

FCC PART 15.247

TEST REPORT

For

JEM ACCESSORIES, INC.

32 Brunswick Avenue Edison, NJ 08817, United States

FCC ID: 2AHAS-XSS51012

Report Type: Original Report		Product Type: 360 Object Tracking holder
Report Number:	SZ3210527-1971	8E-RF-00
Report Date:	2021-09-03	
	Jacob Kong	Jacob Gong
Reviewed By:	RF Engineer	~
Prepared By:	5F(B-West), 6F,	320018 320008

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "**★**".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	
Test Methodology	4
Measurement Uncertainty	5
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
APPLICABLE STANDARD	
Result	10
FCC §15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	11
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	13
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
Applicable Standard Test Procedure	
TEST PROCEDURE TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	23
FCC §15.247(e) - POWER SPECTRAL DENSITY	24
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC Part 15.247	Page 2 of 37

Report No.: SZ3210527-19718E-RF-00

TEST DATA	24
APPENDIX	
APPENDIX A: DTS BANDWIDTH	25
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
Appendix E: Band edge measurements	
Appendix F: Duty Cycle	

GENERAL INFORMATION

Product	360 Object Tracking holder
Tested Model	XSS5-1012-BLK
Frequency Range	2402-2480MHz
Maximum Conducted Peak Power	BLE: 1.62dBm
Modulation Technique	GFSK
Antenna Specification*	2dBi(provided by the applicant)
Voltage Range	DC 4.5V from battery
Date of Test	2021-08-20 to 2021-08-26
Sample number	SZ3210527-19718E-RF-S1 (Assigned by BACL, Shenzhen)
Received date	2021-05-27
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power with Power meter		±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	$\pm 4.88 \mathrm{dB}$
Tempo	erature	±1°C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	(MHZ)		Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

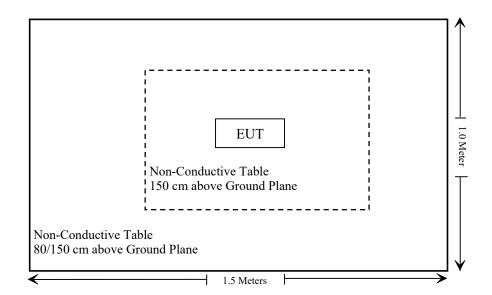
Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"Lekit_200927.exe"* exercise software was used and the power level is 10*. The software and power level was provided by the applicant.

Duty cycle


Support Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

FCC Part 15.247

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE) Complia	
§15.203	Antenna Requirement Complia	
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: EUT is only powered by battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Radiated Emission Test								
R&S	EMI Test Receiver	ESR3	102455	2021/07/06	2022/07/05			
Sonoma instrument	Pre-amplifier	310 N	186238	2021/08/03	2022/08/02			
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21			
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28			
Unknown	Cable	Chamber Cable 1	F-03-EM236	2021/08/03	2022/08/02			
Unknown	Cable	Chamber Cable 4	EC-007	2021/08/03	2022/08/02			
Rohde & Schwarz	Auto test software	EMC 32	V9.10.00	NCR	NCR			
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2021/07/06	2022/07/05			
COM-POWER	Pre-amplifier	PA-122	181919	2020/11/29	2021/11/28			
Sunol Sciences	Horn Antenna	3115	9107-3694	2021/01/15	2024/01/14			
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2020/11/29	2021/11/28			
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2020/11/29	2021/11/28			
Unknown	Signal Cable	RG-214	2	2020/11/29	2021/11/28			
SNSD	Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2021/04/20	2022/04/20			
Ducommun Technolagies	Horn antenna	ARH-4223- 02	1007726-02 1304	2020/12/06	2023/12/05			
	RF	Conducted Tes	t					
WEINSCHEL	10dB Attenuator	5324	AU3842	2020/11/29	2021/11/28			
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2021/07/06	2022/07/05			
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2021/07/06	2022/07/05			

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Averaging Time (Minutes)					
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$\mathbf{S} = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Mode	Frequency	Anter	nna Gain	•	conducted wer	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	$(\mathrm{mW/cm}^2)$
BLE	2402-2480	2.0	1.58	2.0	1.58	20	0.0005	1

