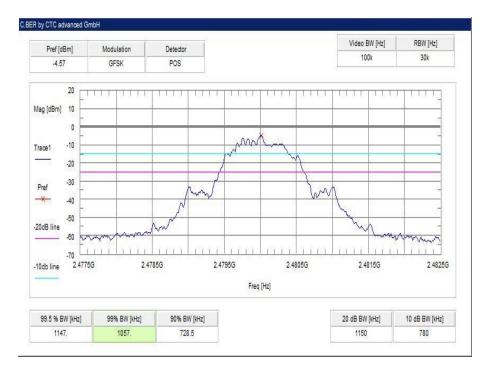
	Frequency		
	2402 MHz	2440 MHz	2480 MHz
99% bandwidth [kHz]	1097	1077	1057

© CTC advanced GmbH Page 25 of 57



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 26 of 57

Plot 3: highest channel

© CTC advanced GmbH Page 27 of 57

11.4 Maximum output power

Description:

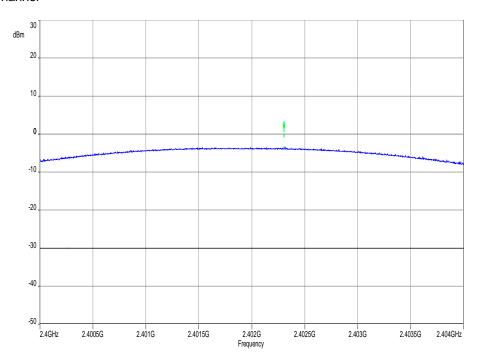
Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	10 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 B	
Measurement uncertainty	See sub clause 8	

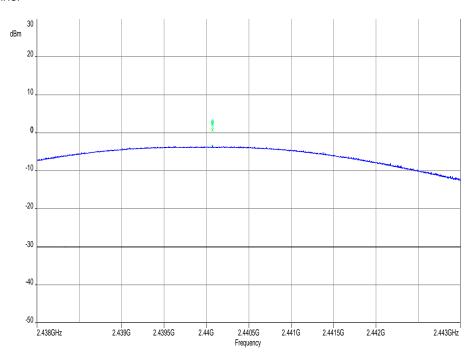
Limits:

FCC	IC	
Maximum output power		
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		

Results:

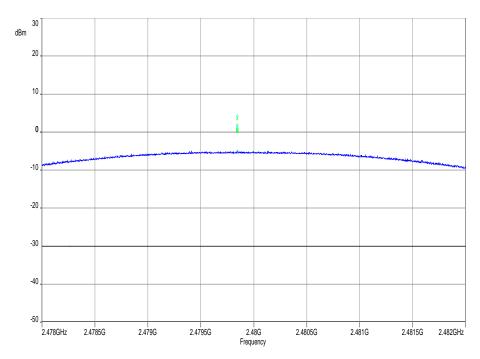

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm]	3.1	3.3	4.3

© CTC advanced GmbH Page 28 of 57



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 29 of 57

Plot 3: highest channel

© CTC advanced GmbH Page 30 of 57

11.5 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

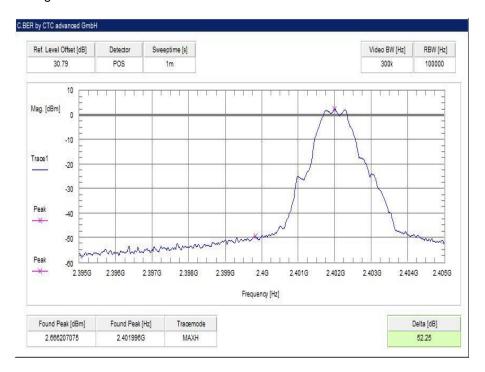
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 2395 - 2405 MHz Upper Band Edge: 2478 - 2489 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

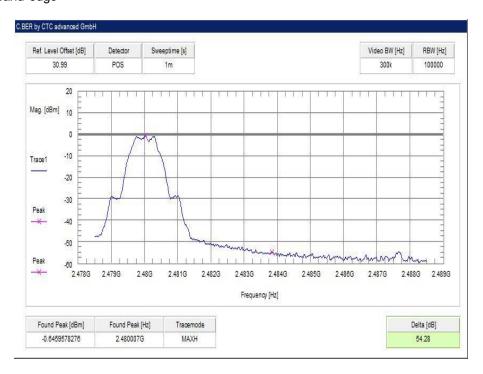
FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Result:


