

Report No: CCISE180916406

FCC REPORT

Applicant: NEXUS TELECOM SERVICES (HK) LIMITED		
Address of Applicant:	R112, 11/F Hollywood Plaza, Mangkok, Kowloon Hong Kong	
Equipment Under Test (B	EUT)	
Product Name:	MOBILE PHONE	
Model No.:	GO1006	
Trade mark:	GOMOBILE	
FCC ID:	2AHDFGO1006	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B	
Date of sample receipt:	29 Sep., 2018	
Date of Test:	29 Sep., to 02 Nov., 2018	
Date of report issued:	05 Nov., 2018	
Test Result:	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	05 Nov., 2018	Original

Tested by:

Mike.0U

Date:

05 Nov., 2018

Test Engineer

Reviewed by:

Wimer chan

Date:

05 Nov., 2018

Project Engineer

<u>CCIS</u>

Report No: CCISE180916406

3 Contents

			Page
1	С	OVER PAGE	1
2	v	/ERSION	2
3	С	CONTENTS	3
4	т	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	Test Mode	5
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	Related Submittal(s) / Grant (s)	6
	5.7	LABORATORY FACILITY	6
	5.8	LABORATORY LOCATION	
	5.9	Test Instruments list	
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	Conducted Emission	
	6.2	RADIATED EMISSION	
7	т	EST SETUP PHOTO	
8	Е	EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT not applicable of the test item.				

5 General Information

5.1 Client Information

Applicant:	NEXUS TELECOM SERVICES (HK) LIMITED
Address of Applicant:	R112, 11/F Hollywood Plaza, Mangkok, Kowloon Hong Kong
Manufacturer:	Guizhou Fortuneship Technology Co., Ltd
Address:	2nd Floor, Factory Building 4, Hi-Tech Industrial Park, Xinpu Economic Development Zone, Xinpu New District, Zunyi City, Guizhou Province, P. R. China

5.2 General Description of E.U.T.

Product Name:	MOBILE PHONE
Model No.:	GO1006
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
AC adapter :	Model: GO1006 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode Detail description			
PC mode	Keep the EUT in Downloading mode(Worst case)		
Charging+Recording mode	Keep the EUT in Charging+Recording mode		
Charging+Playing mode	Keep the EUT in Charging+Playing mode		
FM mode	Keep the EUT in FM receiver mode		
GPS mode	Keep the EUT in GPS receiver mode		
The sample was placed 0.8m ab	we the ground plane of 2m chamber. Measurements in both herizontal and		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

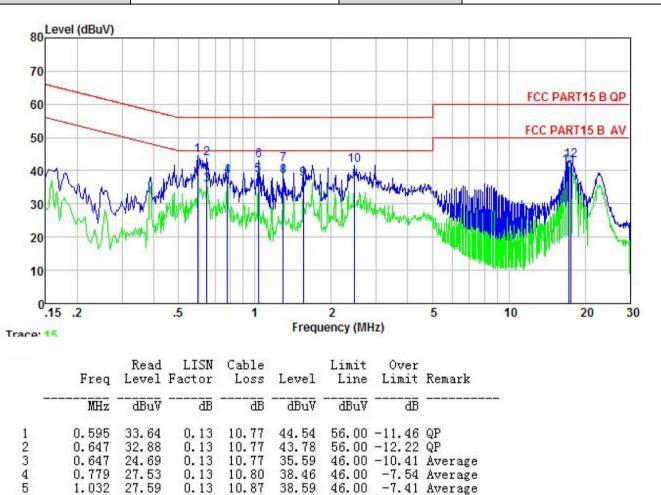
5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		


6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10)7		
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz	L 1		
Limit:	Frequency range (MHz)	Limit (Quasi-peak	(dBµV) Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	0.5-30	60	50	
	* Decreases with the logarith	im of the frequency.		
Test setup:	Reference Pla	ne	_	
	LISN 40cm 80cm Filter AC power Full E.U.T Filter AC power Equipment E.U.T EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Network			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test environment:	Temp.:23 °CHumid.:56%Press.:101kPa			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement data:

Product name:	MOBILE PHONE	Product model:	GO1006
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Notes:

