

Test report

301988-1TRFWL

Date of issue: February 3, 2016

Applicant:

Swift Labs Inc.

Product:

Veta™ Smart Case

Model:

Z1604

FCC ID: IC Registration number: 2AHBP—Z1604 21100—Z1604

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902-928 MHz, 2400-2483.5 MHz, 5725-5850 MHz

RSS-247, Issue 1, May 2015, Section 5

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC: 176392; IC: 2040A-4 (3 m semi anechoic chamber)

Tested by	Andrey Adelberg, Senior Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Review date	February 3, 2016
Reviewer signature	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	1. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2		
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart C, intentional radiators test results	5
2.3	IC RSS-GEN, Issue 4, test results	5
2.4	IC RSS-247, Issue 1, test results	6
Section 3	3. Equipment under test (EUT) details	7
3.1	Sample information	7
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	7
3.5	EUT exercise details	8
3.6	EUT setup diagram	8
Section	4. Engineering considerations	9
4.1	Modifications incorporated in the EUT	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section !	5. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section (6. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section	7. Test equipment	12
7.1	Test equipment list	12
Section 8	8. Testing data	13
8.1	FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques	13
8.2	FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements	15
8.3	FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) emissions	18
8.4	FCC 15.247(e) and RSS-247 5.2(2) Power spectral density for digitally modulated devices	23
Section	9. Block diagrams of test set-ups	25
9.1	Radiated emissions set-up for frequencies below 1 GHz	25
9.2	Radiated emissions set-up for frequencies above 1 GHz	26

Section 1. Report summary

1.1 Applicant

Company name	Swift Labs Inc.
Address	22 Frederick Street, Suite 1110
City	Kitchener
Province/State	Ontario
Postal/Zip code	N2H 6M6
Country	Canada

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz
RSS-247, Issue 1, May 2015, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
	Network (LE-LAN) Devices

1.3 Test methods

558074 D01 DTS Meas Guidance v03r04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under
(January 7, 2016)	§15.247
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²

Notes: ¹ The EUT is a battery operated device and all tests were performed with fresh batteries

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 IC RSS-GEN, Issue 4, test results

Part	Test description	Verdict
7.1.2	Receiver radiated emission limits	Not applicable
7.1.3	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Not applicable

Notes: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

The EUT is a battery operated device

 $^{^{\}rm 2}$ The Antennas are located within the enclosure of EUT and not user accessible.

2.4 IC RSS-247, Issue 1, test results

Part	Test description	Verdict
5.1	Frequency Hopping Systems (FHSs)	
5.1 (1)	Bandwidth of a frequency hopping channel	Not applicable
5.1 (2)	Minimum channel spacing for frequency hopping systems	Not applicable
5.1 (3)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.1 (4)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (5)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
5.2	Digital Transmission Systems (DTSs)	
5.2 (1)	Minimum 6 dB bandwidth	Pass
5.2 (2)	Maximum power spectral density	Pass
5.3	Hybrid Systems	
5.3 (1)	Digital modulation turned off	Not applicable
5.3 (2)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (1)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.4 (2)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (3)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
5.4 (4)	Systems employing digital modulation techniques	Pass
5.4 (5)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (6)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Out-of-band emissions	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	January 21, 2016
Nemko sample ID number	133-001669

3.2 EUT information

Product name	Veta™ Smart Case
Model	Z1604
Serial number	042

3.3 Technical information

Applicant IC company number	21100
Applicant IC company number	- 11
IC UPN number	Z1604
All used IC test site(s) Reg. number	2040A-4
RSS number and Issue number	RSS-247 Issue 1, May 2015
Frequency band	2400–2483.5 MHz
Frequency Min (MHz)	2402
Frequency Max (MHz)	2480
RF power Max (W)	N/A
Field strength, Units @ distance	100.914 dBμV/m @ 3 m
Measured BW (kHz) (6 dB)	769
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	BLE (GFSK)
Emission classification (F1D, G1D, D1D)	F1D
Transmitter spurious, Units @ distance	52.39 dBμV/m @ 3 , at 2489 MHz
Power requirements	3 V _{DC} from 2 × 'AAA' type alkaline batteries
Antenna information	Internal non-detachable ceramic surface mounted antenna. Gain = 2.64 dBi, PN# RFECA3216060A1T

3.4 Product description and theory of operation

The Veta™ Smart Case is a Bluetooth® Smart peripheral based on the Nordic Semiconductor nRF51822 SoC chipset. It transmits and receives at 1 Mbps with 4 dBm of transmit power, using GFSK modulation across all 40 channels between 2.402 GHz and 2.480 GHz. The product is a portable device, carried by a user who has severe allergies and is required to have an epinephrine auto-injector nearby at all times in case of a severe reaction known as anaphylaxis. The product accommodates a single epinephrine auto-injector (not included), augmenting it with electronics and intelligent sensors.

