

TEST REPORT

Applicant Name : Address : Report Number : FCC ID: JEM ACCESSORIES INC. 32 Brunswick Avenue, Edison, New Jersey, United States 08817 SZNS211123-60119E-RF-00B 2AHAS-MLB72021

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Date of Test: Report Date:

BLUETOOTH SOUND REACTIVE RGB CAR INERIOR LIGHTS MLB7-2021-RGB

N/A MONSTER

2021/11/23 2021/11/27~2021/12/16 2021/12/20

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

Ting Lv EMC Engineer

Candy, Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{**}. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 14: 2021-11-09

Page 1 of 31

FCC- BLE

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
Test Methodology	
Measurement Uncertainty	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
Equipment Modifications	
EUT EXERCISE SOFTWARE	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §15.247 (I) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	11
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
Factor & Margin Calculation	
TEST DATA	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	20
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	21
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	22
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(E) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	23

Version 14: 2021-11-09

APPENDIX	24
Appendix A: DTS Bandwidth	24
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	26
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	28
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	29
APPENDIX E: BAND EDGE MEASUREMENTS	30
Appendix F: Duty Cycle	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	BLE 1M: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE 1M: 3.00dBm
Modulation Technique	BLE1M : GFSK
Antenna Specification*	1 dBi (provided by the applicant)
Voltage Range	DC 12V from Car battery
Sample serial number	SZNS211123-60119E-RF-S1 (RF Conducted Test) SZNS211123-60119E-RF-S2 (Radiated Test) (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	ameter	Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF output po	wer, conducted	0.73dB
Unwanted Emi	ission, conducted	1.6dB
AC Line Conducted emission		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temp	berature	1 °C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

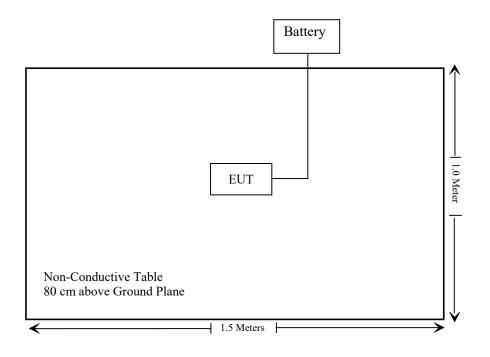
No modification was made to the EUT tested.

EUT Exercise Software

"BK32xx RF Test-V 1.8.2-en"* software was use to the EUT tested and power level is 3*. The software and power level was provided by the applicant.

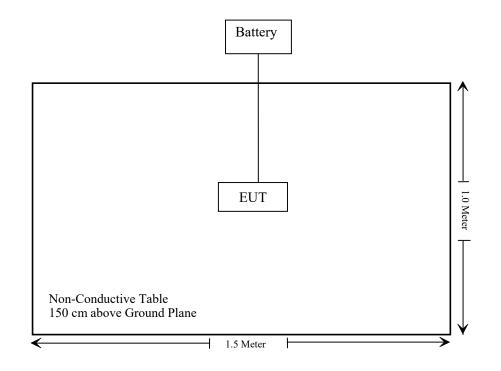
Duty cycle

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Chengdu chuanxi storage battery (GROUP)CO.LTD	Battery	MAINTENA NCE-FREE	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/


Block Diagram of Test Setup

For Radiated Emissions below 1 GHz:

Report No.: SZNS211123-60119E-RF-00B

For Radiated Emissions above 1 GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: EUT only powered by Car battery

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated emission test							
Rohde& Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101495	2020/12/24	2021/12/23		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24		
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/11/09	2022/11/08		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2020/12/25	2021/12/24		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	N-5m	No.3	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-1m	No.5	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-10m	No.7	2021/11/09	2022/11/08		
Unknown	RF Coaxial Cable	N-2m	No.8	2021/11/09	2022/11/08		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2020/12/25	2021/12/24		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Radiated Emission Test Software: e3 19821b (V9)							
		RF conducted	d test				
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2020/12/24	2021/12/23		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	$*(180/f^2)$	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$\mathbf{S} = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
2402-2480	1.0	1.26	3.5	2.24	20	0.0006	1