Scenario	Spurious band edge conducted [dB]
Modulation	GFSK
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB

© CTC advanced GmbH Page 31 of 57



Plots:

Plot 1: Lower band edge

Plot 2: Upper band edge

© CTC advanced GmbH Page 32 of 57

11.6 Band edge compliance radiated

Description:

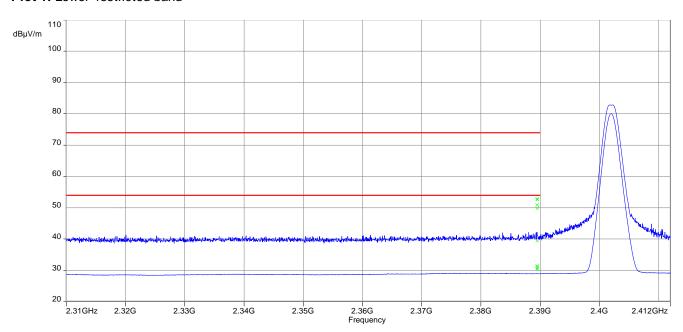
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2402 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz Upper Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 B	
Measurement uncertainty	See sub clause 8	

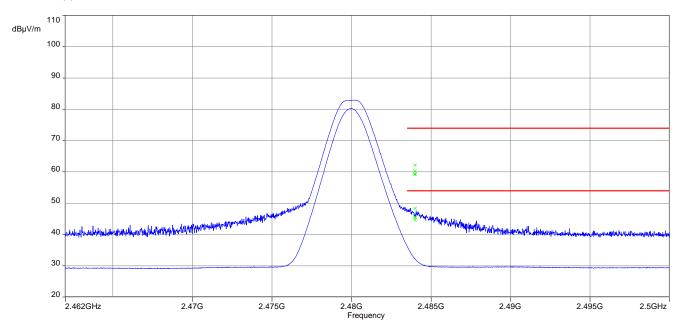
Limits:

FCC	IC
Band edge compliance radiated	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).	
<u> </u>	//m AVG //m Peak

Result:


Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

© CTC advanced GmbH Page 33 of 57



Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

© CTC advanced GmbH Page 34 of 57

11.7 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz or 500 kHz	
Span	9 kHz to 25 GHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

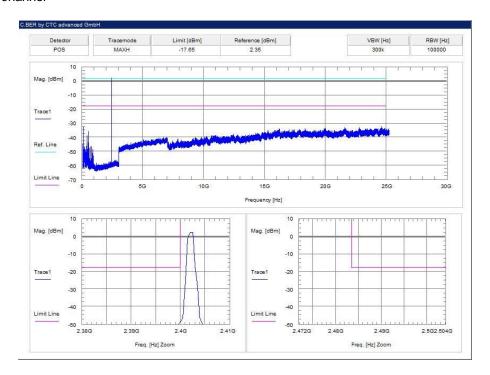
Limits:

	FCC	IC	
TV enurious amissions conducted			

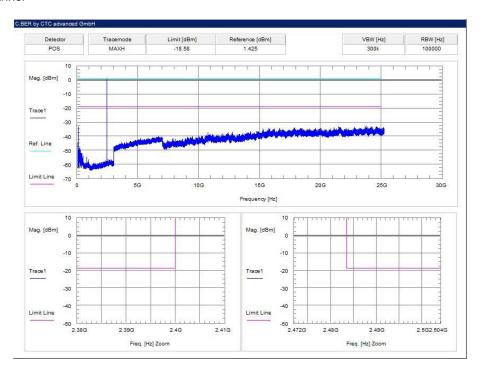
TX spurious emissions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

