

Page 63 of 109

Report No. : EED32I00268701

Appendix E): Power Spectral Density

Result T	able	(6)	(GN)	$(\mathcal{C}^{(1)})$	
Mode	Antenna	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	Ant1	LCH	-9.772	8	PASS
11B	Ant2	LCH	-9.042	8	PASS
11B	Ant1	MCH	-9.480	8	PASS
11B	Ant2	MCH	-9.272	8	PASS
11B	Ant1	HCH	-9.116	8	PASS
11B	Ant2	HCH	-9.650	8	PASS
11G	Ant1	LCH	-18.316	8	PASS
11G	Ant2	LCH	-16.993	8	PASS
11G	Ant1	MCH	-17.279	8	PASS
11G	Ant2	MCH	-17.302	8	PASS
11G	Ant1	HCH	-16.630	8	PASS
11G	Ant2	НСН	-17.528	8	PASS
11N20SISO	Ant1	LCH	-18.562	8	PASS
11N20SISO	Ant2	LCH	-17.524	8	PASS
11N20SISO	Ant1	MCH	-17.180	8	PASS
11N20SISO	Ant2	MCH	-16.989	8	PASS
11N20SISO	Ant1	HCH	-16.452	8	PASS
11N20SISO	Ant2	НСН	-17.408	8	PASS
11N20MIMO	Ant1	LCH	-18.924	8	PASS
11N20MIMO	Ant2	LCH	-18.776	8	PASS
11N20MIMO	Ant1+2	LCH	-15.84	8	PASS
11N20MIMO	Ant1	MCH	-18.447	8	PASS
11N20MIMO	Ant2	MCH	-19.238	8	PASS
11N20MIMO	Ant1+2	MCH	-15.81	8	PASS
11N20MIMO	Ant1	НСН	-17.192	8	PASS
11N20MIMO	Ant2	НСН	-18.446	8	PASS
11N20MIMO	Ant1+2	НСН	-14.76	8	PASS
11N40SISO	Ant1	LCH	-20.278	8	PASS
11N40SISO	Ant2	LCH	-21.124	8	PASS
11N40SISO	Ant1	MCH	-20.156	8	PASS
11N40SISO	Ant2	MCH	-21.362	8	PASS
11N40SISO	Ant1	НСН	-19.568	8	PASS
11N40SISO	Ant2	НСН	-20.852	8	PASS
11N40MIMO	Ant1	LCH	-22.438	8	PASS
11N40MIMO	Ant2	LCH	-22.011	8	PASS
11N40MIMO	Ant1+2	LCH	-19.21	8	PASS
11N40MIMO	Ant1	МСН	-21.537	8	PASS
11N40MIMO	Ant2	МСН	-22.329	8	PASS
11N40MIMO	Ant1+2	MCH	-18.90	8	PASS
11N40MIMO	Ant1	НСН	-21.394	8	PASS
11N40MIMO	Ant2	НСН	-23.072	8	PASS
11N40MIMO	Ant1+2	НСН	-19.14	8	PASS

Page 64 of 109

Test Graph

Page 65 of 109

Page 66 of 109

Report No. : EED32I00268701

Page 67 of 109

Report No. : EED32I00268701

CTI 华**汉** 松 测 CENTRE TESTING INTERNATIONAL Report No. : EED32100268701

Page 68 of 109

Page 69 of 109

Report No. : EED32I00268701

Page 70 of 109

Page 71 of 109

Report No. : EED32I00268701

CTI 华汉极汉

Page 72 of 109

CTI 华烈 检测 CENTRE TESTING INTERNATIONAL

Report No. : EED32I00268701

Page 73 of 109

CTI 华观检测 CENTRE TESTING INTERNATIONAL

11N40SISO/MCH

11N40SISO/HCH

Page 75 of 109

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3Bi.