0.779

1.032

1.037

1.296

1.296

1.552

2.461

17.199

17.475

67

8

9

10

11

12

27.53

27.59

32.17

31.02

27.39

26.44

30.52

30.24

31.86

0.13

0.13

0.13

0.13

0.13

0.14

0.15

0.30

0.29

10.80

10.87

10.87

10.90

10.90

10.93

10.94

10.91

10.92

38.46

38.59

43.17

42.05

38.42

37.51

41.61

41.45

43.07

46.00

46.00

46.00

46.00

56.00 -12.83 QP

56.00 -13.95 QP

56.00 -14.39 QP

60.00 -16.93 QP

50.00 -8.55 Average

-7.54 Average

-7.41 Average

-7.58 Average

-8.49 Average

1. An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 2.

Final Level =Receiver Read level + LISN Factor + Cable Loss. 3

Product name:		MOBILE PHONE			Pi	roduct m	nodel:	GO1006			
est by:		Mike			Те	est mode):	PC mode			
est frequency:		150 kHz	~ 30 MHz		PI	hase:		Neutral			
est voltage:	AC 120 V/60 Hz			E	nvironme	ent:	Temp: 22.5℃ Huni: 55%				
80 Level (dBu	IV)									_	
70											
60		-						FC	CC PART15 B Q	P	
50								FC	C PART15 B A	v	
and the second		14	Mar 1	5 1	6 8				10		
40	A .	1 um	WINHA	the while	MANNA	What might a	Ald a mark will live		w and the MA		
30	ALAND	M	" UN	a second second		ALM HULLING	Land Land			1	
20	1. M			and Warner	A MARANA	No.Co		The stellar		1	
20 1 20	1 Mar 1	V4									
									and the second se		
10					_						
0										20	
10 0.15 .2		.5		1 Fi	2 requency	(MHz)	5	10	20	30	
0.15 .2		Read	LISN	Cable	requency	Limit	Over		20	30	
0.15 .2	Freq	Read	LISN Factor	Cable	-		Over		20	30	
0.15 .2	Freq	Read		Cable	requency	Limit	Over	Remark	20	30	
0.15 .2	MHz . 555	Read Level dBuV 32.77	Factor dB 0.97	Cable Loss dB 10.76	Level dBuV 44.50	Limit Line dBuV 56.00	Over Limit dB -11.50	Remark 	20	30	
0.15 .2	MHz .555 .614	Read Level dBuV 32.77 35.21	Factor dB 0.97 0.97	Cable Loss dB 10.76 10.77	Level 	Limit Line dBuV 56.00 56.00	Over Limit dB -11.50 -9.05	Remark QP QP	20	30	
0.15 .2 Trace 1 1 0. 2 0. 3 0. 4 0.	MHz .555 .614 .775 .779	Read Level dBuV 32.77 35.21 26.71 32.15	Factor dB 0.97 0.97 0.97 0.97 0.97 0.97	Cable Loss dB 10.76 10.77 10.80 10.80	Level 	Limit Line dBuV 56.00 56.00 46.00 56.00	Over Limit -11.50 -9.05 -7.52 -12.08	Remark QP QP Average QP	20	30	
0.15 .2 1 0. 2 0. 3 0. 4 0. 5 1.	MHz . 555 . 614 . 775 . 779 . 032	Read Level dBuV 32.77 35.21 26.71 32.15 28.00	Factor dB 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Cable Loss dB 10.76 10.77 10.80 10.80 10.87	Level dBuV 44.50 46.95 38.48 43.92 39.84	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16	Remark QP QP Average QP Average	20	30	
0.15 .2 Trace 1 1 0.2 2 0. 3 0. 4 0. 5 1. 6 1.	MHz 555 614 775 779 032 680	Read Level dBuV 32.77 35.21 26.71 32.15 28.00 32.03	Factor dB 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98	Cable Loss dB 10.76 10.77 10.80 10.80 10.87 10.94	Level dBuV 44.50 46.95 38.48 43.92 39.84 43.95	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00 56.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16 -12.05	Remark QP QP Average QP Average QP	20	30	
0.15 .2 1 0. 2 0. 3 0. 4 0. 5 1. 6 1. 7 1. 8 2.	MHz . 555 . 614 . 775 . 779 . 032	Read Level dBuV 32.77 35.21 26.71 32.15 28.00	Factor dB 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Cable Loss dB 10.76 10.77 10.80 10.80 10.87	Level dBuV 44.50 46.95 38.48 43.92 39.84	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00 56.00 46.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16 -12.05	Remark QP QP Average QP Average QP Average QP	20	30	
0.15 .2 1 0. 2 0. 3 0. 4 0. 5 1. 6 1. 7 1. 8 2. 9 8.	MHz .555 .614 .775 .032 .680 .680 .461 .776	Read Level dBuV 32.77 35.21 26.71 32.15 28.00 32.03 27.10 32.47 23.95	Factor dB 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99 1.02	Cable Loss dB 10.76 10.77 10.80 10.80 10.87 10.94 10.94 10.94 10.94 10.89	Level dBuV 44.50 46.95 38.48 43.92 39.84 43.95 39.02 44.40 35.86	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00 56.00 56.00 56.00 50.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16 -12.05 -6.98 -11.60 -14.14	Remark QP QP Average QP Average QP Average QP Average QP Average	20	30	
0.15 .2 1 0. 2 0. 3 0. 4 0. 5 1. 6 1. 7 1. 8 2. 9 8. 10 17.	MHz .555 .614 .775 .032 .680 .680 .461 .776 .475	Read Level dBuV 32.77 35.21 26.71 32.15 28.00 32.03 27.10 32.47 23.95 35.25	Factor dB 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99 1.02 0.79	Cable Loss dB 10.76 10.77 10.80 10.80 10.87 10.94 10.94 10.94 10.89 10.92	Level dBuV 44.50 46.95 38.48 43.92 39.84 43.95 39.02 44.40 35.86 46.96	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00 56.00 56.00 56.00 50.00 60.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16 -12.05 -6.98 -11.60 -14.14 -13.04	Remark QP QP Average QP Average QP Average QP Average QP Average QP	20	30	
0.15 .2 1 0. 2 0. 3 0. 4 0. 5 1. 6 1. 7 1. 8 2. 9 8. 10 17. 11 17.	MHz .555 .614 .775 .032 .680 .680 .461 .776 .475	Read Level dBuV 32.77 35.21 26.71 32.15 28.00 32.03 27.10 32.47 23.95	Factor dB 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99 1.02	Cable Loss dB 10.76 10.77 10.80 10.80 10.87 10.94 10.94 10.94 10.94 10.89	Level dBuV 44.50 46.95 38.48 43.92 39.84 43.95 39.02 44.40 35.86 46.96	Limit Line dBuV 56.00 56.00 46.00 56.00 46.00 56.00 56.00 56.00 50.00 50.00 50.00	Over Limit -11.50 -9.05 -7.52 -12.08 -6.16 -12.05 -6.98 -11.60 -14.14 -13.04 -4.75	Remark QP QP Average QP Average QP Average QP Average QP Average	20	30	