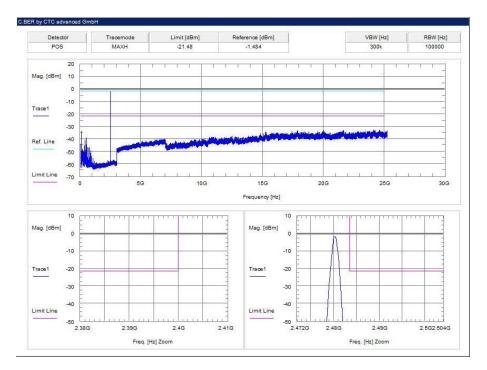

	amplitude of			
	emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
	2.4	30 dBm		Operating frequency
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant
	1.4	30 dBm		Operating frequency
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant
	-1.5	30 dBm		Operating frequency
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant
•	ons are com dBc limit!	ons are compliant with the -20 dBc limit! 1.4 ons are compliant with the -20 dBc limit! -1.5 ons are compliant with the -20	ns are compliant with the -20 dBc limit! -20 dBc 1.4 30 dBm ons are compliant with the -20 dBc limit! -20 dBc -1.5 30 dBm ons are compliant with the -20 dBc limit!	ans are compliant with the -20 dBc limit! -20 dBc 1.4 30 dBm ons are compliant with the -20 dBc limit! -20 dBc -20 dBc -20 dBc -20 dBc

© CTC advanced GmbH Page 35 of 57



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 36 of 57

Plot 3: highest channel

© CTC advanced GmbH Page 37 of 57

11.8 Spurious emissions radiated below 30 MHz

Description:

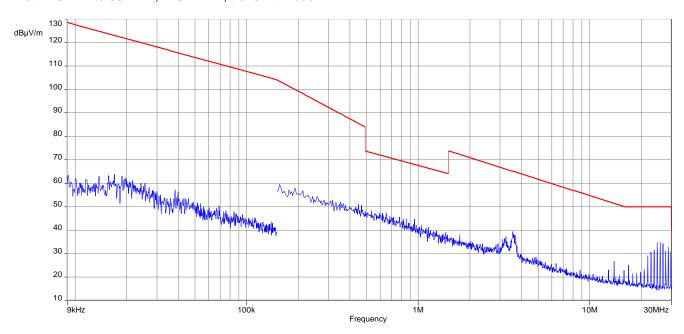
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters								
Detector	Peak / Quasi peak							
Sweep time	Auto							
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz							
Span	9 kHz to 30 MHz							
Trace mode	Max hold							
Test setup	See sub clause 6.2 C							
Measurement uncertainty	See sub clause 8							

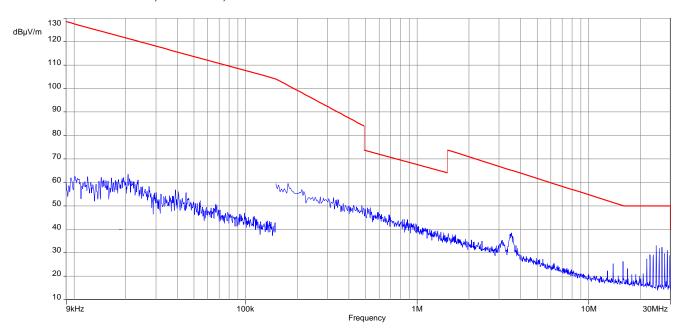
Limits:

FCC			IC			
TX spurious emissions radiated below 30 MHz						
Frequency (MHz)	Field strength (dBμV/m)		Measurement distance			
0.009 – 0.490	2400/F(kHz)		300			
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30	
1.705 – 30.0	3	0	30			

Results:

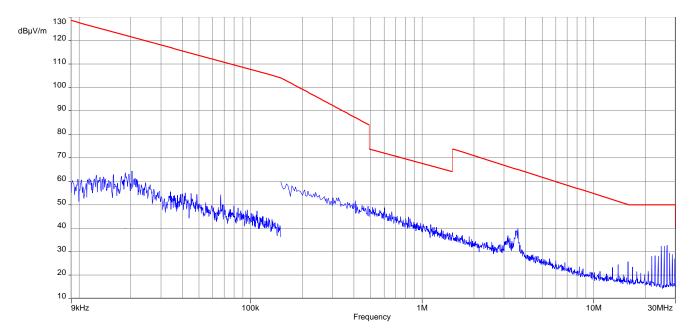

TX spurious emissions radiated below 30 MHz [dBμV/m]									
F [MHz] Detector Level [dBµV/m]									
All detecte	ed emissions are more than 20 dB below	the limit.							