Page 77 of 109

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impeces Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. power cables of all other units of the EUT were connected to a second LIS which was bonded to the ground reference plane in the same way as the LISN the unit being measured. A multiple socket outlet strip was used to connect minipower cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the gr reference plane. And for floor-standing arrangement, the EUT was placed on horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical gr reference plane for LISNs mounted on top of the ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a gr reference plane for LISNs mounted on top of the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condimeasurement. Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 6.3-30 60 50 * The term range 0.15 *	Contraction of the second s										
 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Imped Stabilization Network) which provides a 500/S0µH + 50 linear impedance, power cables of all other units of the EUT were connected to a second LIS which was bonded to the ground reference plane in the same way as the LISN the unit being measured. A multiple socket outlet strip was used to connect m power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the gr reference plane. And for floor-standing arrangement, the EUT was placed o horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical gr reference plane was bonded to the horizontal ground reference plane. The user plane. The list was placed 0.8 m from the boundary of the unit under test and bonded to a gr reference plane for LISNs mounted on top of the ground reference plane. distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on cond measurement. Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 	Test Procedure:	Test frequency range :150KH	z-30MHz	(\mathbf{C})							
 2) The EUT was connected to AC power source through a LISN 1 (Line Imped Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance, power cables of all other units of the EUT were connected to a second LIS which was bonded to the ground reference plane in the same way as the LISN the unit being measured. A multiple socket outlet strip was used to connect m power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the gr reference plane. And for floor-standing arrangement, the EUT was placed o horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical gr reference plane does bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a gr reference plane for LISNs mounted on top of the ground reference plane. distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on cond measurement. Limit: 		1)The mains terminal disturba	nce voltage test was o	conducted in a shielde	ed room.						
exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the gireference plane. And for floor-standing arrangement, the EUT was placed o horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical grund reference plane. The UL was placed 0.8 m from the boundary of the unit under test and bonded to a give reference plane for LISNs mounted on top of the ground reference plane. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not									
 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the gireference plane. And for floor-standing arrangement, the EUT was placed o horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical grup reference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a gireference plane for LISNs mounted on top of the ground reference plane. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: 		exceeded.									
 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical grip reference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a grip reference plane for LISNs mounted on top of the ground reference plane. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: 		3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.									
5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit:		4) The test was performed wi shall be 0.4 m from the reference plane was bond was placed 0.8 m from the reference plane for LISN distance was between the of the EUT and associated	th a vertical ground reference vertical ground reference led to the horizontal groundary of the unit s mounted on top of closest points of the l equipment was at lea	ference plane. The re- erence plane. The v round reference plan under test and bond the ground reference LISN 1 and the EUT. ast 0.8 m from the LIS	ear of the EUT ertical ground e. The LISN 1 ed to a ground ce plane. This All other units N 2.						
Limit: Limit (dBµV) Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15		5) In order to find the maximu the interface cables must measurement.	m emission, the relative t be changed accordi	ve positions of equip ng to ANSI C63.10	ment and all of on conducted						
Limit (dB μ V)Limit (dB μ V)Quasi-peakAverage0.15-0.566 to 56*56 to 46*0.5-556465-306050* The limit decreases linearly with the logarithm of the frequency in the range 0.15	Limit:	(G [*])									
Frequency range (MHz)Quasi-peakAverage0.15-0.566 to 56*56 to 46*0.5-556465-306050* The limit decreases linearly with the logarithm of the frequency in the range 0.15			Limit (dBµV)							
0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15		Frequency range (MHZ)	Quasi-peak	Average							
0.5-556465-306050* The limit decreases linearly with the logarithm of the frequency in the range 0.15		0.15-0.5	66 to 56*	56 to 46*	1						
5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15		0.5-5	56	46	$(c^{(1)})$						
* The limit decreases linearly with the logarithm of the frequency in the range 0.15		5-30	60	50							
to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency		5-30 * The limit decreases linearly to 0.50 MHz. NOTE : The lower limit is app	60 with the logarithm of the licable at the transition	50 he frequency in the ra	ange 0.15						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

detected.

Page 78 of 109

	No.	Freq.	Rea (ding_Le (dBuV)	vel	Correct Factor	M	leasuren (dBuV)	nent	Lir (dB	nit uV)	Mai (c	rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1620		44.76	14.74	9.80		54.56	24.54	65.36	55.36	-10.80	-30.82	Ρ	
1	2	0.1844		44.76	14.74	9.80		54.56	24.54	64.28	54.28	-9.72	-29.74	Ρ	
S	3	0.2580		38.51	20.01	9.80		48.31	29.81	61.49	51.49	-13.18	-21.68	Ρ	
	4	0.3620		32.28	7.86	9.86		42.14	17.72	58.68	48.68	-16.54	-30.96	Ρ	
-	5	3.2540		30.39	10.85	10.00		40.39	20.85	56.00	46.00	-15.61	-25.15	Ρ	
	6	26.2660		30.68	17.18	9.80		40.48	26.98	60.00	50.00	-19.52	-23.02	Ρ	

Page 79 of 109

	No.	Freq.	Rea (ding_Le (dBuV)	vel	Correct Factor	M	(dBuV)	ient	(dB	nit uV)	Mai (d	rgin IB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1740		48.00	24.25	9.80		57.80	34.05	64.76	54.76	-6.96	-20.71	Ρ	
	2	0.2580		38.00	12.22	9.80		47.80	22.02	61.49	51.49	-13.69	-29.47	Ρ	
2	3	0.3620		31.64	8.50	9.86		41.50	18.36	58.68	48.68	-17.18	-30.32	Ρ	
5	4	0.9620		21.45	3.26	9.70		31.15	12.96	56.00	46.00	-24.85	-33.04	Ρ	
	5	2.2940		27.30	9.99	10.00		37.30	19.99	56.00	46.00	-18.70	-26.01	Ρ	
	6	14.4580		25.57	11.70	10.09		35.66	21.79	60.00	50.00	-24.34	-28.21	Ρ	