Note: the tune up conducted power was declared by the applicant

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

FCC Part 15.247

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

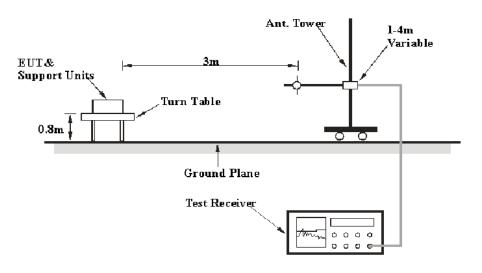
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

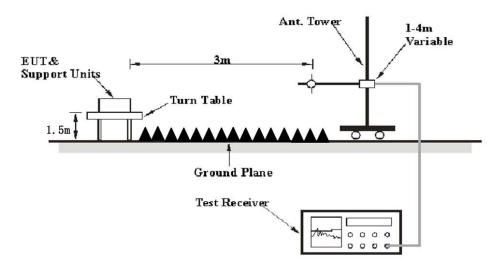
Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

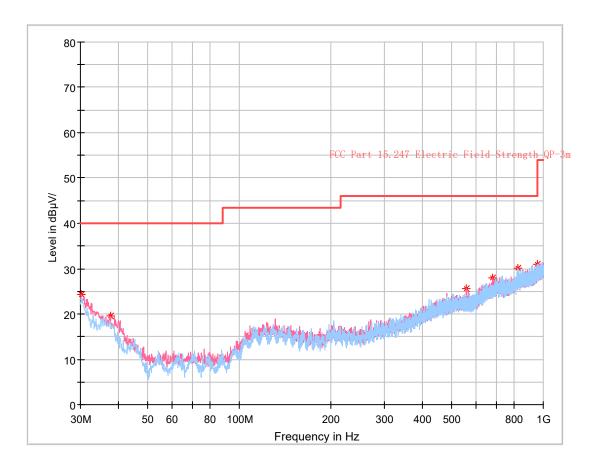
Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions


Temperature:	26.8~30 ℃
Relative Humidity:	51~55 %
ATM Pressure:	101.0~101.2 kPa

The testing was performed by Willia Wang on 2021-08-22 for below 1GHz and Bruce Lin on 2021-08-26 for above 1GHz.

EUT operation mode: Transmitting

Report No.: SZ3210527-19718E-RF-00

30 MHz~1 GHz: (BT link)

Critical_Freqs

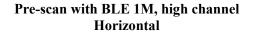
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.121250	24.20	40.00	15.80	100.0	V	81.0	-3.6
37.638750	19.54	40.00	20.46	300.0	V	95.0	-9.0
559.135000	25.52	46.00	20.48	100.0	V	8.0	-4.6
682.567500	27.94	46.00	18.06	200.0	V	28.0	-1.8
823.338750	30.13	46.00	15.87	100.0	Н	237.0	-0.2
958.896250	31.04	46.00	14.96	100.0	Н	71.0	2.0