© CTC advanced GmbH Page 38 of 57



Plots:

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode


Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

© CTC advanced GmbH Page 39 of 57

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

© CTC advanced GmbH Page 40 of 57

11.9 Spurious emissions radiated 30 MHz to 1 GHz

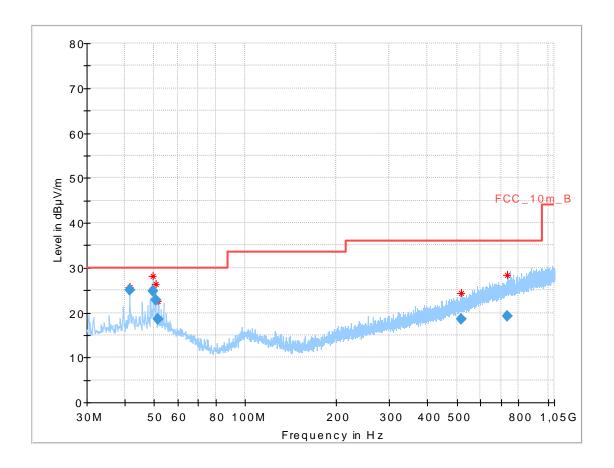
Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	120 kHz					
Video bandwidth	3 x RBW					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 6.1 A					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

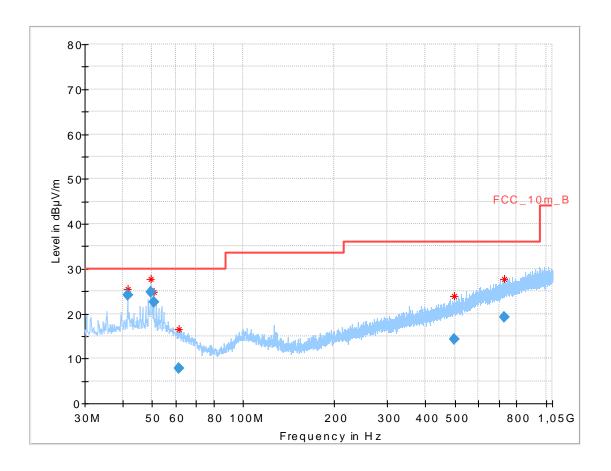
Limits:


FCC		IC							
TX spurious emissions radiated									
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15.	209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
30 - 88	30	0.0	10						
88 – 216	33	5.5	10						
216 – 960	216 – 960 36.0 10								
Above 960	54	.0	3						

© CTC advanced GmbH Page 41 of 57

Plots: Transmit mode

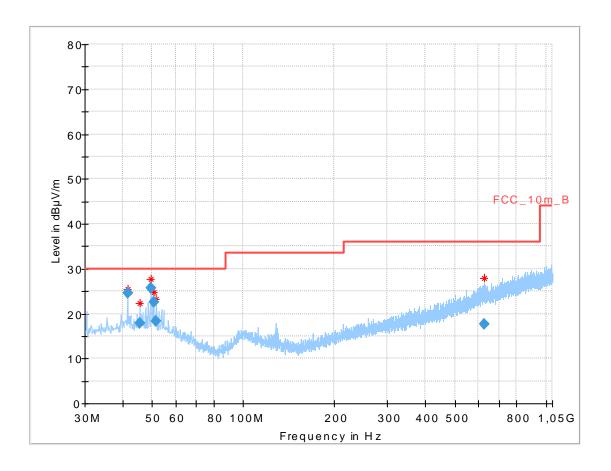
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.581800	24.94	30.00	5.06	1000.0	120.000	98.0	٧	10.0	13.3
49.687350	24.72	30.00	5.28	1000.0	120.000	179.0	٧	56.0	13.7
50.640600	22.71	30.00	7.29	1000.0	120.000	98.0	٧	308.0	13.6
51.687150	18.58	30.00	11.42	1000.0	120.000	98.0	٧	74.0	13.5
515.407950	18.44	36.00	17.56	1000.0	120.000	101.0	Н	234.0	18.9
732.914550	19.16	36.00	16.84	1000.0	120.000	185.0	٧	10.0	22.3