In normal operation, the Bluetooth transceiver is always enabled, and the product is either advertising its presence on one of three advertising channels, or it is connected to another device (typically a smartphone or a tablet). Whether connected or not, the microprocessor periodically measures temperature, and knows when the auto-injector has been removed from the case. When connected, it is able to communicate this information to a support network (using the smartphone or tablet as a gateway to the internet). Should the user misplace the product, if they are close enough to it that it is able to establish a connection to their smartphone or tablet, they can send a signal to the unit to cause it to beep and blink, helping them locate the product, even in a dark room.

3.5 EUT exercise details

EUT was modified with test software to transmit on Low, Mid and High channels with modulated signal at the maximum power.

3.6 EUT setup diagram

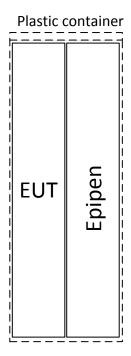


Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Dec. 01/16
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Jan. 07/17
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Apr. 12/16
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	Apr. 01/16
Pre-amplifier (1–18 GHz)	JCA	JCA118-503	FA002091	1 year	May 05/16
Horn antenna (18–26.5 GHz)	Electro-metrics	SH-50/60-1	FA000479	_	VOU
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU

Note: NCR - no calibration required, VOU - verify on use

Section 8 Testing data

Test name FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital

modulation techniques

Specification FCC Part 15 Subpart C and RSS-247, Issue 1

Section 8. Testing data

8.1 FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques

8.1.1 Definitions and limits

FCC and IC:

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.1.2 Test summary

Test date	January 22, 2016	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1020 mbar
Verdict	Pass	Relative humidity	32 %

8.1.3 Observations, settings and special notes

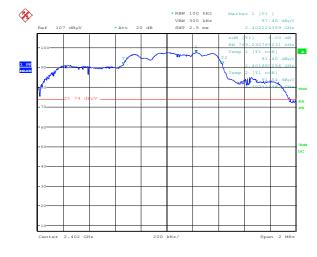
Spectrum analyser settings:

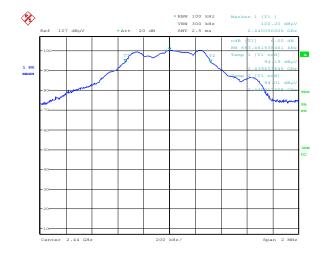
Resolution bandwidth	100 kHz
Video bandwidth	≥3 × RBW
Frequency span	2 MHz
Detector mode	Peak
Trace mode	Max Hold

8.1.4 Test data

Table 8.1-1: 6 dB bandwidth results

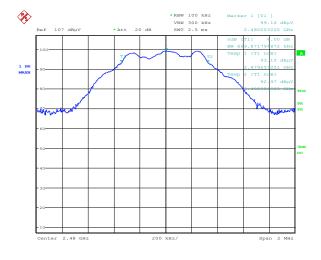
Frequency, MHz	6 dB bandwidth, MHz	Limit, MHz	Margin, MHz
2402	0.769	0.50	0.269
2440	0.663	0.50	0.163
2480	0.670	0.50	0.170


Section 8 Testing data


Test name FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital

modulation techniques

Specification FCC Part 15 Subpart C and RSS-247, Issue 1



Date: 22.JAN.2016 15:51:19 Date: 22.JAN.2016 15:40:21

Figure 8.1-1: 6 dB bandwidth on low channel

Figure 8.1-2: 6 dB bandwidth on mid channel

Date: 22.JAN.2016 15:42:29

Figure 8.1-3: 6 dB bandwidth on high channel

FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

FCC Part 15 Subpart C and RSS-247, Issue 1

8.2 FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

8.2.1 Definitions and limits

FCC:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Fixed, point-to-point operation, as used in paragraphs (b)(3)(i) and (b)(3)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

- (c) Operation with directional antenna gains greater than 6 dBi.
 - (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
 - (i) Different information must be transmitted to each receiver.
 - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

IC:

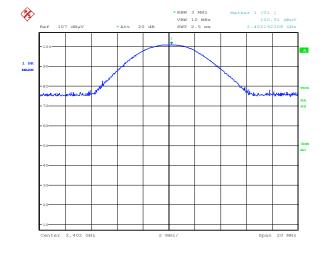
For DTSs employing digital modulation techniques operating in the bands 902–928 MHz and 2400–2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

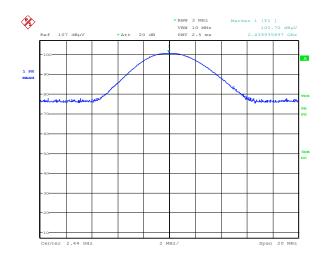
Fixed point-to-point systems in the bands 2400-2483.5 MHz and 5725-5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding an e.i.r.p. of 4 W.