_	No.	Freq.	Rea (ding_Le dBuV)	vel	Correct Factor	Μ	leasuren (dBuV)	nent	Lin (dB	nit uV)	Ma (c	rgin IB)		
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
-	1	0.2140		41.22	21.59	9.80		51.02	31.39	63.04	53.04	-12.02	-21.65	Ρ	
2	2	0.3300		33.36	17.77	9.83		43.19	27.60	59.45	49.45	-16.26	-21.85	Ρ	
٧	3	0.4380		27.98	1.52	9.90		37.88	11.42	57.10	47.10	-19.22	-35.68	Ρ	
	4	0.5540		25.28	10.55	9.90		35.18	20.45	56.00	46.00	-20.82	-25.55	Ρ	
	5	2.1260		27.38	5.90	10.00		37.38	15.90	56.00	46.00	-18.62	-30.10	Ρ	
	6	3.6300		27.25	12.90	10.00		37.25	22.90	56.00	46.00	-18.75	-23.10	Ρ	

Page 80 of 109

Page 81 of 109

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup					
	Frequency	Detector	RBW VBW	Remark	
	30MHz-1GHz	Quasi-peak 12	20kHz 300kHz	Quasi-peak	
	Above 1011	Peak 1	MHz 3MHz	Peak	
(*)	Above IGH2	Peak 1	MHz 10Hz	Average	
Test Procedure:	 Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the ant d. For each suspected er the antenna was turned from 0 deg e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show combands. Save the spect 	Jire as below: on the top of a rotatic choic camber. The to of the highest radia eters away from the op of a variable-heig varied from one me m value of the field tenna are set to main nission, the EUT wan to heights from 1 m rees to 360 degrees of was set to Peak um Hold Mode. end of the restricted appliance. Also meas rum analyzer plot. F	INITIZ TOTIZ Ing table 0.8 meter able was rotated ition. interference-rece ht antenna tower ter to four meters strength. Both ho ke the measurem as arranged to its neter to 4 meters is to find the maxim Detect Function and band closest to find sure any emission Repeat for each p	Average ers above the gru 360 degrees to iving antenna, w above the grou rizontal and ver ent. worst case and and the rotatab mum reading. and Specified the transmit is in the restricte ower and modu	ound which ind to tical then le ed lation
	Above 1GHz test procedu g. Different between above to fully Apochoia Chan	ure as below: ve is the test site, ch	nange from Semi-	- Anechoic Char	mbor
	 h. Test the EUT in the lo i. The radiation measure Transmitting mode, an i. Repeat above procedu 	1 meter and table is west channel , the I ments are performe d found the X axis p ures until all frequen	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w	1.5 meter(Abov positioning for it is worse case as complete.	e
Limit:	18GHz the distance is 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	1 meter and table is west channel , the l ments are performe d found the X axis p irres until all frequen	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w	1.5 meter(Abov positioning for it is worse case as complete.	e
Limit:	A line Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	1 meter and table is west channel , the l ments are performed d found the X axis p ires until all frequen	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w @3m) Re	1.5 meter(Abov positioning for it is worse case as complete. mark eak Value	e
Limit:	18 GHz the distance is 18 GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30 MHz-88 MHz 88 MHz-216 MHz	1 meter and table is west channel , the le ments are performed d found the X axis p ires until all frequen Limit (dBµV/m o 40.0 43.5	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w @3m) Re Quasi-p	1.5 meter(Abov positioning for it is worse case as complete. mark wak Value wak Value	e
Limit:	18 GHz the distance is 18 GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30 MHz-88 MHz 88 MHz-216 MHz 216 MHz-960 MHz	1 meter and table is west channel , the lements are performed d found the X axis p irres until all frequen Limit (dBµV/m (40.0 43.5 46.0	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w @3m) Re Quasi-p Quasi-p Quasi-c	1.5 meter(Abov positioning for it is worse case as complete. mark wark wark veak Value weak Value	e
Limit:	18 GHz the distance is 18 GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30 MHz-88 MHz 88 MHz-216 MHz 216 MHz-960 MHz 960 MHz-1 GHz	1 meter and table is west channel , the l ments are performed d found the X axis p irres until all frequen Limit (dBµV/m (40.0 43.5 46.0 54.0	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w @3m) Re Quasi-p Quasi-p Quasi-p Quasi-p	1.5 meter(Abov positioning for it is worse case as complete. mark eak Value eak Value eak Value eak Value	
Limit:	18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	1 meter and table is west channel , the le ments are performed d found the X axis p ires until all frequen Limit (dBµV/m of 40.0 43.5 46.0 54.0 54.0	ble 0.8 meter to s 1.5 meter). Highest channel ed in X, Y, Z axis positioning which cies measured w @3m) Re Quasi-p Quasi-p Quasi-p Quasi-p Avera	1.5 meter(Abov positioning for it is worse case as complete. mark weak Value weak Value weak Value weak Value weak Value ge Value	e .

