

Test Report			
47 CFR FCC Part 15 subpart C			
Intentional Radiators			

Report reference no	28109934 001
FCC Designation Number	IT0008
FCC Test Firm Registration #	804595
Tested by (name + signature)	Riccardo Pfeiffer \ Tester Liccold Heiffer
Approved by (name + signature):	Giovanni Molteni \ TM
Date of issue	October 07 th 2016
Total number of pages	126 Pages
Testing Laboratory	TÜV Rheinland Italia S.r.l.
Address	Via Mattei 3 - 20010 - Pogliano Milanese (MI) – Italy
Applicant's name	RCF S.p.a.
Address	Via Raffaello Sanzio, 13 – 42124 Mancasale (RE) - ITALY
Test item description	Professional Mixer
Trade Mark	RCF
Manufacturer	RCF S.p.a
Model/Type reference	M18
Ratings	100-240Vac,50W ~ 50/60Hz
Sample	Mixer M18 with WiFi Module
Samples received on	May 27 th 2016
TUV reference samples	160266 (EUT sampled by Applicant)
Samples tested n	1
Testing	
Testing : Start Date: :	July 20 th 2016
Testing : Start Date: : End Date: :	July 20 th 2016 September 26 th 2016

SUMMARY

1.	Reference Standards	3	
2.	Summary of testing:	4	
3.	General product information	7	
4.	General Chipset information	8	
5.	General Antennas information	10	
6. è dei	Photographic documentation finito.	Errore. Il seg	ınalibro non
7.	Equipment Used During Test	14	
8.	Input/Output Ports:	14	
9.	Power Interface	15	
10.	EUT Operation Modes	15	
11.	EUT Configuration Modes:	15	
12.	Test Conditions and Results – AC POWER CONDUCTED EMISSION	16	
13.	Test Conditions and Results – RADIATED EMISSION	19	
14.	Test Conditions and Results – 6dB BANDWIDTH	28	
15.	Test Conditions and Results – OUTPUT POWER_1 (external antenna EIRP)	38	
16.	Test Conditions and Results – OUTPUT POWER_2 (internal antenna)	49	
17. (exte	Test Conditions and Results – CONDUCTED ANTENNA PORT rnal antenna)	SPURIOUS 61	EMISSIONS
18.	Test Conditions and Results – RADIATED ANTENNA PORT SPURIOUS EMISSIO	N (external ante	nna) 80
19.	Test Conditions and Results – RADIATED ANTENNA PORT SPURIOUS EMISSION	NS (internal ant	enna) 87
20.	Test Conditions and Results – POWER SPECTRAL DENSITY	113	
21.	Test Conditions and Results – RF EXPOSURE REQUIREMENTS	123	

1. Reference Standards				
Standard	Description			
FCC Part 15 (Subpart C)	15.247 Operation within the bands 902-928 MHz, 2400-2483,5 MHz, and 5725-5850 MHz.			
FCC Part 15 (Subpart C)	§15.207 Conducted Limits			
FCC Part 15 (Subpart C)	§15.209 Radiated emission limits; general requirements			
FCC Part 15 (Subpart C)	§15.203 Antenna Requirement			
ANSI C63.4:2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz			
ANSI C63.10:2014	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
FCC GUIDE 15.247 (DTS): April 8,2016	Guidance for performing compliance measurements on digital transmission systems (dts) operating under §15.247			

2. Summary of testing:					
FCC Rule Part	Test Item	Result	Remarks		
15.207	AC POWER CONDUCTED EMISSION	PASS	Meet the requirement of limit		
15.205 15.209 15.247(d)	RADIATED EMISSIONS	PASS	Meet the requirement of limit		
15.247(a)(2)	6dB BANDWIDTH	PASS	Meet the requirement of limit		
15.247(b)(3)(4)	OUTPUT POWER_1 (external antenna)	PASS	EIRP calculated is based on an antenna gain of 5dBi		
15.247(b)(3)	OUTPUT POWER_2 (internal antenna)	PASS	Meet the requirement of limit		
15.247(d)	CONDUCTED ANTENNA PORT SPURIOUS EMISSIONS (external antenna)	PASS	Meet the requirement of limit		
15.247(d)	RADIATED SPURIOUS EMISSIONS (external antenna)	PASS	Meet the requirement of limit		
15.247(d)	RADIATED SPURIOUS EMISSIONS (internal antenna)	PASS	Meet the requirement of limit		
15.247(e)	POWER SPECTRAL DENSITY	PASS	Meet the requirement of limit		
15.203	ANTENNA REQUIREMENT	PASS	Professional equipment (RP SMA)		
15.247(b)	RF EXPOSURE REQUIREMENTS	PASS	Meet the requirement of limit		

Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement	PASS
- test object does not meet the requirement:	FAIL

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. "(see Enclosure #)" refers to additional information appended to the report. "(see appended table)" refers to a table appended to the report.

Throughout this report a comma (point) is used as the decimal separator.

3. General product information

SMALL-FORMAT WIFI-CONTROLLED DIGITAL MIXER

Fader-free, all-in-one M 18 has an on-board WiFi access point with both external and internal antennas, enabling full wireless control from up to 5 tablets. It features a total of 18 analog inputs, 8 mic preamps, up to 19 simultaneous studio-grade effects and a full suite of plug-in algorithms and professional internal effects, including a high-quality stereo reverb and classic emulations of guitar and bass amplifiers.

The input EQs (Standard, Vintage and Smooth) enable a wide range of sounds and a flexible sound-sculpting environment. A master processor on the main outputs allows a final fine-tuning of the overall sound.

A USB port for the internal two-track player and recorder, MIDI ports and footswitch input provide maximum flexibility.

WIRELESS SPECIFICATIONS

Internal Access Point:yes Dual Band:yes IEEE802.11 b/g standard:2.4 GHz Antennas:2 int. + 1 ext.GHz

4. General Chipset information

BL-R8192RD1 product is designed base on Realtek RTL8192DU chipset .It combines CMOS MAC,

Baseband PHY and RF in a single chip for IEEE 802.11a/b/g/n compatible. It supports IEEE802.11i safety protocol, along with IEEE 802.11e standard service quality. It supports the new data encryption on 64/128 bit WEP and safety mechanism on WPA-PSK/WPA2-PSK, WPA/WPA2. It can implement the wireless network function on the laptop/desktop/MID and other wireless devices easily . This module has implemented some efficient mechanisms in its software and hardware to maximize the performance

Item	Description
Product Name	BL-R8192RD1
Major Chipset	RTL8192DU-VS
Host Interface	USB2.0
Standard	IEEE 802.11a, IEEE 802.11b, IEEE 802.11g,IEEE 802.11n,
FP	2.4GHz~2.4835GHz
Frequency Range	5.15GHz~5.845GHz
	802.11b: CCK, DQPSK, DBPSK
Modulation Type	802.11a/g: 64-QAM, 16-QAM, QPSK, BPSK
	802.11n: 64-QAM, 16-QAM, QPSK, BPSK
Working Mode	Infrastructure, Ad-Hoc
Data Transfer Pate	1,2,5.5,6,11,12,18,22,24,30,36,48,54,60,90,120 and
Data fransier Rate	maximum of 300Mbps
	IEEE 802.11a: ISM(Industrial Scientific Medical)
Sproad Sportrum	IEEE 802.11b: DSSS (Direct Sequence Spread Spectrum)
spread spectrum	IEEE 802.11g/n:OFDM (Orthogonal Frequency Division
	Multiplexing)
	1M: -90dBm@8%PER
Sonsitivity @DED	6M: -88dBm@10%PER
Sensitivity @PEK	11M: <u>-85dBm@8%PER</u>
	54/135M:-73dBm@10%PER
RF Power	< 18dBm@11b,< 14dBm@11g ,< 13dBm@11n,< 12dBm@11a
Antenna type	Connect to the external antenna through the half hole
The transmit distance	Indoor 100M, Outdoor 300M, according the local environment
Dimension(L*W*H)	27.0 x 17.7 x 1.9mm (LxWxH) ;Tolerance: +-0.2mm
Power supply	3.3V +/-0.2V
Power Consumption	standby mode 203mA@3.3V ,
	TX mode 381mA@3.3V
Clock source	40MHz
Working Temperature	-20°C to +70°C
Storage temperature	-55°C ~ +125°C