8.2.2 Test summary

Test date	January 22, 2016	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1020 mbar
Verdict	Pass	Relative humidity	32 %

8.2.3 Observations, settings and special notes

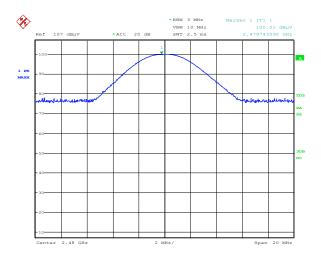

Spectrum analyser settings:


Resolution bandwidth	3 MkHz
Video bandwidth	≥3 × RBW
Frequency span	20 MHz
Detector mode	Peak
Trace mode	Max Hold

8.2.4 Test data

Table 8.2-1: EIRP and Output power measurements results

Frequency, MHz	Field strength, dBμV/m	EIRP, dBm	EIRP limit, dBm	Antenna gain, dBi	Output power, dBm	Output power limit, dBm	Output power margin, dB
2402	100.91	5.68	36.00	2.64	3.04	30.00	26.96
2440	100.70	5.47	36.00	2.64	2.83	30.00	27.17
2480	100.01	4.78	36.00	2.64	2.14	30.00	27.86


Date: 22.JAN.2016 15:29:08

Date: 22.JAN.2016 15:39:09

Figure 8.2-1: Fundamental maximum field strength on low channel

Figure 8.2-2: Fundamental maximum field strength on mid channel

Date: 22.JAN.2016 15:44:55

Figure 8.2-3: Fundamental maximum field strength on high channel

8.3 FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) emissions

8.3.1 Definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.3-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88-216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.3-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608-614	7.25-7.75
3.020-3.026	13.36-13.41	960–1427	8.025-8.5
4.125-4.128	16.42-16.423	1435-1626.5	9.0-9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660-1710	10.6-12.7
5.677-5.683	25.5–25.67	1718.8-1722.2	13.25-13.4
6.215-6.218	37.5-38.25	2200-2300	14.47-14.5
6.26775-6.26825	73–74.6	2310–2390	15.35-16.2
6.31175-6.31225	74.8–75.2	2655–2900	17.7-21.4
8.291-8.294	108-138	3260–3267	22.01-23.12
8.362-8.366	156.52475-156.52525	3332–3339	23.6-24.0
8.37625-8.38675	156.7–156.9	3345.8-3358	31.2-31.8
8.41425-8.41475	240–285	3500-4400	36.43-36.5
12.29-12.293	322-335.4	4500-5150	Above 38.6

Note: Certain frequency bands listed in Table 8.3-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

FCC Part 15 Subpart C and RSS-247, Issue 1

Table 8.3-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29-12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.3.2 Test summary

Test date	January 22, 2016	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1020 mbar
Verdict	Pass	Relative humidity	32 %

8.3.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 10th harmonic. No spurious emissions above 18 GHz were observed. All measured levels were more than 15 dB below the limit. Radiated measurements were performed at a distance of 3 m.

Since fundamental power was tested using peak method, the spurious emissions limit is -20~dBc/100~kHz

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

 $Spectrum\ analyser\ settings\ for\ peak\ radiated\ measurements\ within\ restricted\ bands\ above\ 1\ GHz:$

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

For average radiated measurements within restricted bands above 1 GHz duty cycle (average) correction factor was obtained and used for calculation.

Duty cycle was calculated as follows: Tx_{ON} = 0.168 ms, Tx_{OFF} = 0.461 ms. Duty cycle = Tx_{ON} / $(Tx_{ON} + Tx_{OFF})$ = 0.168 / (0.168+0.461) = 0.268

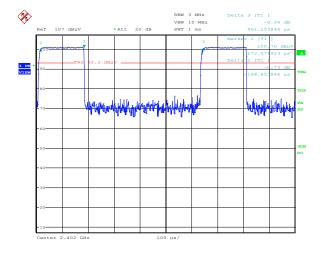
DCCF = $20 \times \text{Log}_{10}$ (duty cycle) = $20 \times \text{Log}_{10}$ (0.268) = -11.44 dB