© CTC advanced GmbH Page 42 of 57

Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

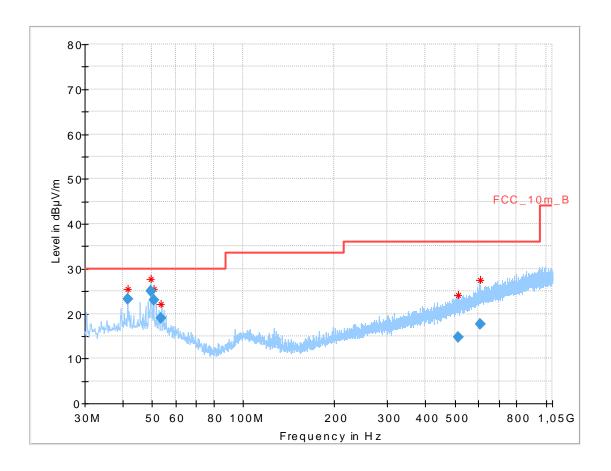

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.564250	24.18	30.00	5.82	1000.0	120.000	101.0	٧	298.0	13.3
49.672500	24.83	30.00	5.17	1000.0	120.000	98.0	٧	28.0	13.7
50.645700	22.59	30.00	7.41	1000.0	120.000	178.0	٧	219.0	13.6
61.556400	7.76	30.00	22.24	1000.0	120.000	185.0	Н	298.0	11.5
496.534050	14.35	36.00	21.65	1000.0	120.000	98.0	Н	304.0	18.6
729.166950	19.14	36.00	16.86	1000.0	120.000	185.0	٧	202.0	22.2

© CTC advanced GmbH Page 43 of 57

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.513100	24.57	30.00	5.43	1000.0	120.000	98.0	٧	351.0	13.3
45.641550	17.83	30.00	12.17	1000.0	120.000	98.0	٧	327.0	13.6
49.648350	25.61	30.00	4.39	1000.0	120.000	98.0	٧	309.0	13.7
50.668350	22.65	30.00	7.35	1000.0	120.000	98.0	٧	255.0	13.6
51.630450	18.40	30.00	11.60	1000.0	120.000	98.0	V	215.0	13.5
627.182100	17.69	36.00	18.31	1000.0	120.000	101.0	Н	54.0	20.9

© CTC advanced GmbH Page 44 of 57

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.518200	23.32	30.00	6.68	1000.0	120.000	178.0	V	253.0	13.3
49.587900	24.99	30.00	5.01	1000.0	120.000	98.0	٧	223.0	13.7
50.618250	22.95	30.00	7.05	1000.0	120.000	98.0	٧	123.0	13.7
53.688150	18.95	30.00	11.05	1000.0	120.000	178.0	٧	35.0	13.3
514.724850	14.71	36.00	21.29	1000.0	120.000	185.0	Н	253.0	18.9
604.951950	17.64	36.00	18.36	1000.0	120.000	185.0	٧	71.0	20.8

© CTC advanced GmbH Page 45 of 57

11.10 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC							
	TX spurious emissions radiated									
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an R F conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).										
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance							
Above 960	Above 960 54.0 (Average) 3									
Above 960	74.0 (Peak)	3							

© CTC advanced GmbH Page 46 of 57

Results: Transmitter mode

	TX spurious emissions radiated [dBμV/m]										
	2402 MHz			2440 MHz			2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level F [MHz] Detector Level [dBµV/m]						
4804	Peak	52.2	7320	Peak	54.2	7440	Peak	54.2			
4004	AVG	35.7*	7320	AVG	37.7*	7440	AVG	37.7*			
	Peak			Peak			Peak				
	AVG			AVG			AVG				
	Peak			Peak			Peak				
	AVG			AVG			AVG				

^{*)} Average emission adjusting factor:

F = 20 * log (dwell time* / 100 ms)

*w ith TXon time as dw ell time!