Channel	Low Frequency	Center Frequency	High Frequency
1	2.401GHz	2.412GHz	2.423GHz
2	2.406GHz	2.417GHz	2.428GHz
3	2.411GHz	2.422GHz	2.433GHz
4	2.416GHz	2.427GHz	2.438GHz
5	2.421GHz	2.432GHz	2.443GHz
6	2.426GHz	2.437GHz	2.448GHz
7	2.431GHz	2.442GHz	2.453GHz
8	2.436GHz	2.447GHz	2.458GHz
9	2.441GHz	2.452GHz	2.463GHz
10	2.446GHz	2.457GHz	2.468GHz
11	2.451GHz	2.462GHz	2.473GHz

As declared by manufacturer standard IEEE 802.11a not used: locked by SW

Item		Specifications
Antenna	Frequency Range	2400-2483/5700-5800MHz
	Polarization	Linear
	Gain	5dBi (Zenith)
	V.S.W.R (min)	<2.5
	Impendance	50 Ω
	Size(mm)	17.6*156.6mm
	Connector	RP-SMA
	Weight(g)	30
Environmenta	Operating Temperature	-40°C~+85°C
1	Vibration	10 to 55Hz with 1.5mm amplitude 2hours
	Environmentally Friendly	ROHS Compliant
	CH1 54 3WE	300 ov ave 1 4: 1,7862
	Eor UNROPE 3	5800.000000000 1: 1.7358 2400 MHz 2: 1.7234 2500 MHz 3: 1.4816 5700 MHz

Frequency Range	2400-2483/5700-5800MHz
Polarization	Linear
Gain (2400-2483)	-2dBi
Connector	Integral
1 U FS 21 04.819 m -8.9668 ω 0.2860 pF 5 408.808.000 MHz A RK ER 2 5 4 GHz 49.595 Ω 20 CHz 5 4 GHz	CH2 TRN log MAC 10 dD/ REF 0 dD

6. Equipment Used During Test						
Use*	Product Type	Manufacturer	Model	Comments		
EUT	Mixer with WiFi Module	RCF S.p.A.	M18			
AE	Tablet	Apple	Ipad Air	Used to set the WiFi Module		
AE	PC	Lenovo	T430	Used to set the WiFi Module		
Note:						

* Use :

EUT - Equipment Under Test,

AE - Auxiliary/Associated Equipment, or

SIM - Simulator (Not Subjected to Test)

No other Auxiliary/Associated Equipment was connected/installed on the EUT

7. Input/Output Ports:

CONNECTIONS

Port		Description	Connection	Cable lenght	
1	Enclosure	Plastic			
2	AC Power Port	AC	115Vac ~ 60 Hz	<3m	
3	DC Power Port	DC	Not Present		
4	LAN	TP	Used to maintenance	>3m	
5	USB	I/O	Used to maintenance	>3m	

*Note: AC = AC Power Port DC = DC Power Port N/E = Non-Electrical I/O = Signal Input or Output Port (Not Involved in Process Control) TP = Telecommunication Ports

8.	Power Interfa	ice				
Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	115	0,5	50	60Hz	1	

9. E	EUT Operation Modes
Operation mode	Description
#1	EUT turn on with Wi-Fi Module in transmission mode on External Antenna
#2	EUT turn on with Wi-Fi Module in transmission mode on Internal Antenna
#3	EUT turn on with Wi-Fi Module in transmission mode (MIMO 2X2 Antennas)

10. EU	T Configuration Modes:
Mode #	Description

11. Test Conditions and Results – AC POWER CONDUCTED EMISSION

12	TEST: AC Power Cor	nducted Emission PASS				
Parameters required prior to the		Laboratory Ambient Temperature (°C) 15 to 35			С	
test		Relative Humidity (%)		30 to 60 %		
Parameters r	ecorded during the	Laboratory Ambient Temperatu	re (°C)	21°C		
test		Relative Humidity (%)		56%		
		Air pressure (hPa)		1020		
—		Frequency		Application Point		
Fully configured sample tested at the power line frequency		115V ~ 60Hz		AC Mains		
Equipment m	ode:	Operation mode		#1		
FCC Standar	d	§15.207				
Fred	quency (MHz)	Quasi-peak (dBuV) Average (dBuV)		verage (dBuV)	Result	
	0.15-0.5	66 to 56 56 to 46		PASS		
	0.5-5	56 46		46	PASS	
	5-30	60 50		PASS		