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

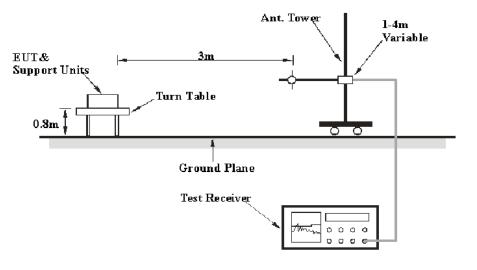
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

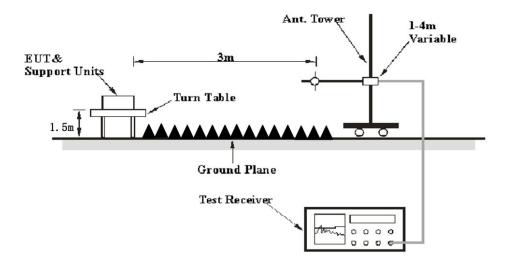
Antenna Connector Construction

The EUT has one internal Antenna arrangement, which was permanently attached and the antenna gain is 1.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

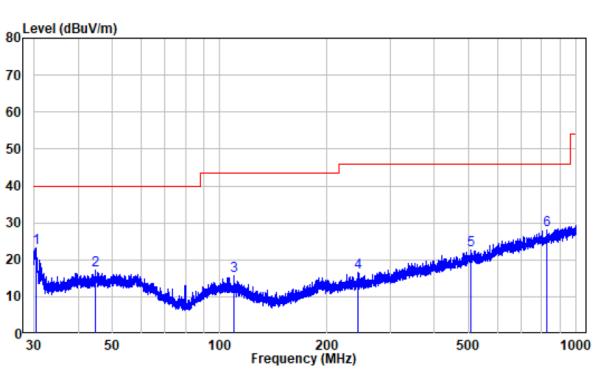
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

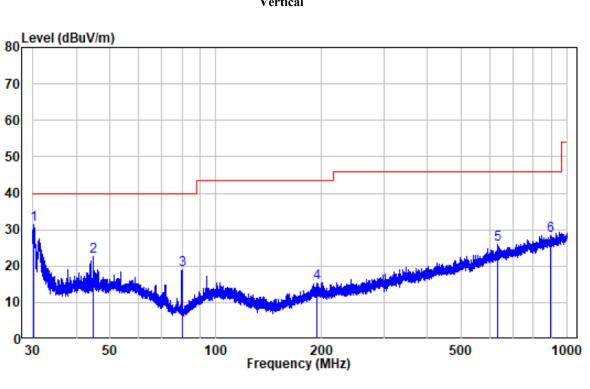
Test Data

Environmental Conditions


Temperature:	25~26.1 °C
Relative Humidity:	52~64 %
ATM Pressure:	101.0 kPa

The testing was performed by Chao Mo on 2021-12-16 for below 1GHz and by Bin Deng from 2021-12-02 to 2021-12-09 for above 1GHz.

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case of X orientation was recorded)


Version 14: 2021-11-09

30MHz-1GHz: (Worst case is Low channel)

Horizontal

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.45	-12.34	35.56	23.22	40.00	-16.78	Peak
2	44.72	-9.93	27.19	17.26	40.00	-22.74	Peak
3	109.32	-11.97	27.55	15.58	43.50	-27.92	Peak
4	244.77	-10.59	27.21	16.62	46.00	-29.38	Peak
5	506.92	-4.27	26.99	22.72	46.00	-23.28	Peak
6	826.04	0.06	28.05	28.11	46.00	-17.89	Peak

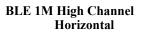
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.30	-12.36	43.74	31.38	40.00	-8.62	Peak
2	44.88	-9.93	32.63	22.70	40.00	-17.30	Peak
3	80.01	-16.79	35.69	18.90	40.00	-21.10	Peak
4	193.26	-11.29	26.82	15.53	43.50	-27.97	Peak
5	634.74	-2.00	27.86	25.86	46.00	-20.14	Peak
6	898.57	1.24	27.19	28.43	46.00	-17.57	Peak