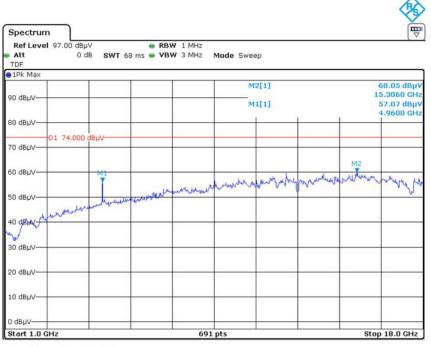
BLE_1M

1 GHz-25 GHz:

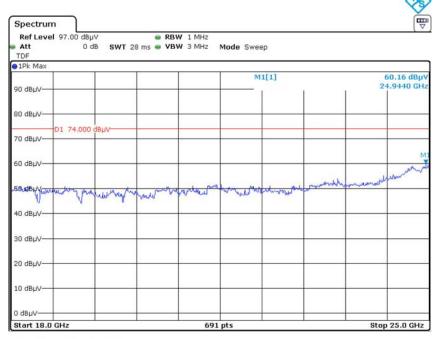
Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected	Corrected	Limit	Margin
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			Low C	hannel(2	2402ME	[z)			
2389.74	29.13	РК	29	1.4	Н	31.87	61.00	74	13.00
2389.74	15.50	Ave.	29	1.4	Н	31.87	47.37	54	6.63
2484.31	29.79	РК	258	2.4	Н	32.13	61.92	74	12.08
2484.31	15.59	Ave.	258	2.4	Н	32.13	47.72	54	6.28
4804.00	51.24	РК	117	1.5	Н	6.28	57.52	74	16.48
4804.00	46.53	Ave.	117	1.5	Н	6.28	52.81	54	1.19
			Middle (Channel((2440M	Hz)			
4880.00	50.29	PK	29	1.0	Н	6.76	57.05	74	16.95
4880.00	46.01	Ave.	29	1.0	Н	6.76	52.77	54	1.23
			High Cl	hannel(2	2480 MI	łz)			
2389.09	29.26	РК	61	1.4	Н	31.87	61.13	74	12.87
2389.09	15.63	Ave.	61	1.4	Н	31.87	47.50	54	6.50
2483.91	29.15	РК	167	2.3	Н	32.13	61.28	74	12.72
2483.91	15.49	Ave.	167	2.3	Н	32.13	47.62	54	6.38
4960.00	50.77	РК	69	1.6	Н	6.80	57.57	74	16.43
4960.00	46.07	Ave.	69	1.6	Н	6.80	52.87	54	1.13

BLE_2M

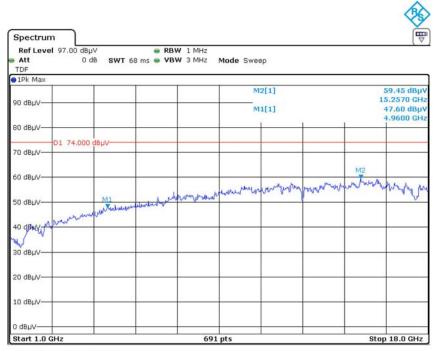

1 GHz-25 GHz:

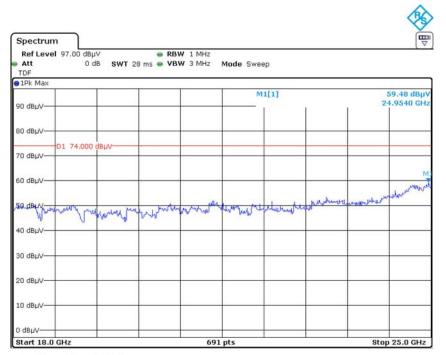

Frequency	Re	eceiver	Turntable	Rx Ar	itenna		Corrected		Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			Low C	hannel(2	2402ME	Iz)			
2389.98	29.54	РК	232	1.6	Н	31.87	61.41	74	12.59
2389.98	15.98	Ave.	232	1.6	Н	31.87	47.85	54	6.15
2484.26	29.33	РК	205	1.5	Н	32.13	61.46	74	12.54
2484.26	15.92	Ave.	205	1.5	Н	32.13	48.05	54	5.95
4804.00	49.22	РК	146	1.2	Н	6.28	55.50	74	18.50
4804.00	43.28	Ave.	146	1.2	Н	6.28	49.56	54	4.44
			Middle (Channel	(2440M	Hz)			
4880.00	48.93	РК	52	2.4	Н	6.76	55.69	74	18.31
4880.00	43.85	Ave.	52	2.4	Н	6.76	50.61	54	3.39
			High Cl	hannel(2	.480 MI	Hz)			
2389.03	29.19	РК	220	1.8	Н	31.87	61.06	74	12.94
2389.03	15.94	Ave.	220	1.8	Н	31.87	47.81	54	6.19
2483.82	29.85	РК	90	2.4	Н	32.13	61.98	74	12.02
2483.82	16.15	Ave.	90	2.4	Н	32.13	48.28	54	5.72
4960.00	49.21	РК	205	1.6	Н	6.80	56.01	74	17.99
4960.00	44.52	Ave.	205	1.6	Н	6.80	51.32	54	2.68

Note:


Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

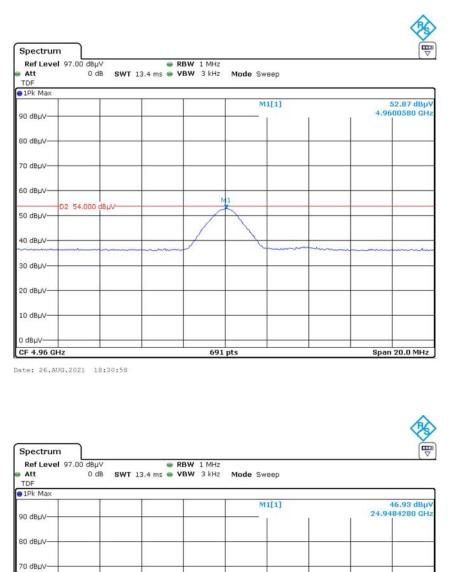
The other spurious emission which is 20dB to the limit was not recorded.


Date: 26.AUG.2021 18:25:19


Date: 26.AUG.2021 19:10:23

FCC Part 15.247

Date: 26.AUG.2021 18:36:33



Date: 26.AUG.2021 19:20:38

FCC Part 15.247

Page 18 of 37

691 pts

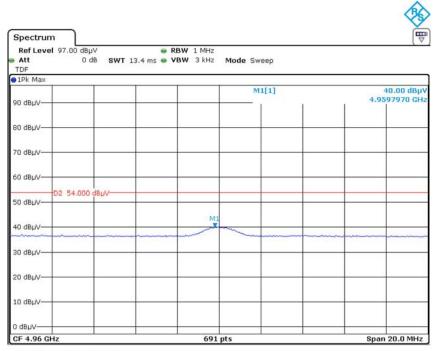
MI

Date: 26.AUG.2021 19:15:37

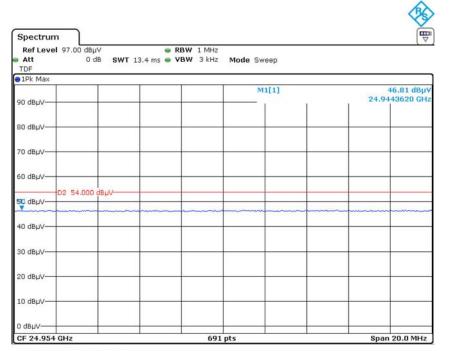
CF 24.944 GHz

02 54.000 dBµV-

60 dBµV-


50 dBµV-

40 dBµV-30 dBµV-20 dBµV-10 dBµV-0 dBµV-

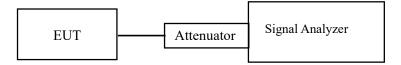

FCC Part 15.247

Span 20.0 MHz

Date: 26.AUG.2021 18:41:22

Date: 26.AUG.2021 19:26:01

FCC Part 15.247


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

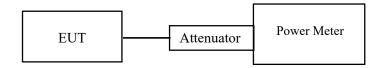
Test Data

Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	63 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Restar Li on 2021-08-20.

EUT operation mode: Transmitting


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	63 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Restar Li on 2021-08-20.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	63 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Restar Li on 2021-08-20.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \leq RBW \leq 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