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
LISN	PMM	PMM L3-64	87020466	09/2015	09/2016
20dB Attenuator	RS Components	Huber & Suhner	87020534	10/2015	10/2016
Stabilized Power Supply	Elettrotest	TPS T 30K60S	87020490	09/2015	09/2018

12. Test Conditions and Results – RADIATED EMISSION

13	TEST: Radiated Em	ission	sion PASS				
Parameters r	required prior to the	Laboratory Ambient Temperatu	ıre (°C)	15 to 35 °	5		
test		Relative Humidity (%)	30 to 60 %				
Parameters recorded during the		Laboratory Ambient Temperatu	22°C				
test		Relative Humidity (%)		54%			
		Air pressure (hPa)		1020			
_		Frequency		Application F	oint		
Fully configu the power lin	red sample tested at e frequency	115V ~ 60Hz		Enclosure	;		
Equipment m	node:	Operation mode		#1			
FCC Standar	ď	§15.205;	§15.209	; §15.247			
Free	quency (MHz)	Quasi-peak (dBuV)	Av	verage (dBuV)	Result		
	0.15-0.5	66 to 56		56 to 46	PASS		
	0.5-5	56		46	PASS		
	5-30	60		50			
Except as provide the field stren	Frequency (MHz) 2400/F .009-0.490 2400/F .490-1.705 24000/F .705-30.0 30 0-88 100 8-216 150** 16-960 200** .bove 960 500	(g), fundamental emissions from	Measureme	nt distance (meters) 300 30 30 30 30 30 30 30 30 3	g under		
this section s MHz. Howev §§15.231 and Further inform	hall not be located in er, operation within th d 15.241. nation to test setup	the frequency bands 54-72 MHz, ese frequency bands is permitted	76-88 M under o	Hz, 174-216 MHz or ther sections of this	470-806 bart, e.g.,		
		REAR VIEW 0.4m A.C. Outlets (flush-mounted)		0.8 EW	m 		

	Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due	
CSSA	ETS Lindgren	FACT3	87020484	10/2015	10/2016	
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017	
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2014	04/2017	
Antenna Horn with Preamplifier	ETS Lindgren	3117-PA	87020458	04/2014	04/2017	
2xAntenna Horn with	ETS Lindgren	114514	87020459	04/2014	04/2017	
Preamplifier		120722	87020460			

	Tabulated results of Radiated Emission Measurement					
	Operation Mode: #1					
		Fre	equency:	30MHz – 10	GHz	
Frequency (MHz)	QP (dBuV/m)	Margin (dB)	TT (deg)	Tower (cm)	Polarization (H or V)	Correction (dB)
68.470 MHz	36.057	-3.943	90.000	108.000	V	6.897
72.910 MHz	38.756	-1.244	21.000	116.000	V	6.983
78.370 MHz	38.718	-1.282	164.000	104.000	V	7.027
287.980 MHz	33.105	-12.915	360.000	120.000	Н	13.132

	Graphical representation of Radiated Emission Measurement				
	Operation Mode: #1				
	Fre	quency: 1GHz – 6GHz			
	Anter	nna Polarization: Vertical			
	Channel: Low / S	Standard: IEE 802.11g (wo	orst case)		
100.0	 Limit_PK Limit_AV PK Scan AV Scan 	TUV Radiated Emissions Vertical			
95.0 90.0 85.0 80.0 75.0 (m// ng) (m// ng) 950.0 65.0 950.0 55.0 950.0 55.0 30.0 25.0 30.0 25.0 30.0 25.0 30.0 15.0					
10.0 5.0 0 1.0	0G	Frequency (Hz)		6.00G	