Vorse case mode:	802.11b (11M	ops)	(\mathbf{G}^*)	(\mathbf{G}^{*})
Frequency: 2390.0MHz	Test channel:	Lowest Polarizatio	on: Horizontal	Remark: Peak
	Level (dBuV/m)			
	100			2
	50			
	70		FCC	PART 15C>1G PK
			FCC	PART 15C>1G AV
	50	ant de la complete transmission de la complete complete constant	and season and a strategy of the start of the	
	30			
	10			
	-102310 2320	2350		2422
	Ant	Frequenc Cable Preamp Read	y(MHZ) Limit Over	
	Freq Factor	Loss Factor Level	_evel Line Limit Pol	/Phase Remark
	MHZ dB/m		3uv/m dBuv/m dB	
	pp 2413.072 32.58	3.15 34.39 45.91 4 3.17 34.39 90.49 9	17.20 74.00 -26.80 Hor 91.85 74.00 17.85 Hor	izontal
Worse case mode:	802.11b (11M			
Frequency: 2390.0MHz	Test channel:	Lowest Polarizatio	on: Vertical	Remark: Peak
			6	<u> </u>
				2
	90			
	70		FCC F	ART 15C>1G PK
			FCC	PART 15C>1G AV
	50		FCC I	PART 15C>1G AV
	50		FOC I	PART 15C>1G AV
	50		FOC I	PART 15C>1G AV
	50 50 50 50 50 50 50 50 50 50		FOR I	2ART 15C>1G AV
	50			2ART 15C>1G AV
	50 30 10 -10 ₂₃₁₀ 2320	2350		2422
	50 30 10 -10 ₂₃₁₀ 2320 Ant	2350 Frequency Cable Preamp Read	(MHz) Limit Over	2422
	50 30 10 -10 2310 2320 Ant Freq Factor -10 -10 -10 -10 -10 -10 -10 -10	2350 Frequency Cable Preamp Read Loss Factor Level L	(MHz) Limit Over evel Line Limit Poly	2422 Phase Remark
CTI)	50 30 10 10 -10 2310 2320 Ant Freq Factor MHz dB/m 2390.104 32 53	2350 Frequency Cable Preamp Read Loss Factor Level L dB dB dBuV dB 3.15 34 39 44 81 4	(MHz) Limit Over evel Line Limit Pol, UV/m dBuV/m dB	2422 /Phase Remark
	50 30 10 -10 ₂₃₁₀ 2320 Ant Freq Factor MHz dB/m 2390.104 32.53 pp 2411.131 32.58	2350 Frequency Cable Preamp Read Loss Factor Level L dB dB dBuV dB 3.15 34.39 44.81 4 3.17 34.39 92.57 9	FORI FORI	PART 15C>1G AV
	50 30 10 -10 ₂₃₁₀ 2320 Freq Factor MHz dB/m 2390.104 32.53 pp 2411.131 32.58	2350 Frequency Cable Preamp Read Loss Factor Level L dB dB dBuV dB 3.15 34.39 44.81 4 3.17 34.39 92.57 9	FCf1 FCf1	2422 2422 2422 Phase Remark tical

Page 86 of 109

Page 88 of 109

Page 89 of 109

Page 90 of 109

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

Page 91 of 109

Report No. : EED32I00268701

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

Appendix I): Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Peak	1MHz	3MHz	Peak	
Above TGHZ	Peak	1MHz	10Hz	Average	
	Frequency 0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.009MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz - 30MHz 30MHz-1GHz Above 1GHz	FrequencyDetector0.009MHz-0.090MHzPeak0.009MHz-0.090MHzAverage0.090MHz-0.110MHzQuasi-peak0.110MHz-0.490MHzPeak0.110MHz-0.490MHzAverage0.490MHz -30MHzQuasi-peak30MHz-1GHzQuasi-peakAbove 1GHzPeak	FrequencyDetectorRBW0.009MHz-0.090MHzPeak10kHz0.009MHz-0.090MHzAverage10kHz0.090MHz-0.110MHzQuasi-peak10kHz0.110MHz-0.490MHzPeak10kHz0.110MHz-0.490MHzAverage10kHz0.110MHz-0.490MHzQuasi-peak10kHz0.490MHz -30MHzQuasi-peak10kHz30MHz-1GHzQuasi-peak120kHzAbove 1GHzPeak1MHz	FrequencyDetectorRBWVBW0.009MHz-0.090MHzPeak10kHz30kHz0.009MHz-0.090MHzAverage10kHz30kHz0.009MHz-0.110MHzQuasi-peak10kHz30kHz0.110MHz-0.490MHzPeak10kHz30kHz0.110MHz-0.490MHzAverage10kHz30kHz0.110MHz-0.490MHzQuasi-peak10kHz30kHz0.110MHz-0.490MHzAverage10kHz30kHz30MHz-1GHzQuasi-peak10kHz30kHzAbove 1GHzPeak1MHz3MHzPeak1MHz10Hz	FrequencyDetectorRBWVBWRemark0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzPeak0.110MHz-0.490MHzQuasi-peak10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz10HzAverage

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	- 0.75	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Iote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 93 of 109

Report No. : EED32I00268701

Page 94 of 109

Note:

1) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

Page 95 of 109

Transmitter Emission above 1GHz Antenna 1

							State of the second sec		
802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: P	eak	ak		
Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
30.22	2.40	34.97	47.18	44.83	74.00	-29.17	Pass	Horizontal	
30.60	2.52	34.79	48.18	46.51	74.00	-27.49	Pass	Horizontal	
34.73	6.72	34.35	43.10	50.20	74.00	-23.80	Pass	Horizontal	
35.80	6.07	34.30	41.49	49.06	74.00	-24.94	Pass	Horizontal	
36.42	8.38	34.90	40.57	50.47	74.00	-23.53	Pass	Horizontal	
37.93	7.63	35.07	36.94	47.43	74.00	-26.57	Pass	Horizontal	
30.22	2.40	34.97	48.66	46.31	74.00	-27.69	Pass	Vertical	
30.87	2.60	34.67	50.32	49.12	74.00	-24.88	Pass	Vertical	
34.73	6.72	34.35	43.42	50.52	74.00	-23.48	Pass	Vertical	
36.04	6.59	34.47	42.73	50.89	74.00	-23.11	Pass	Vertical	
36.42	8.38	34.90	40.71	50.61	74.00	-23.39	Pass	Vertical	
37.93	7.63	35.07	39.00	49.49	74.00	-24.51	Pass	Vertical	
	802.11b(11) Antenna Factor (dB/m) 30.22 30.60 34.73 35.80 36.42 37.93 30.22 30.87 34.73 36.04 36.04 36.42 37.93	802.11b(11Wbps) Antenna Factor (dB/m) Cable Loss (dB) 30.22 2.40 30.60 2.52 34.73 6.72 35.80 6.07 36.42 8.38 37.93 7.63 30.87 2.60 34.73 6.72 36.42 8.38 37.93 7.63 30.87 2.60 34.73 6.72 36.04 6.59 36.42 8.38 37.93 7.63	Test FAntenna Factor (dB/m)Cable Loss (dB) $Preamp$ Gain (dB)30.222.4034.9730.602.5234.7934.736.7234.3535.806.0734.3036.428.3834.9037.937.6335.0730.872.6034.6736.046.5934.4736.428.3834.9037.937.6335.07	802.11b(11Mbps)Test Frequency:Antenna Factor (dB/m)Cable Loss (dB) $PreampGain(dB)ReadLevel(dB)30.222.4034.9747.1830.602.5234.7948.1834.736.7234.3543.1035.806.0734.3041.4936.428.3834.9040.5737.937.6335.0736.9430.872.6034.6750.3234.736.7234.3543.4236.046.5934.4742.7336.428.3834.9040.7137.937.6335.0739.00$	Test Frequency: 2412MHzAntenna Factor (dB/m)Cable Loss (dB) $Preamp$ Gain (dB)Read Level (dB μ V)Final test level (dB μ V/m) 30.22 2.40 34.97 47.1844.83 30.60 2.52 34.79 48.1846.51 34.73 6.72 34.35 43.1050.20 35.80 6.07 34.30 41.4949.06 36.42 8.38 34.90 40.5750.47 37.93 7.63 35.07 36.94 47.43 30.87 2.60 34.67 50.32 49.12 34.73 6.72 34.35 43.4250.52 36.04 6.59 34.47 42.7350.89 36.42 8.38 34.90 40.7150.61 37.93 7.63 35.07 39.0049.49	802.11b(11Mbps)Test Frequency: 2412MHzRemark: PAntenna Factor (dB/m)Cable Loss (dB)Preamp Gain (dB)Read Level (dB μ V)Final test level (dB μ V/m)Limit (dB μ V/m)30.222.4034.9747.1844.8374.0030.602.5234.7948.1846.5174.0034.736.7234.3543.1050.2074.0035.806.0734.3041.4949.0674.0036.428.3834.9040.5750.4774.0030.222.4034.9748.6646.3174.0030.872.6034.6750.3249.1274.0030.872.6034.6750.3249.1274.0036.046.5934.4742.7350.8974.0036.428.3834.9040.7150.6174.0036.428.3834.9040.7150.6174.00	Test Frequency: 2412MHzRemark: PeakAntenna Factor (dB/m)Cable Loss (dB)Preamp (dB)Read (dB)Final test (dB/dB)Limit (dB/V)Over Limit 	802.11b(11Mbps)Test Frequency: 2412MHzRemark: PeakAntenna Factor (dB/m)Cable Loss (dB)Preamp Gain (dB)Read Level (dB μ V)Final test level (dB μ V/m)Limit (dB μ V/m)Over Limit (dB)Result30.222.4034.9747.1844.8374.00-29.17Pass30.602.5234.7948.1846.5174.00-27.49Pass34.736.7234.3543.1050.2074.00-23.80Pass35.806.0734.3041.4949.0674.00-24.94Pass36.428.3834.9040.5750.4774.00-23.53Pass30.222.4034.9748.6646.3174.00-26.57Pass30.872.6034.6750.3249.1274.00-24.88Pass34.736.7234.3543.4250.5274.00-23.11Pass34.736.7234.3543.4250.6174.00-23.11Pass36.046.5934.4742.7350.8974.00-23.11Pass36.428.3834.9040.7150.6174.00-23.39Pass36.428.3834.9040.7150.6174.00-23.11Pass36.428.3834.9040.7150.6174.00-24.51Pass36.428.3834.9040.7150.6174.00	