EUT	Attenuator	Signal Analyzer

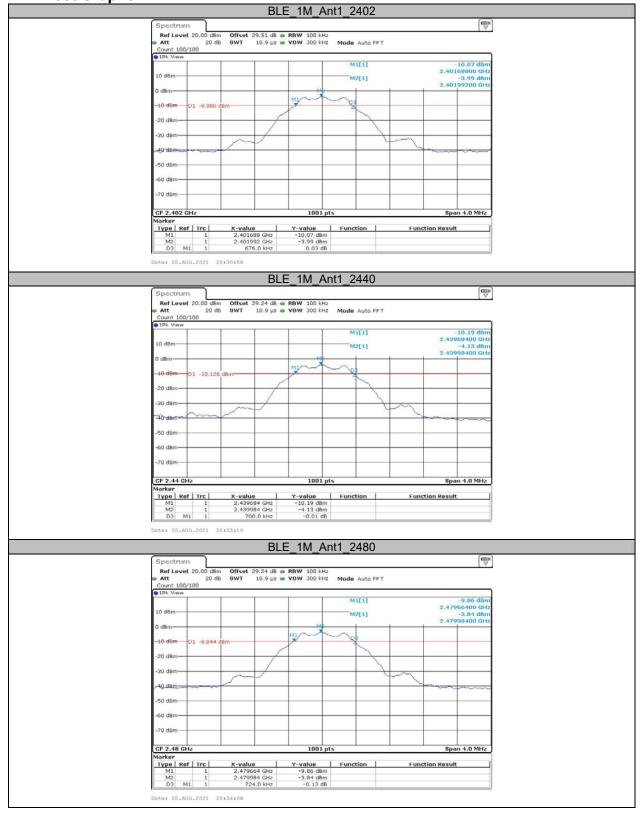
Test Data

Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	63 %		
ATM Pressure:	101.0 kPa		

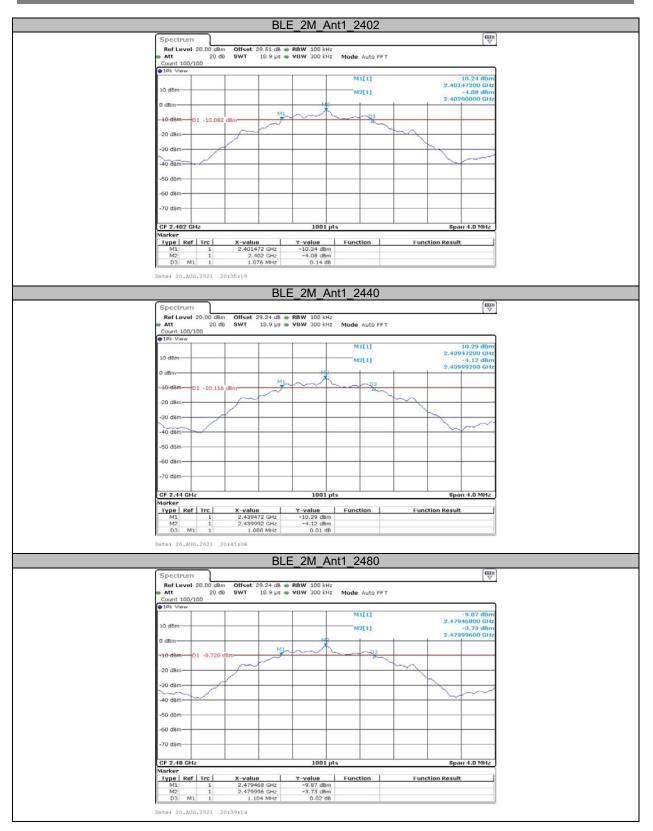
The testing was performed by Restar Li on 2021-08-20.