	Graphical representation of Radiated Emission Measurement				
		Operation Mode: #1			
		Frequency: 1GHz – 6GHz			
		Antenna Polarization: Horizontal			
	Chan	nel: Low / Standard: IEE 802.11g (wo	orst case)		
Ē	Limit_PK Limit_AV PK Scan AV Scan 95.0 90.0 85.0 	TUV Radiated Emissions Horizontal			
Emission (dBuV/	65.0 60.0 55.0 45.0 45.0 35.0 30.0 25.0 20.0 15.0 10.0		6.00G		
		Frequency (Hz)			

Tabulated results of Radiated Emission Measurement
Operation Mode: #1
Frequency: 1GHz - 6GHz

	Operation Mode: #1					
		Antenna Polarizati	on: Horizontal			
		Channel: Low / Standard: IE	E 802.11g (worst case)			
	Limit_PK TUV Limit_AV Radiated Emissions PK Horizontal					
100.0 90.0 80.0 70.0 60.0 50.0 100 100 100 100 100 100 100 100 100	G	10. Fre	Dig 25.00G quency (Hz)			

Tabulated results of Radiated Emission Measurement		
Operation Mode: #1		
Frequency: 6GHz - 25GHz		

Graphical representation of Antenna Port Spurious Emission - Radiated					
Operation Mode: #1					
	Standard: IEE 80	2.11g (worst case)			
	Chanr	el: Low			
BAND EDGE					
MultiView 🗄 Spectrum 🚦					
Ref Level 111.70 dBμV Offset 0.20 dB F Att 14 dB SWT 10 ms ₩ 1 Erequency Sweep 1	BW 1 MHz BW 3 MHz Mode Auto Sweep		NCAN ⊚1Dk May ⊜2∆y MayDwr		
			D2[1] -26.98 dB -8.7360 MHz M1[1] 78.03 dBµV		
90 dBµV					
80 dBµV			Man Al-An Alman		
60 dBµV					
Н2 54.000 dBµV					
40 deux	montroppendent	www. Althur Willie and			
20 dBµv					
10 dBµV					
0 dBµV		/2			
CF 2.39 GHz	625 pts	6.0 MHz/	Span 60.0 MHz		

Graphical representation of Antenna Port Spurious Emission - Radiated				
Operation Mode: #1				
	Standard: IEE 80	02.11g (worst case)		
	Chanı	nel: High		
BAND EDGE				
MultiView B Spectrum I Ref Level 111.70 dBµV Offset 0.20 dB ● I	RBW 1 MHz			
Att 14 dB • SWT 10 ms • 1 1 Frequency Sweep	/BW 3 MHz Mode Auto Sweep		NCAN ●1Pk Max ○2Av MaxPwr	
			D2[1] -24.62 dB	
100 dBµV			M1[1] 75.81 dBμV 2.4751360 GHz	
90 dBµV				
80 dBµV				
H2 54.000 dBuV				
	h ale e a bi			
	Many What My Man	Marken	and the second s	
30 dBµV	Mr. M.	the second secon		
20 dBµV				
10 dBµV				
0 dBµV	V2			
CF 2.5 GHz	625 pts	6.0 MHz/	Span 60.0 MHz	

13. Test Conditions and Results – 6dB BANDWIDTH

14	TEST: Radiated Emis	ssion			
Parameters required prior to the test		Laboratory Ambient Temperature (°C)		15 to 35 °C	
		Relative Humidity (%)		30 to 60 %	
Parameters r	ecorded during the	Laboratory Ambient Temperature (°C)		24°C	
test		Relative Humidity (%)		48%	
		Air pressure (hPa)		1020	
_		Frequency		Application Point	
Fully configured sample tested at the power line frequency		115V ~ 60Hz		SMA Connector	
Equipment m	ode:	Operation mode		#1	
FCC Standar	d	§15.247			
Systems using digital modulation teo 5725-5850 MHz bands. The minimu		chniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and im 6 dB bandwidth shall be at least 500 kHz.			and
Further inforr	nation to test setup				
		EUT Att	tenuator ptional)	Spectrum Analyzer (or Power Meter)	

Test Equipment Used					
DescriptionManufacturerModelIdentifierCalibration dateCalibration due					
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
20dB Attenuator	RS Components	Huber & Suhner	87020534	10/2015	10/2016