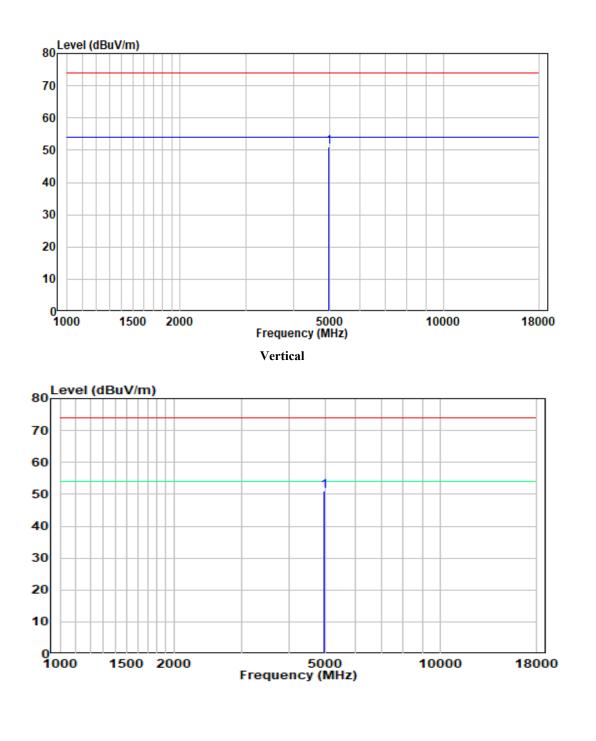
Report No.: SZNS211123-60119E-RF-00B

1-25 GHz:

Encarron	Re	ceiver	Turntabla	Rx An	tenna	Corrected	Corrected	Limit	Mangin
Frequency (MHz)	Reading (dBµV)	PK/QP/AV	Turntable Degree	Height (m)	Polar (H/V)		Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)
			BLE 1	M, Low	Chann	el			
2310	68.54	PK	313	2.3	Н	-7.25	61.29	74	-12.71
2310	56.03	AV	313	2.3	Н	-7.25	48.78	54	-5.22
2310	68.03	PK	123	1.9	V	-7.25	60.78	74	-13.22
2310	56.62	AV	123	1.9	V	-7.25	49.37	54	-4.63
2390	67.79	РК	30	1.6	Н	-7.23	60.56	74	-13.44
2390	55.93	AV	30	1.6	Н	-7.23	48.70	54	-5.30
2390	68.92	РК	312	2.4	V	-7.23	61.69	74	-12.31
2390	56.60	AV	312	2.4	V	-7.23	49.37	54	-4.63
4804	53.87	РК	281	2.1	Н	-3.51	50.36	74	-23.64
4804	54.09	РК	101	2.1	V	-3.51	50.58	74	-23.42
			BLE 1N	A, Midd	le Chan	nel			
4880	54.18	PK	191	1.2	Н	-3.3	50.88	74	-23.12
4880	54.08	РК	85	1.2	V	-3.3	50.78	74	-23.22
			BLE 1	M, Higł	n Chann	el			
2483.5	68.99	РК	288	2.4	Н	-7.2	61.79	74	-12.21
2483.5	56.86	AV	288	2.4	Н	-7.2	49.66	54	-4.34
2483.5	69.00	РК	283	1.3	V	-7.2	61.8	74	-12.20
2483.5	57.10	AV	283	1.3	V	-7.2	49.9	54	-4.10
2500	68.40	РК	98	1.8	Н	-7.18	61.22	74	-12.78
2500	56.91	AV	98	1.8	Н	-7.18	49.73	54	-4.27
2500	68.42	РК	144	1.5	V	-7.18	61.24	74	-12.76
2500	56.97	AV	144	1.5	V	-7.18	49.79	54	-4.21
4960	53.96	РК	341	1.7	Н	-3.04	50.92	74	-23.08
4960	53.92	РК	344	1.7	V	-3.04	50.88	74	-23.12