Bluetooth LE connected mode: Duty Cycle correction Scenarios

	TX payload bytes	TX dw ell time [ms]	TXon time [ms]	RX dw ell time min [ms]	No of TX w ithin 100 ms 100ms/(TxDw ell +RxDw ell)	min no of hopping channels (AFH)	max TX time [ms]/chan nel w ithin 100ms	DC correction F [dB]	Scenario
ĺ	37	0.625	0.376	0.625	80.0	2	15	-16.46	TX Packet. Rx =ACK
	37	0.625	0.376	0.625	80.0	2	15	-16.46	TX Packet = RX Packet

Note: For BT LE the dw ell time is a multiple of 0.625ms

Bluetooth LE Advertising mode:

Advertising is always in none Hopping mode.

A Bluetooth LE packet in advertising mode consists of:

Preamble (1 Byte)

Access Address (4 Bytes):always: 0x8E89BED6

PDU Header (2 Bytes)

PDU MAC address (6 Bytes)

PDU Data (0-31 Bytes) (connected undirected advertising (ADV_IND)

CRC (3 Bytes)

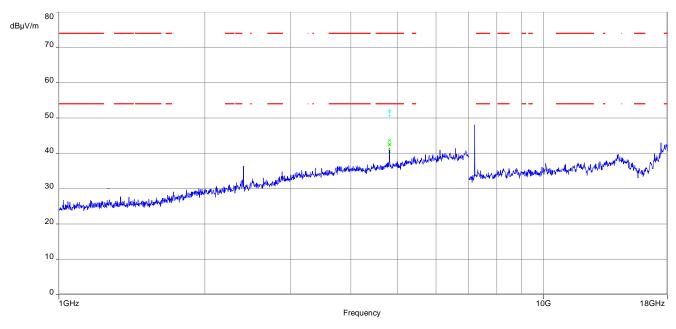
The maximum size of a complete advertising packet is 47 Bytes (376us) Minimum possible advertising interval (per advertising channel): 20 ms Duty cycle within 100ms: 5*0.376ms /100ms = 0.0188 =1.88% Correction factor for average calculation:

F = 20 * log (0.0188) = -34.51dB

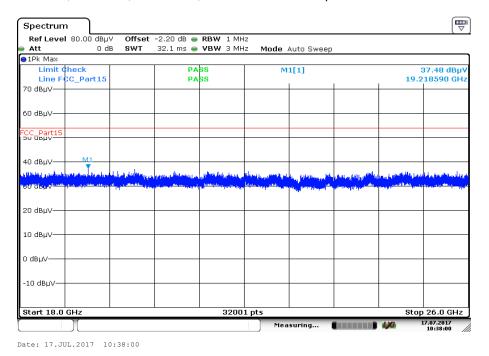
© CTC advanced GmbH Page 47 of 57

Results: Receiver mode

RX spurious emissions radiated [dBµV/m]						
F [MHz]	Detector	Level [dBµV/m]				
All detected emissions are more than 20 dB below the limit.						
	AVG					