Test Results				
Channel	Frequency (MHz)	6dB Bandwidth (Mhz)	Minimum Limit (MHz)	
1	2412	7,76	0,5	
6	2437	6,48	0,5	
11	2462	8,32	0,5	

Test Results				
Channel	Frequency (MHz)	6dB Bandwidth (Mhz)	Minimum Limit (MHz)	
1	2412	16,78	0,5	
6	2437	16,63	0,5	
11	2462	16,63	0,5	

Test Results				
Channel	Frequency (MHz)	6dB Bandwidth (Mhz)	Minimum Limit (MHz)	
1	2412	16,62	0,5	
6	2437	16,66	0,5	
11	2462	16,31	0,5	

14. Test Conditions and Results – OUTPUT POWER_1 (external antenna)

15	TEST: Output Power	r 1 (external antenna) PASS			
Parameters required prior to the		Laboratory Ambient Temperature (°C)	perature (°C) 15 to 35 °C		
test		Relative Humidity (%)	30 to 60 %		
Parameters r	ecorded during the	Laboratory Ambient Temperature (°C)	22,5°C		
test		Relative Humidity (%)51%			
		Air pressure (hPa)	1020		
_		Frequency Application Po		pint	
Fully configured sample tested at the power line frequency		115V ~ 60Hz SMA Con		tor	
Equipment mode:		Operation mode	#1		
FCC Standar	ď	§15.247			

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Equipment Used					
Description Manufacturer Model Identifier Calibration date Calibration due					
Fast Power Sensor	R&S	NRP-Z81	87020796	08/2015	08/2017
20dB Attenuator	RS Components	Huber & Suhner	87020534	10/2015	10/2016

Test result of Peak Output Power (802.11b)

Channel	Channel Frequency	Output Power		Limit
	(MHz)	(dBm)	(VV)	(VV)
Low Channel	2412	12,20	0,017	1
Middle Channel	2437	12,44	0,017	1
High Channel	2462	12,44	0,017	1

Test result of Peak Output Power (802.11g)

Channel	Channel Frequency	Output Power		Limit
	(MHz)	(dBm)	(VV)	(VV)
Low Channel	2412	17,31	0,054	1
Middle Channel	2437	17,56	0,057	1
High Channel	2462	17,81	0,060	1

Test result of Peak Output Power (802.11n)

Channel	Channel Frequency	Output Power		Limit
	(MHz)	(dBm)	(VV)	(VV)
Low Channel	2412	14,63	0,029	1
Middle Channel	2437	14,63	0,029	1
High Channel	2462	14,39	0,027	1

15. Test Conditions and Results – OUTPUT POWER_2 (internal antenna)

16	TEST: Output Power	2 (Internal Antenna) PASS			
Parameters required prior to the		Laboratory Ambient Temperature (°C)	15 to 35 °C		
test		Relative Humidity (%)	30 to 60 %		
Parameters r	ecorded during the	Laboratory Ambient Temperature (°C)	22,5°C		
test		Relative Humidity (%)	51%		
		Air pressure (hPa)	1020		
—		Frequency	Application Point		
Fully configured sample tested at the power line frequency		115V ~ 60Hz Enclosur			
Equipment m	iode:	Operation mode	#1		
FCC Standar	ď	§15.247 (B)(3)			

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due
CSSA	ETS Lindgren	FACT3	87020484	10/2015	10/2016
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2014	04/2017
Antenna Horn with Preamplifier	ETS Lindgren	3117-PA	87020458	04/2014	04/2017

Test result of Peak Output Power (802.11b)

Channel	Channel Frequency	Output	Power	Limit
	(MHz)	(dBm)	(VV)	(VV)
Low Channel	2412	18,21	0,066	1
Middle Channel	2437	16,81	0,048	1
High Channel	2462	17,38	0,055	1

Test result of Peak Output Power (802.11g)

Channel	Channel Frequency	Output Power		Limit
	(MHz)	(dBm)	(VV)	(VV)
Low Channel	2412	13,22	0,021	1
Middle Channel	2437	16,58	0,045	1
High Channel	2462	15,28	0,034	1

Test result of Peak Output Power (802.11n)