Note:

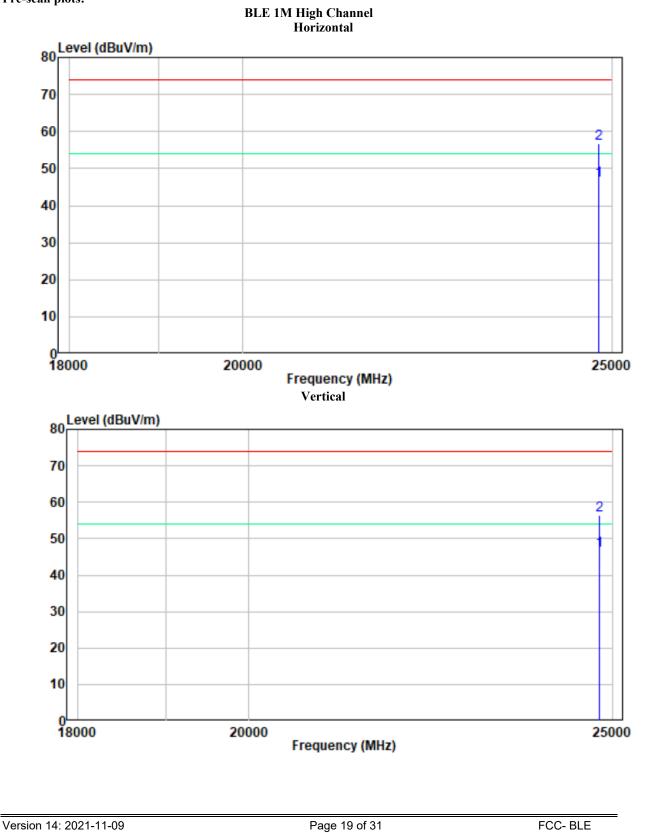

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor


Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded. The test result of peak was less than the limit of average, so just peak value were recorded.

1-18 GHz:

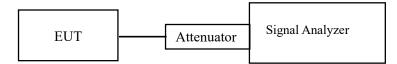
Pre-scan plots:



Report No.: SZNS211123-60119E-RF-00B

18 -25GHz:

Pre-scan plots:


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

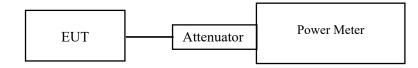
Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-11-27.

EUT operation mode: Transmitting


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-11-27.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

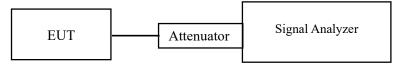
Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-11-27.

EUT operation mode: Transmitting


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-11-27.

EUT operation mode: Transmitting

APPENDIX

Appendix A: DTS Bandwidth

Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.792	0.5	PASS
BLE_1M	Ant1	2440	0.800	0.5	PASS
		2480	0.804	0.5	PASS