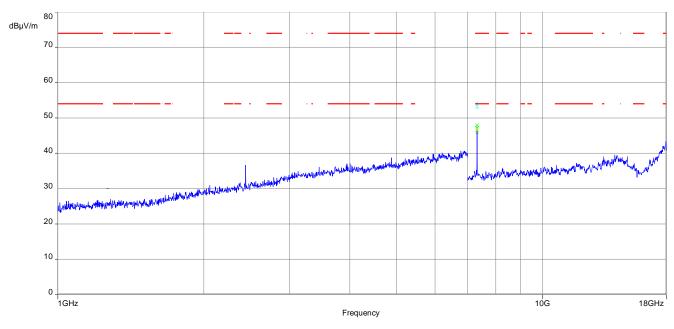

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

© CTC advanced GmbH Page 48 of 57

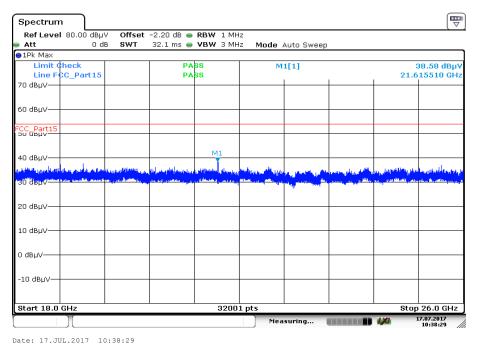

Plots: Transmitter mode

Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

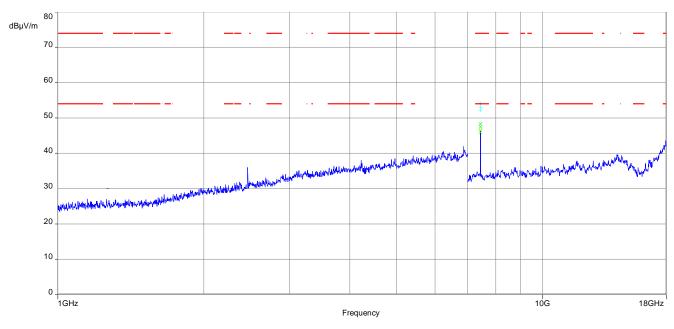

Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

© CTC advanced GmbH Page 49 of 57

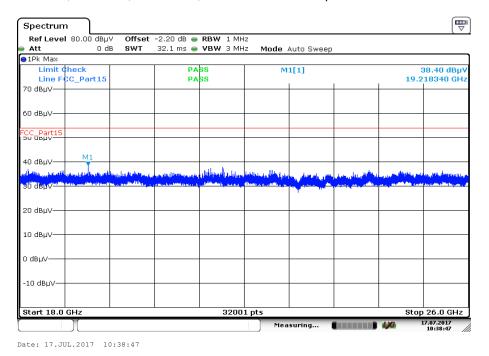


Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

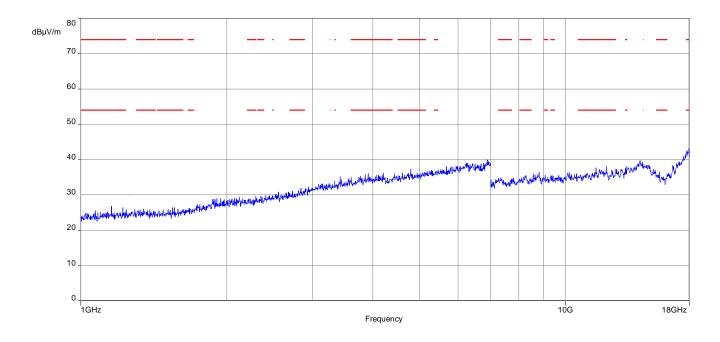
© CTC advanced GmbH Page 50 of 57



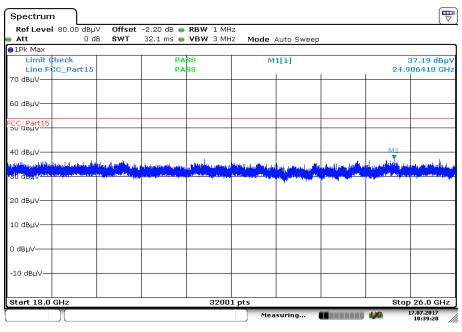
Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization



© CTC advanced GmbH Page 51 of 57



Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 17.JUL.2017 10:39:20

© CTC advanced GmbH Page 52 of 57

11.11 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

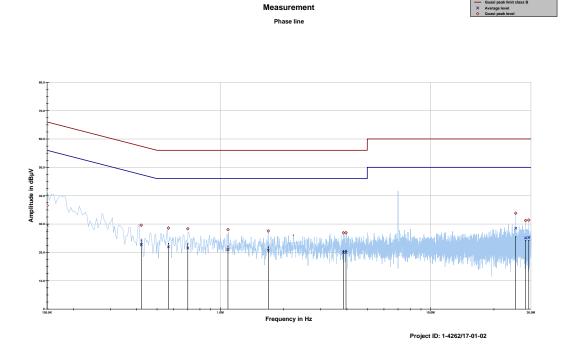
Measurement parameters					
Detector	Peak - Quasi peak / average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max hold				
Test setup	See sub clause 6.5. A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC		IC		
Т	X spurious emission	s conducted < 30 MI	Hz	
Frequency (MHz)	Quasi-peal	κ (dBμV/m)	Average (dBµV/m)	
0.15 – 0.5	66 to	56*	56 to 46*	
0.5 – 5		6	46	
5 – 30.0 60		0	50	