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	50.39	48.15	74.00	-25.85	Pass	Horizontal
1392.247	30.65	2.72	34.77	50.99	49.59	74.00	-24.41	Pass	Horizontal
4874.000	34.84	5.09	34.33	43.82	49.42	74.00	-24.58	Pass	Horizontal
5895.771	35.82	7.20	34.30	41.63	50.35	74.00	-23.65	Pass	Horizontal
7311.000	36.43	6.76	34.90	40.59	48.88	74.00	-25.12	Pass	Horizontal
9748.000	38.03	7.61	35.05	38.18	48.77	74.00	-25.23	Pass	Horizontal
1360.714	30.59	2.52	34.80	49.87	48.18	74.00	-25.82	Pass	Vertical
1993.395	31.69	2.86	34.30	47.35	47.60	74.00	-26.40	Pass	Vertical
4874.000	34.84	6.73	34.33	42.66	49.90	74.00	-24.10	Pass	Vertical
5880.782	35.81	6.06	34.30	40.70	48.27	74.00	-25.73	Pass	Vertical
7311.000	36.43	8.44	34.90	37.93	47.90	74.00	-26.10	Pass	Vertical
9748.000	38.03	7.55	35.05	39.32	49.85	74.00	-24.15	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Fred	Juency: 24	62MHz	Remark: P	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1273.572	30.40	2.60	34.89	50.25	48.36	74.00	-25.64	Pass	Horizontal	
1918.716	31.58	3.17	34.35	48.54	48.94	74.00	-25.06	Pass	Horizontal	
4924.000	34.94	5.07	34.32	44.41	50.10	74.00	-23.90	Pass	Horizontal	
5806.408	35.76	7.00	34.30	42.05	50.51	74.00	-23.49	Pass	Horizontal	
7386.000	36.44	6.83	34.90	41.28	49.65	74.00	-24.35	Pass	Horizontal	
9848.000	38.14	7.53	35.03	38.43	49.07	74.00	-24.93	Pass	Horizontal	
1374.639	30.62	2.71	34.79	46.61	45.15	74.00	-28.85	Pass	Vertical	
1968.184	31.65	3.21	34.32	45.31	45.85	74.00	-28.15	Pass	Vertical	
4924.000	34.94	5.07	34.32	41.52	47.21	74.00	-26.79	Pass	Vertical	
6001.768	35.90	7.43	34.30	41.64	50.67	74.00	-23.33	Pass	Vertical	
7386.000	36.44	6.83	34.90	42.07	50.44	74.00	-23.56	Pass	Vertical	
9848.000	38.14	7.53	35.03	39.25	49.89	74.00	-24.11	Pass	Vertical	

Test mode:	802.11g(6M	lbps)	Test Freq	uency: 24	12MHz	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	48.92	46.68	74.00	-27.32	Pass	Horizontal
1597.401	31.05	2.92	34.59	46.19	45.57	74.00	-28.43	Pass	Horizontal
4824.000	34.73	5.10	34.35	41.74	47.22	74.00	-26.78	Pass	Horizontal
5910.798	35.83	7.23	34.30	41.07	49.83	74.00	-24.17	Pass	Horizontal
7236.000	36.42	6.69	34.90	39.79	48.00	74.00	-26.00	Pass	Horizontal
9648.000	37.93	7.70	35.07	37.01	47.57	74.00	-26.43	Pass	Horizontal
1198.095	30.22	2.51	34.97	52.83	50.59	74.00	-23.41	Pass	Vertical
1938.352	31.61	3.19	34.34	49.29	49.75	74.00	-24.25	Pass	Vertical
4824.000	34.73	5.10	34.35	41.86	47.34	74.00	-26.66	Pass	Vertical
5895.771	35.82	7.20	34.30	41.59	50.31	74.00	-23.69	Pass	Vertical
7236.000	36.42	6.69	34.90	38.43	46.64	74.00	-27.36	Pass	Vertical
9648.000	37.93	7.70	35.07	36.98	47.54	74.00	-26.46	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Frequency: 2437MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1098.763	29.97	2.39	35.08	47.33	44.61	74.00	-29.39	Pass	Horizontal	
1498.912	30.87	2.83	34.67	47.00	46.03	74.00	-27.97	Pass	Horizontal	
4874.000	34.84	5.09	34.33	41.46	47.06	74.00	-26.94	Pass	Horizontal	
6494.564	36.16	6.94	34.61	42.04	50.53	74.00	-23.47	Pass	Horizontal	
7311.000	36.43	6.76	34.90	39.99	48.28	74.00	-25.72	Pass	Horizontal	
9748.000	38.03	7.61	35.05	39.70	50.29	74.00	-23.71	Pass	Horizontal	
1182.943	30.18	2.50	34.98	47.72	45.42	74.00	-28.58	Pass	Vertical	
3700.260	33.02	5.49	34.57	45.22	49.16	74.00	-24.84	Pass	Vertical	
4874.000	34.84	5.09	34.33	43.16	48.76	74.00	-25.24	Pass	Vertical	
5865.832	35.80	7.13	34.30	41.58	50.21	74.00	-23.79	Pass	Vertical	
7311.000	36.43	6.76	34.90	39.65	47.94	74.00	-26.06	Pass	Vertical	
9748.000	38.03	7.61	35.05	36.81	47.40	74.00	-26.60	Pass	Vertical	