Test Graphs

			BLE 1	/ Ant1	2402					
	ectrum							(•		
Re At	f Level 20.00		5.01 dB 👄 RBW 18.9 µs 👄 VBW		Auto FFT					
Cou	unt 100/100 k View			internet internet	Hatorri					
	K VIBW			N	11[1]			4.91 dBm		
10 0	iBm-	_		N	12[1]			6000 GHz 1.16 dBm		
o de	3m		M2		1	-	2.4017	0800 GHz		
		841 dBm	-	8	3					
-20	dBm									
-30	dBm									
-40	dBm									
-50	dBm						1	~		
	dBm									
-70	dBm									
CF	2.402 GHz			1001 pts			Span	4.0 MHz		
Mar	ker pe Ref Trc	X-value	Y-va		tion	Functi	ion Result]		
	M1 1	2.4015	6 GHz -4	.91 dBm		Funct	on Result			
	M2 1 D3 M1 1		0 kHz 1	.16 dBm 0.06 dB						
Date	: 27.NOV.202	1 14:17:58								
contribution of the second					0440					
			BLE_1	/I_Ant1_	2440					
	ectrum]							(₩)	1	
- A1	f Level 20.00	dBm Offset 15 20 dB SWT :	5.74 dB 👄 RBW L8.9 µs 👄 VBW	100 kHz 300 kHz Mode	Auto FFT					
	unt 100/100 k View								í l	
				N	11[1]			5.48 dBm		
10 0	iBm			N	12[1]			5600 GHz 0.58 dBm		
0 dE	3m-		M2		1		2.4397	1200 GHz		
-10	dBm 01 -5.	416 dBm	1	2						
7,400										
21.41	dBm				5					
-30	dBm-									
-40	dBm									
-50	dBm	_					~			
100 m	dBm									
-70	dBm									
CF	2.44 GHz			1001 pts			Span	4.0 MHz		
		X-value	Y-va	luo Eup	tion	Euneti	ion Result			
Mar						Functi	on Result			
TT	Pe Ref Trc M1 1	2.43955	6 GHz -5	.48 dBm						
	pe Ref Trc M1 1 M2 1 D3 M1 1	2.43955	6 GHz -5 2 GHz 0	.48 dBm .58 dBm 0.01 dB						
Ty	M1 1 M2 1	2.43955 2.43971 800.	6 GHz -5 2 GHz 0	.48 dBm .58 dBm						

Report No.: SZNS211123-60119E-RF-00B

Spectru	im							(""
	el 20.00 dBr	m Offset 1	5.74 dB	• RBW 100 kHz				(*
Att	20 d			• VBW 300 kHz	Mode Aut	FFT		
Count 10								
1Pk View	v .							
					M1[1]			-5.73 dBm
10 dBm-								2.47955600 GHz
				M2	M2[1]			0.36 dBn 2.47970800 GH
0 dBm				X			-	2.47970800 GH
	D1 -5.643	dBm		X	03		-	
-10 dBm-								
The first Science of the			/					
-20 dBm-	_					1-		
						-		
-30 dBm-	-	1			-		_	-
								2
-40 dBm-	-	4		+ +				1
-50 dBm-	-			+ +	-			
-60 dBm-								
-60 dBm-						-		
-70 dBm-						-		
-/0 ubiii-							1.1	
	_							
CF 2.48	GHz			1001 pt	5			Span 4.0 MHz
Marker			276					
	tef Trc	X-value		Y-value	Function	_	Functio	n Result
M1 M2	1	2.47955		-5.73 dBm 0.36 dBm				
	M1 1		0 kHz	-0.01 dB				
03	1417 1	804	SO KHZ	-0.01 dB				

Report No.: SZNS211123-60119E-RF-00B

Appendix B: Occupied Channel Bandwidth Test Result

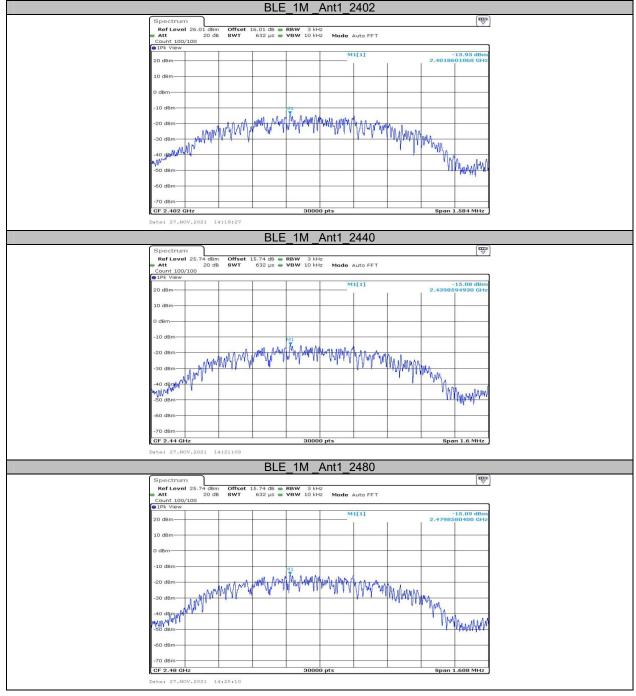
Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.231		PASS
BLE_1M	Ant1	2440	1.195		PASS
		2480	1.159		PASS