Section 8 Testing data

Test name FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) emissions

Specification FCC Part 15 Subpart C and RSS-247, Issue 1

Spectrum analyser settings for band edge emissions measurements:


Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

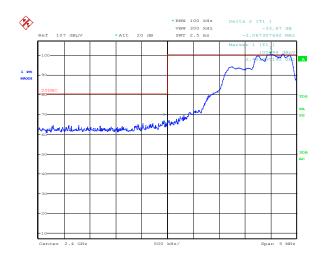
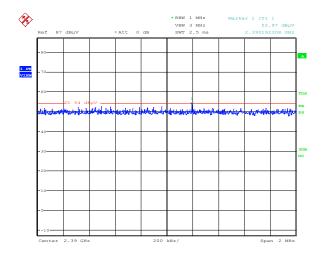

8.3.4 Test data

Table 8.3-4: Radiated field strength measurement results for 802.11b

Channel Frequency, MHz	Peak Field strength, dBμV/m		Margin,	Average Field strength, dBμV/m		Margin,	
	MHz	Measured	Limit	dB	Calculated	Limit	dB
Low	2390.0	52.97	74.00	21.03	41.53	54.00	12.47
Low	4804.0	56.07	74.00	17.93	44.63	54.00	9.37
Mid	2488.8	60.54	74.00	13.46	49.10	54.00	4.90
Mid	4880.0	55.23	74.00	18.77	43.79	54.00	10.21
High	2483.5	62.72	74.00	11.28	51.28	54.00	2.72
High	2489.0	63.83	74.00	10.17	52.39	54.00	1.61

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable. Average field strength was calculated as follows: Peak field strength – 11.44 dB (DCCF)


Date: 22.JAN.2016 15:35:11

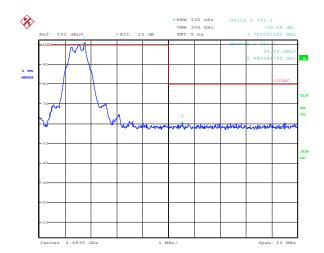
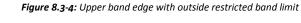
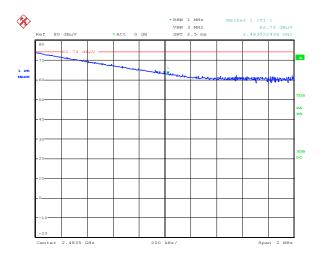

Date: 22.JAN.2016 15:30:10

Figure 8.3-1: Duty cycle measurement

Figure 8.3-2: Lower band edge outside restricted band





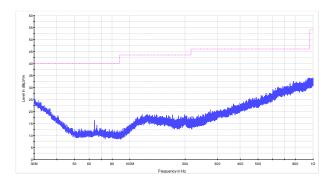

Date: 22.JAN.2016 15:32:55

Figure 8.3-3: Lower band edge within restricted band. Peak level is below average limit.

Date: 22.JAN.2016 15:47:12

Date: 22.JAN.2016 15:48:43

Figure 8.3-5: Upper band edge within restricted band.

Figure 8.3-6: Radiated spurious emissions below 1 GHz for low channel

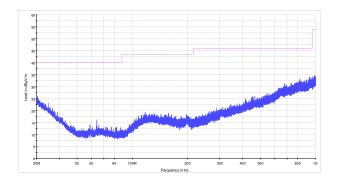
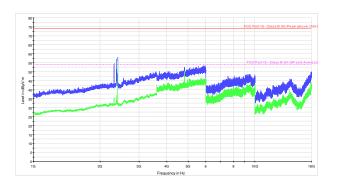



Figure 8.3-7: Radiated spurious emissions below 1 GHz for mid channel

Figure 8.3-8: Radiated spurious emissions below 1 GHz for high channel

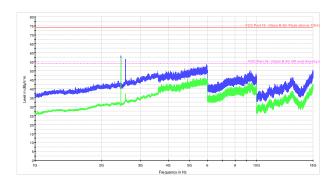


Figure 8.3-9: Radiated spurious emissions above 1 GHz for low channel

Figure 8.3-10: Radiated spurious emissions above 1 GHz for mid channel

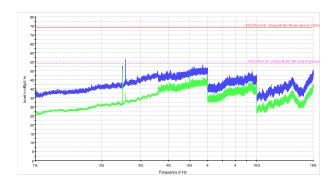


Figure 8.3-11: Radiated spurious emissions above 1 GHz for high channel

FCC Clause 15.247(e) and RSS-247 5.2(2) Power spectral density for digitally modulated devices