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1204.210	30.24	2.52	34.96	46.75	44.55	74.00	-29.45	Pass	Horizontal	
1832.785	31.45	3.11	34.41	45.02	45.17	74.00	-28.83	Pass	Horizontal	
4924.000	34.94	5.07	34.32	41.49	47.18	74.00	-26.82	Pass	Horizontal	
5747.586	35.71	6.87	34.30	42.22	50.50	74.00	-23.50	Pass	Horizontal	
7386.000	36.44	6.83	34.90	40.40	48.77	74.00	-25.23	Pass	Horizontal	
9848.000	38.14	7.53	35.03	39.29	49.93	74.00	-24.07	Pass	Horizontal	
1144.437	30.09	2.45	35.02	48.88	46.40	74.00	-27.60	Pass	Vertical	
1593.340	31.04	2.91	34.60	46.35	45.70	74.00	-28.30	Pass	Vertical	
4924.000	34.94	5.07	34.32	40.97	46.66	74.00	-27.34	Pass	Vertical	
5747.586	35.71	6.87	34.30	42.24	50.52	74.00	-23.48	Pass	Vertical	
7386.000	36.44	6.83	34.90	39.15	47.52	74.00	-26.48	Pass	Vertical	
9848.000	38.14	7.53	35.03	37.30	47.94	74.00	-26.06	Pass	Vertical	

Page 98 of 109

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2412MHz Rem				ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lir (dBµ	nit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	48.15	45.91	74	.00	-28.09	Pass	Horizontal
1597.401	31.05	2.92	34.59	46.21	45.59	74	.00	-28.41	Pass	Horizontal
4824.000	34.73	5.10	34.35	42.43	47.91	74	.00.	-26.09	Pass	Horizontal
6267.190	36.04	7.16	34.47	40.48	49.21	74	.00	-24.79	Pass	Horizontal
7236.000	36.42	6.69	34.90	40.11	48.32	74	.00	-25.68	Pass	Horizontal
9648.000	37.93	7.70	35.07	38.21	48.77	74	.00	-25.23	Pass	Horizontal
1238.405	30.32	2.56	34.92	49.21	47.17	74	.00	-26.83	Pass	Vertical
4223.950	33.36	5.34	34.53	43.80	47.97	74	.00	-26.03	Pass	Vertical
4824.000	34.73	5.10	34.35	42.62	48.10	74	.00	-25.90	Pass	Vertical
5718.399	35.69	6.80	34.30	41.67	49.86	74	.00	-24.14	Pass	Vertical
7236.000	36.42	6.69	34.90	37.86	46.07	74	.00	-27.93	Pass	Vertical
9648.000	37.93	7.70	35.07	36.64	47.20	74	.00	-26.80	Pass	Vertical

Test mode:	802.11n(HT	1bps)	Test Frequency: 2437MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1296.469	30.45	2.62	34.86	46.51	44.72	74.00		-29.28	Pass	Horizontal
1593.340	31.04	2.91	34.60	45.38	44.73	74	.00	-29.27	Pass	Horizontal
4874.000	34.84	5.09	34.33	41.66	47.26	74	.00	-26.74	Pass	Horizontal
6001.768	35.90	7.43	34.30	40.95	49.98	74	.00	-24.02	Pass	Horizontal
7311.000	36.43	6.76	34.90	41.00	49.29	74	.00	-24.71	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.16	49.75	74	.00	-24.25	Pass	Horizontal
1198.095	30.22	2.51	34.97	51.74	49.50	74	.00	-24.50	Pass	Vertical
4191.816	33.28	5.36	34.54	43.68	47.78	74	.00	-26.22	Pass	Vertical
4874.000	34.84	5.09	34.33	41.82	47.42	74	.00	-26.58	Pass	Vertical
5895.771	35.82	7.20	34.30	41.55	50.27	74	.00	-23.73	Pass	Vertical
7311.000	36.43	6.76	34.90	39.35	47.64	74	.00	-26.36	Pass	Vertical
9748.000	38.03	7.61	35.05	38.60	49.19	74	.00	-24.81	Pass	Vertical