Channel	Channel Frequency	Output Power		Limit
	(MHz)	(dBm)	(VV)	(W)
Low Channel	2412	12,83	0,020	1
Middle Channel	2437	16,74	0,047	1
High Channel	2462	15,36	0,034	1

Test Conditions and Results – OUTPUT POWER (MIMO 2X2 ANTENNAS)

Equipment mode:	Operation mode	#3

DIRECTIONAL GAIN CALCULATION

 $10*LOG [(10^{G1/20} + 10^{G2/20})^2 / N \text{ ant}] = 10*LOG [(1,77 + 0,79)^2 / 2 = +5,15 \text{ dBi}$

Test result of Peak Output Power (802.11b)

Channel	Channel Frequency	Output Power (W))	Limit
	(MHz)	CH0	CH1	Final Power	(VV)
Low Channel	2412	0,017	0,066	0,083	1
Middle Channel	2437	0,017	0,048	0,065	1
High Channel	2462	0,017	0,055	0,072	1

Test result of Peak Output Power (802.11g)

Channel	Channel Frequency	Output Power (W)			Limit
	(MHz)	CH0	CH1	Final Power	(VV)
Low Channel	2412	0,054	0,021	0,075	1
Middle Channel	2437	0,057	0,045	0,102	1
High Channel	2462	0,060	0,034	0,094	1

Test result of Peak Output Power (802.11n)

Channel	Channel Frequency	Output Power (W)		Limit	
	(MHz)	CH0	CH1	Final Power	(VV)
Low Channel	2412	0,029	0,020	0,049	1
Middle Channel	2437	0,029	0,047	0,076	1
High Channel	2462	0,027	0,034	0,061	1

16. Test Conditions and Results – CONDUCTED ANTENNA PORT SPURIOUS EMISSIONS (external antenna)

17	TEST: Conducted A	ntenna Port Spurious Emission (exterr	nal antenna)	PASS	
Parameters required prior to the test		Laboratory Ambient Temperature (°C)	15 to 35 °C		
		Relative Humidity (%)	30 to 60 %		
Parameters recorded during the test		Laboratory Ambient Temperature (°C)	22°C		
		Relative Humidity (%)	50%		
		Air pressure (hPa)	1020		
_		Frequency	Application Point		
Fully configured sample tested at the power line frequency		115V ~ 60Hz	SMA Connector		
Equipment m	ode:	Operation mode	#1		
FCC Standard		§15.247			
(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally					

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum of digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
20dB Attenuator	RS Components	Huber & Suhner	87020534	10/2015	10/2016

Report No. 28109934 001

Report No. 28109934 001

17. Test Conditions and Results – RADIATED ANTENNA PORT SPURIOUS EMISSION (external antenna)

18	TEST: Radiated Ante	tenna Port Spurious Emission (external antenna) PAS			
Parameters required prior to the		Laboratory Ambient Temperature (°C)	15 to 35 °C		
test		Relative Humidity (%)	30 to 60 %		
Parameters recorded during the test		Laboratory Ambient Temperature (°C)	21°C		
		Relative Humidity (%)	52%		
		Air pressure (hPa)	1020		
		Frequency	Application Point		
Fully configured sample tested at the power line frequency		115V ~ 60Hz	Enclosure		
Equipment mode: C		Operation mode	#1		
FCC Standard		§15.247			

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due
CSSA	ETS Lindgren	FACT3	87020484	10/2015	10/2016
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2014	04/2017
Antenna Horn with Preamplifier	ETS Lindgren	3117-PA	87020458	04/2014	04/2017
2xAntenna Horn with	ETS Lindgren	114514	87020459	04/2014	04/2017
Preamplifier		120722	87020460		

18. Test Conditions and Results – RADIATED ANTENNA PORT SPURIOUS EMISSIONS (internal antenna)

19	TEST: Radiated Ante	tenna Port Spurious Emission (internal antenna) PA			
Parameters required prior to the		Laboratory Ambient Temperature (°C)	15 to 35 °C		
test		Relative Humidity (%)	30 to 60 %		
Parameters recorded during the test		Laboratory Ambient Temperature (°C)	21°C		
		Relative Humidity (%)	49%		
		Air pressure (hPa)	1020		
		Frequency	Application Point		
Fully configured sample tested at the power line frequency		115V ~ 60Hz	Enclosure		
Equipment m	ode:	Operation mode	#1		
FCC Standard		§15.247			