EUT operation mode: Transmitting


APPENDIX

Appendix A: DTS Bandwidth

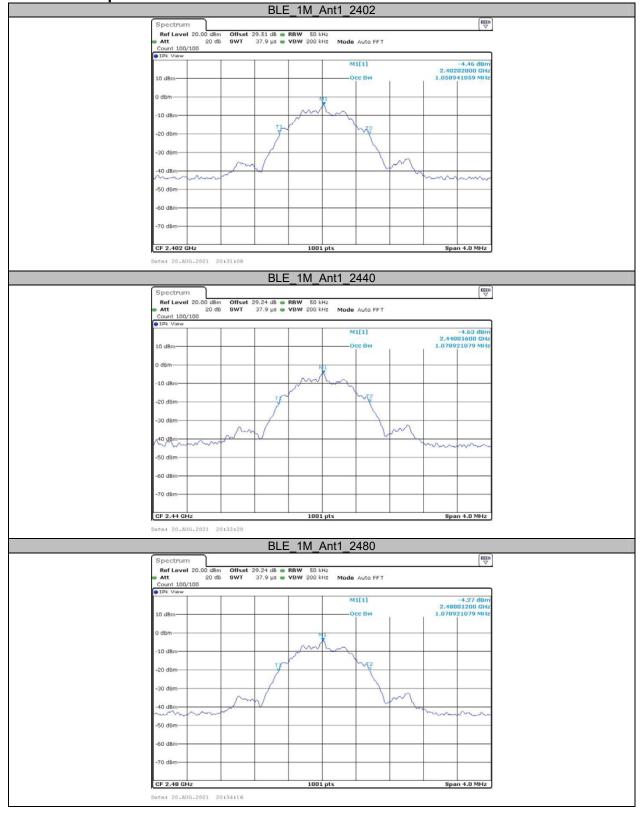
Test Result


Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.676	0.5	PASS
BLE_1M	Ant1	2440	0.700	0.5	PASS
	_	2480	0.724	0.5	PASS
		2402	1.076	0.5	PASS
BLE_2M	Ant1	2440	1.088	0.5	PASS
		2480	1.104	0.5	PASS

Test Graphs

FCC Part 15.247

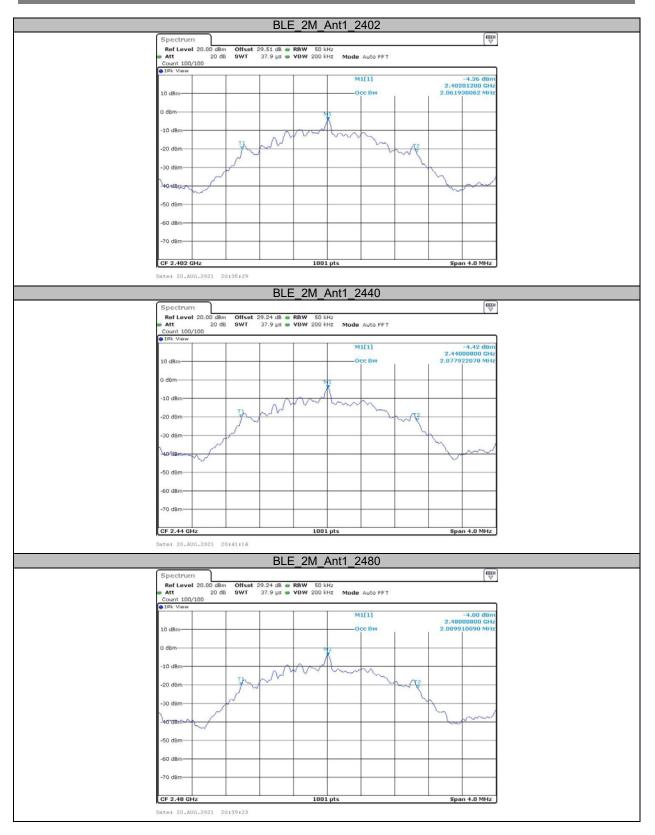
Report No.: SZ3210527-19718E-RF-00


Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.059		PASS
BLE_1M	Ant1	2440	1.079		PASS
		2480	1.079		PASS
		2402	2.062		PASS
BLE_2M	Ant1	2440	2.078		PASS
		2480	2.090		PASS