Test Graphs

BLE_1M Ant1 2402	
Spectrum 🕎	
Ref Level 20.00 dBm Offset 16.01 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Mode Auto FFT	
Count 100/100	
1Pk View 10	
10 dBm CC Bw 1.230769231 Mi4z	
0 dBm	
-10 dBm	
-20 dBm	
-30 dbm	
-40 dBm	
150,680 M	
-60 dBm	
-70 dBm	
*/3 ubm-	
CF 2.402 GHz 1001 pts Spon 4.0 MHz	
Date: 27.NOV.2021 14:18:08	
BLE_1M_Ant1_2440	
Spectrum 🕎	
Spectrum mms Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 us VBW 200 kHz Mode	
Spectrum Image: Constraint of the sector of th	
Spectrum Image: Constraint of the sector of t	
Spectrum Imp Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Count 100/100 Imp VBW 200 kHz Mode Auto FFT	
Spectrum Image: Constraint of the sector of th	
Spectrum mp Ref Level 20.00 Gm Offset 15.74 dB = RBW 50 kHz So kHz Att 20 dB SWT 37.9 µs = VBW 200 kHz Mode Auto FFT Count 100/100 ● IPK View M1[1] 10 dBm -1.15 dBm 10 dBm Occ Bw 1.194805195 MHz	
Spectrum mp Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW Wode Auto FFT Count 100/100 Image: State	
Spectrum (TT) Ref Level 20.00 dBm Offset 15.74 dB = RBW S0 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Mode Auto FFT Count 100/100 GER View 11.15 dBm -1.15 dBm 10 dBm 0cc Bw 1.194805195 MHz 0dBm -10 dBm T1 72 72	
Spectrum mp Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW Wode Auto FFT Count 100/100 Image: State	
Spectrum (TT) Ref Level 20.00 dBm Offset 15.74 dB = RBW S0 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Mode Auto FFT Count 100/100 GER View 11.15 dBm -1.15 dBm 10 dBm 0cc Bw 1.194805195 MHz 0dBm -10 dBm T1 72 72	
Spectrum (TT) Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW Mode Auto FFT Count 100/100 In Ref View M1[1] -1.15 dBm ID dBm 0cc Bw 1.194005195 MHz 0 dBm M1 0cc Bw 1.194005195 MHz -10 dBm T1 72 10 dBm 73 -30 dBm T1 72 10 dBm 73	
Spectrum mp Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Auto FFT Att 20 dB SWT 37.9 µs VBW 200 kHz Mode Auto FFT Count 100/100 Interview ID dBm Occ Bw 1.13 dBm 0 dBm M1 -10 dBm T1	
Spectrum (TT) Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW Mode Auto FFT Count 100/100 In Ref View M1[1] -1.15 dBm ID dBm 0cc Bw 1.194005195 MHz 0 dBm M1 0cc Bw 1.194005195 MHz -10 dBm T1 72 10 dBm 73 -30 dBm T1 72 10 dBm 73	
Spectrum (TD) Ref Level 20.00 dBm Offset 15.74 dB = RBW 50 kHz Att 20 dB SWT 37.9 µs • VBW 200 kHz Made Auto FFT Count 100/100 • Ikk view • • • • • • • • • • • • • • • • • • •	
Spectrum Training Ref Level 20.00 dBm Offset 15.74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW Mode Auto FFT Count 100/100 Ink view M1[1] -1.15 dBm 10 dBm 0 cc Bw 1.194805195 MHz 0 dBm M1 0 cc Bw 1.194805195 MHz -10 dBm T1 0 cc Bw 1.194805195 MHz -20 dBm T1 0 dBm 0 cc Bw 1.194805195 MHz	
Spectrum (TD) Ref Level 20.00 dBm Offset 15.74 dB = RBW 50 kHz Att 20 dB SWT 37.9 µs • VBW 200 kHz Made Auto FFT Count 100/100 • Ikk view • • • • • • • • • • • • • • • • • • •	
Spectrum Image: Construct 10,74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Made Auto FFT Count 100/100 G16x View M1[1] -1.15 dBm 10 dBm 0 cc Bw 1.19400195 MHz 0 dBm M1 0 cc Bw 1.19400195 MHz -10 dBm 71 72 -1.15 dBm -20 dBm 71 72 -1.15 dBm -10 dBm 71 72 -1.15 dBm -30 dBm 74 72 -1.15 dBm -60 dBm 73 74 72 -1.15 dBm	
Spectrum Image: Construct 10,74 dB RBW 50 kHz Att 20 dB SWT 37.9 µs VBW 200 kHz Made Auto FFT Count 100/100 G16x View M1[1] -1.15 dBm 10 dBm 0 cc Bw 1.19400195 MHz 0 dBm M1 0 cc Bw 1.19400195 MHz -10 dBm 71 72 -1.15 dBm -20 dBm 71 72 -1.15 dBm -10 dBm 71 72 -1.15 dBm -30 dBm 74 72 -1.15 dBm -60 dBm 73 74 72 -1.15 dBm	
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.74 dB = RBW S0 kHz Att 20 dB SWT 37.9 µs = VBW 200 kHz Count 100/100 Image: Spectrum Image: Spectrum Image: Spectrum 0 dBm M1[1] 2.43971630 GHz 1.15 dBm 10 dBm M1 Occ Bw 1.194005195 MHz 0 dBm M1 V2 Image: Spectrum -10 dBm T1 V2 Image: Spectrum -20 dBm T1 V2 Image: Spectrum -30 dBm T1 V2 Image: Spectrum -30 dBm Image: Spectrum Image: Spectrum Image: Spectrum -70 dBm Image: Spectrum Image: Spectrum Image: Spectrum	