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due
CSSA	ETS Lindgren	FACT3	87020484	10/2015	10/2016
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2014	04/2017
Antenna Horn with Preamplifier	ETS Lindgren	3117-PA	87020458	04/2014	04/2017

Report No. 28109934 001

19. Test Conditions and Results – POWER SPECTRAL DENSITY

20	TEST: Power Spectra	al Density PASS				
Parameters required prior to the test		Laboratory Ambient Temperature (°C)	15 to 35 °C			
		Relative Humidity (%)	30 to 60 %			
Parameters r	ecorded during the	Laboratory Ambient Temperature (°C)	24°C			
test		Relative Humidity (%)	37%			
		Air pressure (hPa)	1020			
		Frequency	Application Point			
Fully configured sample tested at the power line frequency		115V ~ 60Hz	SMA Connector			
Equipment m	iode:	Operation mode	#1			
FCC Standar	ď	§15.247				
(e) For digital the antenna s transmission. paragraph (b to determine	lly modulated systems, shall not be greater tha This power spectral de) of this section. The sa the power spectral den	, the power spectral density conducted from the intentional radiator to an 8 dBm in any 3 kHz band during any time interval of continuous ensity shall be determined in accordance with the provisions of ame method of determining the conducted output power shall be used nsity.				
Further inforr	nation to test setup	EUT Attenuator (optional)	Spectrum Analyzer (or Power Meter)			

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due	
EMI Test Receiver	R&S	ESU40	87020455	04/2016	04/2017	
20dB Attenuator	RS Components	Huber & Suhner	87020534	10/2015	10/2016	

20. Test Conditions and Results – RF EXPOSURE REQUIREMENTS

21	TEST: RF Exposure	Requirements P			
Parameters required prior to the test		Laboratory Ambient Temperature (°C)	15 to 35 °C		
		Relative Humidity (%)	30 to 60 %		
Parameters recorded during the test		Laboratory Ambient Temperature (°C)			
		Relative Humidity (%)			
		Air pressure (hPa) 1020			
		Frequency Application		pint	
Fully configured sample tested at the power line frequency		115V ~ 60Hz Enclo			
Equipment m	ode:	Operation mode	#1 #2 #3		
FCC Standard		§15.247			

General Test Configuration

Calculation uses the free space transmission formula:

$$S = \frac{PG}{4\pi r^2}$$
 or equivalent $S = \frac{EIRP}{4\pi r^2}$

where

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

r = distance from the antenna to the point of investigation.

EIRP = Effective Isotropic Radiated Power

Summary of Results

Device COMPLIES with Power Density requirements at 20cm separation

Directional Gain Calculation

Antenna: 5.15dBi (see pag.62)

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \geq 50 mm							
447498 D01 General RF Exposure Guidance v06 – Appendix A							
MHz	50	60	70	80	90	mm	
100	474	481	487	494	501		
150	387	397	407	417	427		
300	274	294	314	334	354		
450	224	254	284	314	344		
835	164	220	275	331	387		
900	158	218	278	338	398	SAR Test	
1500	122	222	322	422	522	Exclusion Threshold	
1900	108	209	309	409	509	(mW)	
2450	96	196	296	396	496		
3600	79	179	279	379	479		
5200	66	166	266	366	466		
5400	65	165	265	365	465]	
5800	62	162	262	362	462		

The test separation distances $\geq 80 \text{ mm}$ is applied to determine SAR test exclusion.

RESULTS					
СН	TX Frequency (MHz)	Measured Power at Antenna Connector (chain0 + chain1) (dBm)	Antenna Gain (dBi)		
Middle Channel	2437	20.09	5.15		

СН	TX Frequency (MHz)	Radiated power (dBm)	E.I.R.P. (mW)	Distance (mm)	{[Power allowed at numeric threshold for 80 mm in step a)] + [(test separation distance – 80 mm) \cdot 10]} mW, for > 1500 MHz and ≤ 6 GHz	Limits
Middle Channel	2437	25.14	326.58	80	396mW	328mW

This page is intentionally blank and marks the last page of this test report