FCC Part 15.247

Page 28 of 37


Test Graphs

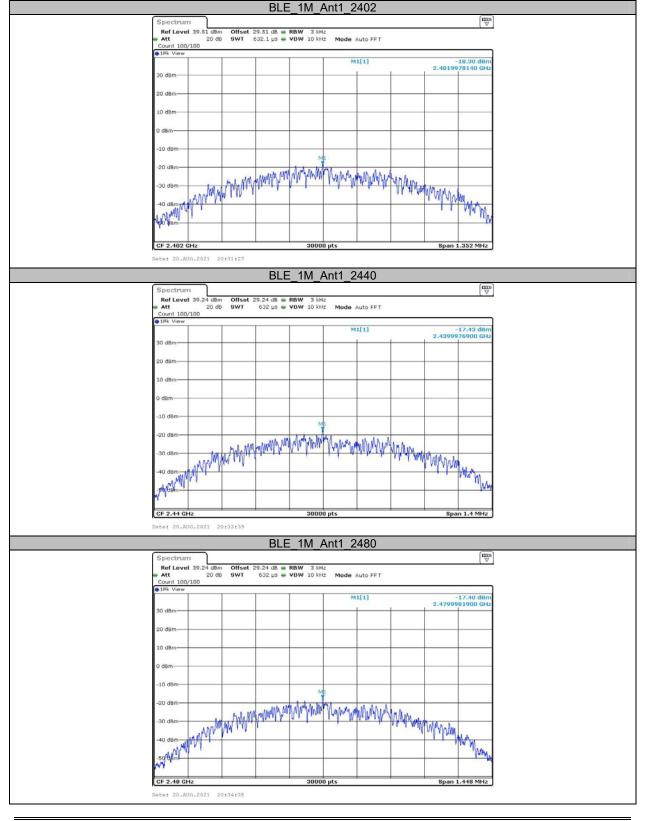
FCC Part 15.247

Page 29 of 37

Report No.: SZ3210527-19718E-RF-00

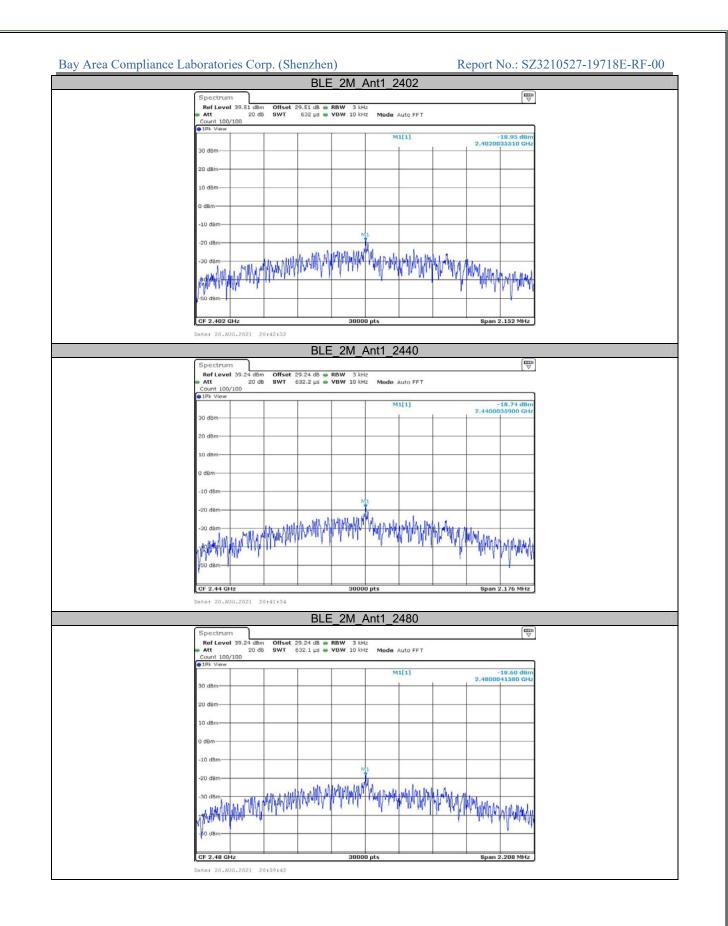
Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	1.61	≤30	PASS
BLE_1M	Ant1	2440	1.62	≤30	PASS
		2480	1.61	≤30	PASS
BLE_2M		2402	1.53	≤30	PASS
	Ant1	2440	1.55	≤30	PASS
		2480	1.51	≤30	PASS