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

CCIS

6.2 Radiated Emission

ANSI C63.4:201	1.4						
	ANSI C63.4:2014 30MHz to 6000MHz						
30MHz to 6000	MHz						
Measurement D	istance: 3	3m (Se	mi-Anechoi	c Charr	nber)		
Frequency	Detec	ctor	RBW	VBV			
30MHz-1GHz			120kHz				
Above 1GHz						Peak Value	
					IZ	Average Value	
		LIMIL		2311)	0	Remark Quasi-peak Value	
						Quasi-peak Value	
						Quasi-peak Value	
						Quasi-peak Value	
						Average Value	
Above 1G	Hz -		74.0			Peak Value	
EUT Tum Table Bround Plane – Above 1GHz		Ground R		RF Test Receiver -			
	Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz EUT Tum Table Above 1GHz Ground Plane – Above 1GHz	Measurement Distance: 3 Frequency Detect 30MHz-1GHz Quasi- Above 1GHz Pea RM Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz EUT 4m 4m 4m 500m 1m 600m 1m 1m 1m 1m 1m 1m 1m 1m 1m 1	Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz EUT 4m 4m 4m 4m 4m 4m 4m 4m 4m 4m	Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz RMS 11MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz FUT 4m	Measurement Distance: 3m (Semi-Anechoic Chan Frequency Detector RBW VBV 30MHz-1GHz Quasi-peak 120kHz 300k Above 1GHz Peak 1MHz 3MH Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 30MHz-216MHz 43.5 216MHz-960MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 74.0 Below 1GHz 6.0 960MHz-1GHz 6.0 0.8m 1m 6.0 960MHz-1GHz 6.0 960MHz-1GHz 54.0 74.0 6.0 Below 1GHz 74.0 76.0 76.0 Below 1GHz 6.0 76.0 76.0 Below 1GHz 76.0 76.0 76.0 Above 1GHz 76.0 76.0 76.0 Ground Plane 76.0 76.0 76.0 <td>Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 0 30MHz-1GHz 43.5 0 0 216MHz-960MHz 46.0 0 0 960MHz-1GHz 54.0 0 0 Above 1GHz 74.0 0 0 Below 1GHz 64.0 0 0 Above 1GHz 74.0 0 0 Above 1GHz 64.0 0 0 Above 1GHz 74.0 0 0 Above 1GHz 1 1 0 0 Above 1GHz 1 1 1 0 0 Above 1GHz 1 1 1 0 0 0 Ground Plane 1 1 1 1 0 0 0 Ground Plane 1 1 1 1 1 <td< td=""></td<></td>	Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 0 30MHz-1GHz 43.5 0 0 216MHz-960MHz 46.0 0 0 960MHz-1GHz 54.0 0 0 Above 1GHz 74.0 0 0 Below 1GHz 64.0 0 0 Above 1GHz 74.0 0 0 Above 1GHz 64.0 0 0 Above 1GHz 74.0 0 0 Above 1GHz 1 1 0 0 Above 1GHz 1 1 1 0 0 Above 1GHz 1 1 1 0 0 0 Ground Plane 1 1 1 1 0 0 0 Ground Plane 1 1 1 1 1 <td< td=""></td<>	