Page 99 of 109

Test mode:	802.11n(HT	20)(6.5N	lbps)	Test Freque	ency: 2462M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lir (dBµ	nit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.62	34.87	46.98	45.16	74	.00	-28.84	Pass	Horizontal
1746.251	31.31	3.04	34.48	45.05	44.92	74	.00	-29.08	Pass	Horizontal
4924.000	34.94	5.07	34.32	42.11	47.80	74	.00	-26.20	Pass	Horizontal
6494.564	36.16	6.94	34.61	41.90	50.39	74	.00	-23.61	Pass	Horizontal
7386.000	36.44	6.83	34.90	40.14	48.51	74	.00	-25.49	Pass	Horizontal
9848.000	38.14	7.53	35.03	37.72	48.36	74	.00	-25.64	Pass	Horizontal
1198.095	30.22	2.51	34.97	48.72	46.48	74	.00	-27.52	Pass	Vertical
1884.829	31.53	3.15	34.38	46.35	46.65	74	.00	-27.35	Pass	Vertical
4924.000	34.94	5.07	34.32	42.00	47.69	74	.00	-26.31	Pass	Vertical
6156.505	35.98	7.27	34.40	40.17	49.02	74	.00	-24.98	Pass	Vertical
7386.000	36.44	6.83	34.90	39.35	47.72	74	.00	-26.28	Pass	Vertical
9848.000	38.14	7.53	35.03	37.03	47.67	74	.00	-26.33	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2422MHz				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Li (dBµ	mit ıV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1167.982	30.15	2.48	35.00	46.83	44.46	74	.00	-29.54	Pass	Horizontal	
1795.839	31.39	3.08	34.44	44.97	45.00	74	.00	-29.00	Pass	Horizontal	
4844.000	34.77	5.10	34.34	41.37	46.90	74	.00	-27.10	Pass	Horizontal	
6187.929	36.00	7.24	34.42	39.90	48.72	74	.00	-25.28	Pass	Horizontal	
7266.000	36.43	6.72	34.90	38.63	46.88	74	.00	-27.12	Pass	Horizontal	
9688.000	37.97	7.66	35.06	37.51	48.08	74	.00	-25.92	Pass	Horizontal	
1167.982	30.15	2.48	35.00	49.22	46.85	74	.00	-27.15	Pass	Vertical	
1818.842	31.43	3.10	34.42	46.70	46.81	74	.00	-27.19	Pass	Vertical	
4844.000	34.77	5.10	34.34	41.60	47.13	74	.00	-26.87	Pass	Vertical	
5971.290	35.88	7.37	34.30	40.45	49.40	74	.00	-24.60	Pass	Vertical	
7266.000	36.43	6.72	34.90	38.58	46.83	74	.00	-27.17	Pass	Vertical	
9688.000	37.97	7.66	35.06	36.55	47.12	74	.00	-26.88	Pass	Vertical	

(A)

Page 100 of 109

Test mode:	802.11n(HT	40)(13.5N	Nbps)	Test Fr	equency: 24	37MHz	Remark: P		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.69	34.80	46.73	45.21	74.00	-28.79	Pass	Horizontal
1958.189	31.64	3.20	34.33	45.85	46.36	74.00	-27.64	Pass	Horizontal
4874.000	34.84	5.09	34.33	41.91	47.51	74.00	-26.49	Pass	Horizontal
5776.922	35.73	6.93	34.30	41.76	50.12	74.00	-23.88	Pass	Horizontal
7311.000	36.43	6.76	34.90	38.81	47.10	74.00	-26.90	Pass	Horizontal
9748.000	38.03	7.61	35.05	37.07	47.66	74.00	-26.34	Pass	Horizontal
1198.095	30.22	2.51	34.97	51.03	48.79	74.00	-25.21	Pass	Vertical
1933.424	31.60	3.18	34.34	47.10	47.54	74.00	-26.46	Pass	Vertical
4874.000	34.84	5.09	34.33	41.49	47.09	74.00	-26.91	Pass	Vertical
6235.364	36.02	7.19	34.45	41.09	49.85	74.00	-24.15	Pass	Vertical
7311.000	36.43	6.76	34.90	40.06	48.35	74.00	-25.65	Pass	Vertical
9748.000	38.03	7.61	35.05	37.96	48.55	74.00	-25.45	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2452MHz				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1185.958	30.19	2.50	34.98	47.24	44.95	74	4.00	-29.05	Pass	Horizontal	
1755.164	31.32	3.05	34.47	45.45	45.35	74	4.00	-28.65	Pass	Horizontal	
4904.000	34.90	5.07	34.33	41.40	47.04	74	4.00	-26.96	Pass	Horizontal	
5910.798	35.83	7.23	34.30	41.27	50.03	74	4.00	-23.97	Pass	Horizontal	
7356.000	36.44	6.80	34.90	39.44	47.78	74	4.00	-26.22	Pass	Horizontal	
9808.000	38.10	7.56	35.04	38.99	49.61	74	4.00	-24.39	Pass	Horizontal	
1195.049	30.21	2.51	34.97	48.40	46.15	74	4.00	-27.85	Pass	Vertical	
1889.633	31.54	3.15	34.37	49.73	50.05	74	4.00	-23.95	Pass	Vertical	
4904.000	34.90	5.07	34.33	41.27	46.91	74	4.00	-27.09	Pass	Vertical	
6347.466	36.08	7.08	34.52	41.68	50.32	74	4.00	-23.68	Pass	Vertical	
7356.000	36.44	6.80	34.90	38.54	46.88	74	4.00	-27.12	Pass	Vertical	
9808.000	38.10	7.56	35.04	36.91	47.53	74	4.00	-26.47	Pass	Vertical	

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

(A)

Report No. : EED32I00268701

Page 101 of 109

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Page 103 of 109

Radiated spurious emission Test Setup-3(Above 1GHz)

Page 104 of 109

Page 105 of 109

Page 106 of 109

Page 107 of 109

Page 108 of 109

Page 109 of 109

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.