FCC Part 15 Subpart C and RSS-247, Issue 1

8.4 FCC 15.247(e) and RSS-247 5.2(2) Power spectral density for digitally modulated devices

8.4.1 Definitions and limits

FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

IC:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(4), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

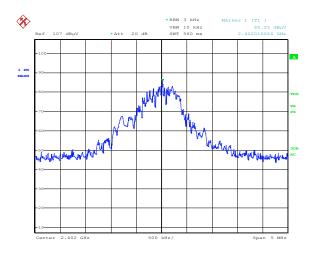
8.4.2 Test summary

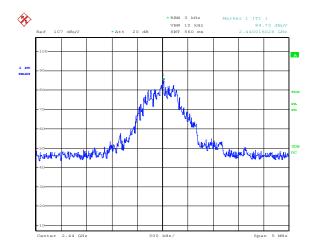
Test date	January 22, 2016	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1020 mbar
Verdict	Pass	Relative humidity	32 %

8.4.3 Observations, settings and special notes

Spectrum analyser settings:

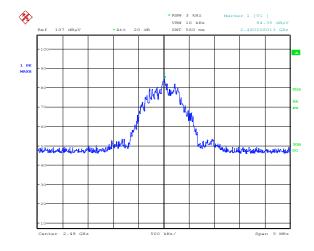
Resolution bandwidth:	3 kHz
Video bandwidth:	10 kHz
Frequency span:	5 MHz
Detector mode:	Peak
Trace mode:	Max-hold


8.4.4 Test data


Table 8.4-1: PSD measurements results

Frequency, MHz	Field strength, dBμV/m/3 kHz	PSD, dBm/3 kHz	PSD limit, dBm/3 kHz	Margin, dB
2402	85.25	-12.62	8.00	20.62
2440	84.73	-13.14	8.00	21.14
2480	84.35	-13.52	8.00	21.52

Note: PSD was calculated as follows: Field strength – 95.23 dB – 2.64 dBi



Date: 22.JAN.2016 15:29:32

Date: 22.JAN.2016 15:39:42

Figure 8.4-1: PSD measurement on low channel

Figure 8.4-2: PSD measurement on mid channel

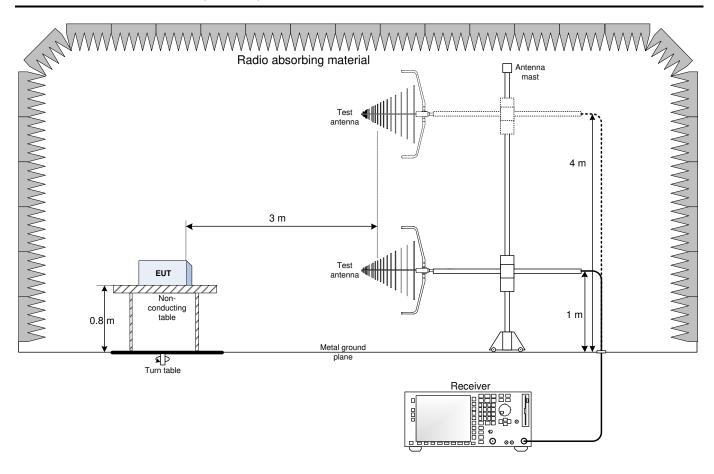
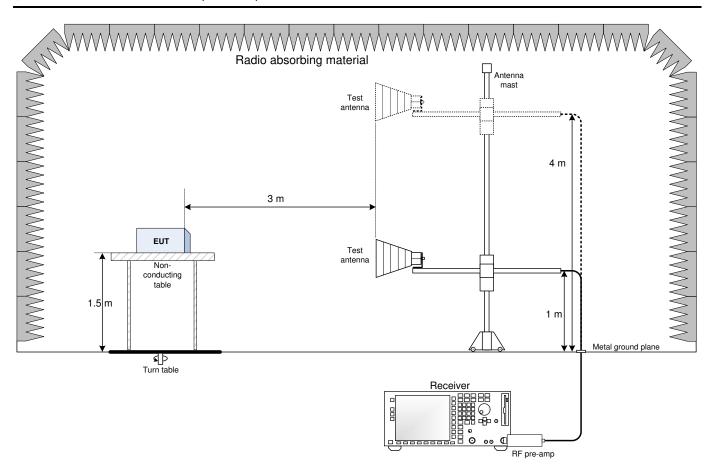

Date: 22.JAN.2016 15:46:04

Figure 8.4-3: PSD measurement on high channel


Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz

9.2 Radiated emissions set-up for frequencies above 1 GHz