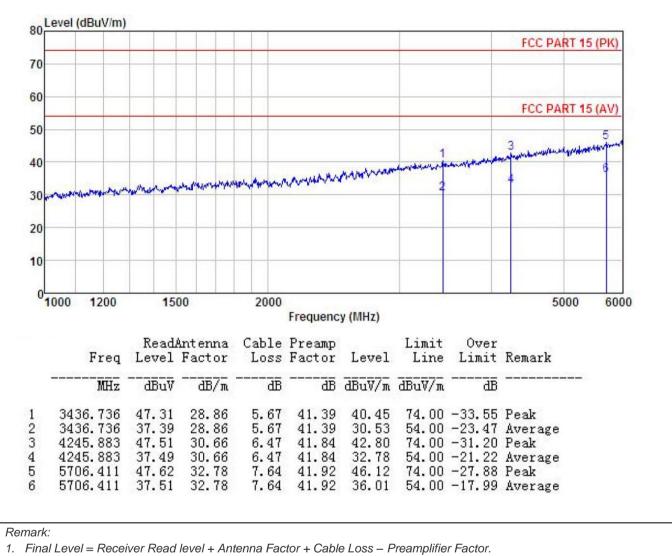
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified 						
	 Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa	
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
Remark:	All of the or recorded	bserved valu	e above 6GH	Iz ware the r	iose floor ,	which were no	

Measurement Data:

Below 1GHz:						
Product Name:	MOBILE PHONE	Product Model:	GO1006			
Test By:	Mike	Test mode:	PC mode			
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%			
80 Level (dBuV/m)						

50										
40						2		5	6	
30					1			3		No.
20		Å		1 rul			huld	N. I.	and and a second second	Venthermore
20 Mar	the I a second shall be	where .	ind when	Write		ul all Miles	- White Mar	- The state of the		
10	and Waters.	trub			Anti the cores					
030						-				
30	50		1(requency	200 (MHz)		50	00	1000
		Read	Antenna	Cable	Preamp	Sar ward	Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
2	MHz	₫₿uѶ		dB	āĒ	dBuV/m	dBuV/m	dB		
1	139.851	50.22	8.11	2.39	29.27	31.45	43.50	-12.05	QP	
1 2 3 4 5	239.987	51.51	12.97	2.82		38.71	46.00			
3	400.432	40.51	15.51	3.08		30.32		-15.68		
4	480.528 480.528	47.69	16.97 16.97	3.46 3.46		39.20 39.20		-6.80 -6.80		
6	721.726	40.09	20.33	4.26		36.10	46.00			