^{*}Decreases with the logarithm of the frequency

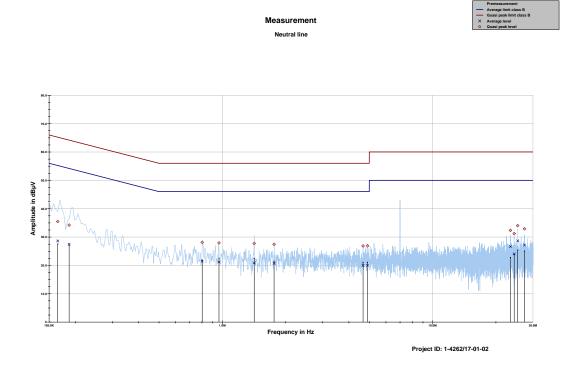
Results:


Spurious emissions conducted < 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
No emissions detected					

© CTC advanced GmbH Page 53 of 57

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150138	36.52	29.48	65.992	29.53	26.47	55.996
0.420655	29.58	27.85	57.435	22.80	25.47	48.267
0.566734	28.60	27.40	56.000	21.92	24.08	46.000
0.700754	28.34	27.66	56.000	21.54	24.46	46.000
1.087774	28.03	27.97	56.000	21.00	25.00	46.000
1.691421	27.56	28.44	56.000	20.71	25.29	46.000
3.850768	26.91	29.09	56.000	20.04	25.96	46.000
3.961388	26.93	29.07	56.000	20.03	25.97	46.000
25.404571	33.82	26.18	60.000	28.54	21.46	50.000
28.332663	31.26	28.74	60.000	25.08	24.92	50.000
29.312994	31.40	28.60	60.000	25.27	24.73	50.000

© CTC advanced GmbH Page 54 of 57

Plot 2: 150 kHz to 30 MHz, neutral line

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dΒμV	dΒμV	dB	dΒμV
0.164947	35.47	29.74	65.211	28.61	26.96	55.573
0.186836	34.21	29.97	64.176	27.46	27.48	54.948
0.802339	28.15	27.85	56.000	21.45	24.55	46.000
0.964551	27.92	28.08	56.000	21.17	24.83	46.000
1.418156	27.73	28.27	56.000	20.87	25.13	46.000
1.762397	27.44	28.56	56.000	20.74	25.26	46.000
4.670200	26.85	29.15	56.000	19.99	26.01	46.000
4.906352	26.88	29.12	56.000	20.01	25.99	46.000
23.454260	32.35	27.65	60.000	26.65	23.35	50.000
24.441112	31.21	28.79	60.000	24.05	25.95	50.000
25.407304	34.01	25.99	60.000	28.66	21.34	50.000
27.360751	32.89	27.11	60.000	27.15	22.85	50.000

© CTC advanced GmbH Page 55 of 57

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
ETSI	European Telecommunications Standard Institute			
EN European Standard				
FCC	Federal Communication Commission			
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
sw	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
С	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
ОС	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			

© CTC advanced GmbH Page 56 of 57

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-08-08
А	HVIN and PMN changed	2017-11-29

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk Mobilitunk (GSM / DC3) + OTA Elektromagnetische Verträglichkeit (EMV) Produtschierheit SAA / EMF Unweit SAA / EMF Unweit SAA / EMF Automotive WiFi-Services Randische Anforderungen Us-Anforderungen Aksuttik Near Field Communication (NFC) Die Akkreditierungsunkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsunummer D-Pi-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten. Registrierungsnummer der Urkunde: D-PI-12076-01-01	Deutsche Akkreditierungsstelle GmbH Standort Berlin Spittelmarkt 10 Europa-Allee S2 10117 Berlin Sittelmarkt 10 Europa-Allee S2 10117 Berlin Sittelmarkt 10 Europa-Allee S2 Europa-Ballee S10 S8116 Braunschweig Bundesallee S10 S8116 Braunschelle Bundesallee S10 S8116 Braunschelle Bundesallee S10
The second of th	

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf

© CTC advanced GmbH Page 57 of 57