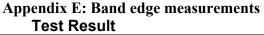

Appendix D: Maximum power spectral density Test Result

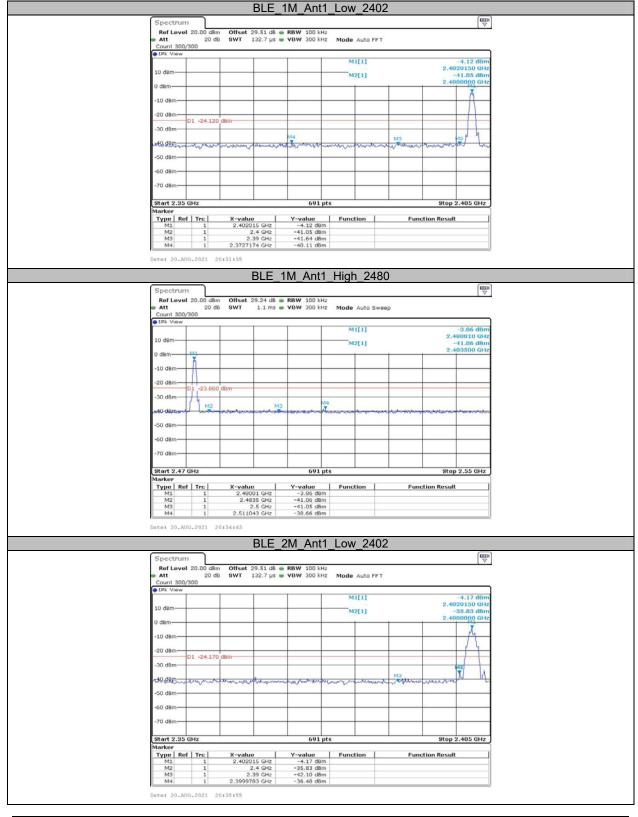
Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	2402 -18.30		PASS
		2440 -17.43		≪8	PASS
		2480	-17.40	≪8	PASS
BLE_2M	Ant1	2402	-18.95	≪8	PASS
		2440	-18.74	≪8	PASS
		2480	-18.60	≪8	PASS

FCC Part 15.247


Report No.: SZ3210527-19718E-RF-00

Test Graphs


FCC Part 15.247

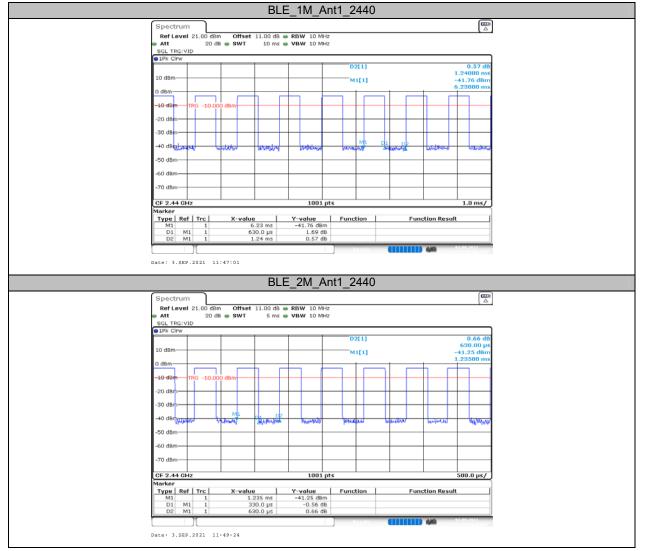

Page 33 of 37

FCC Part 15.247

Page 34 of 37

FCC Part 15.247

Page 35 of 37


Report No.: SZ3210527-19718E-RF-00

Spectrum					480		1
Ref Level			B 👄 RBW 100 kH:				
	Att 20 dB SWT 1.1 ms = VBW 300 kHz Mode Auto Sweep						
1Pk View	Count 300/300						
The Alem			_	M1[1]		-3.74 dBm	1
				wittil.		2.480010 GHz	
10 dBm-				M2[1]		-41.24 dBm	
	141					2.483500 GHz	
0 dBm-	Y						1
-10 dBm	M						
-10 0011	1						
-20 dBm	<u></u>						1
	D1 -23.740	dBm					1
-30 dBm-	f l.						4
	M2		M3 M4			raye from the grand work to	1
-40 dem-	Revt	and the stand an	with any belocal tota		www.	water from the second and the	
-50 dBm							
-50 UBIII							1
-60 dBm-							1
							1
-70 dBm-							-
Start 2.47	GHZ		691 p	ts		Stop 2.55 GHz	1
Marker							1
Type Ref	Trc	X-value	Y-value	Function	L F	unction Result	d
M1	1	2.48001 GHz	-3.74 dBm				
M2	1	2.4835 GHz					
M3	1	2.5 GHz			-		
M4	1	2.508493 GHz	-38.60 dBm				

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2440	0.63	1.24	50.81
BLE_2M	Ant1	2440	0.33	0.63	52.38

Test Graphs

***** END OF REPORT *****