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct Name:	MOBILE PHON	IE	Produ	Ict Mode	l: (GO1006	GO1006		
est By:	Mike		Test r	node:	F	PC mode			
est Frequency:	st Frequency: 30 MHz ~ 1 GHz			ization:	H	Horizontal			
est Voltage:	AC 120/60Hz	Enviro	onment:	-	Temp: 24 ℃	Huni: 57%			
80 Level (dBuV/m)	5								
80									
70									
60									
00						FCC PART15	CLASSB		
50			_			,			
40			2			1 5			
10									
		1			2		e		
30		1	1	r .	3	hung	e Autophtrattur		
		Anul Hill	We when the	4. Julium	w Mun	hoursenst	entrollow		
30	Manuary Manuary and	mind	ald when the	4. J. Muldhand	Mu	formand	e gebeldrether		
30 20 10		mandul	allanthanth	4. Landlenad	w Au	Januar	E Herbertelsentherd		
30 20		100 Ereque	200	Undhaw	white	500	e whatdaalkad 1000		
30 20 10	0	Freque	200 ncy (MHz)			d which have the			
30 20 10 0 30 5	0		200 ncy (MHz)	Limit	Over	d which have the			
30 20 10 0 30 5	0 ReadAntenna	Freque Cable Pream Loss Facto	200 ncy (MHz)	Limit Line	Over	500			
30 20 10 0 30 5 Freq MHz 1 144.842	0 ReadAntenna Level Factor dBuV dB/m 48.14 8.35	Freque Cable Pream Loss Facto dB d 2.45 29.2	200 ncy (MHz) r Level 3 dBuV/m 5 29.69	Limit Line dBuV/m 43.50	Over Limit	500 Remark			
30 20 10 0 30 5 Freq MHz 1 144.842	0 ReadAntenna Level Factor dBuV dB/m 48.14 8.35 53.51 12.97	Freque Cable Pream Loss Facto dB 2.45 29.2 2.82 28.5	200 ncy (MHz) r Level 3 dBuV/m 5 29.69 9 40.71	Limit Line dBuV/m 43.50 46.00	Over Limit -13.81 -5.29	Soo Remark QP QP			
30 20 10 0 30 5 Freq	ReadAntenna Level Factor dBuV dB/m 48.14 8.35 53.51 12.97 38.35 15.37 51.10 16.97	Freque Cable Pream Loss Facto dB d 2.45 29.2 2.82 28.5 3.08 28.7 3.46 28.9	200 ncy (MHz) pr Level 3 dBuV/m 5 29.69 9 40.71 5 28.05 2 42.61	Limit Line dBuV/m 43.50 46.00 46.00 46.00	Over Limit -13.81 -5.29 -17.95 -3.39	S00 Remark QP QP QP QP QP			
30 20 10 0 30 5 Freq MHz 1 144.842	0 ReadAntenna Level Factor dBuV dB/m 48.14 8.35 53.51 12.97 38.35 15.37	Freque Cable Pream Loss Facto dB d 2.45 29.2 2.82 28.5 3.08 28.7	200 ncy (MHz) pr Level 3 dBuV/m 5 29.69 9 40.71 5 28.05 2 42.61 3 36.94	Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00	Over Limit -13.81 -5.29 -17.95	QP QP QP QP QP QP QP QP			

Above 1GHz:

Product Name:	MOBILE PHONE	Product Model:	GO1006
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:	N	10BILE P	HONE		Pro	duct Mo	del:	GO1006			
est By:	Ν	like			Tes	st mode:		PC mode			
est Frequency	y: 1	1 GHz ~ 6 GHz Polarizati					า:	Horizontal			
est Voltage:	А	AC 120/60Hz		Env	vironme	nt:	Temp: 24	°C Hu	ni: 57%		
Level (dE	BuV/m)										
80								FC	C PART 1	5 (PK)	
70										1000	
60		_		_				EC	C PART 1	5 (AV)	
50										=	
10							1	Martarthey	3	waterhave	
40			a		www.hn.np.hn	in my way	manquela	NAME OF TAXABLE PARTY OF TAXABLE PARTY	4	6	
30 phantage man	monteentheat	had a share	an a	A Phone in a			- 2	nserver and a start			
20											
10											
01000	1200	1500	2	2000 Freq	uency (M	Hz)			5000	6000	
			na Cable			Limit	Over				
100000000000000000000000000000000000000			or Loss				Limit	Kemark	<u>.</u>		
		BuV dB			dBuV/m						
1 3473.8 2 3473.8	883 36.	42 28.	89 5.73	41.43	29.61	54.00	-33.84 -24.39	Average			
3 4618.9 4 4618.9	928 46. 928 36.	93 31. 86 31.					-31.00	Peak Average			
5 5840.8 6 5840.8	889 46. 889 37.	.89 33. 07 33.	02 7.90 02 7.90		45.78 35.96	74.00 54.00	-28.22	Peak Average			