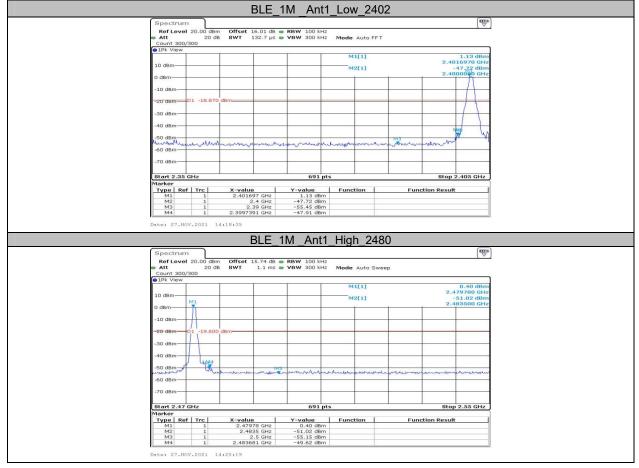
Report No.: SZNS211123-60119E-RF-00B

Spectrum						
Ref Level 20.00 dB Att 20 c Count 100/100 1Pk View		74 dB 👄 RBW 50 .9 μs 👄 VBW 200	kHz kHz Mode Auto FFT			_
10 dBm			M1[1] Occ Bw	Ť	-1.34 c 2.47971230 1.158841159	GHz
0 dBm		MI	m			
-10 dBm		T	T2			
-30 dBm	1			my		-
					Jun	<u>∼</u> _
-60 dBm						
-/0 d8m		10	01 pts		Span 4.0 M	IHz


Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	2402	3.00	≤30	PASS
		2440	2.82	≤30	PASS
		2480	2.57	≤30	PASS

Appendix D: Maximum power spectral density Test Result


Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M		2402	-13.93	≤8	PASS
	Ant1	2440	-15.08	≤8	PASS
		2480	-15.09	≤8	PASS

Test Graphs

Version 14: 2021-11-09

Appendix E: Band edge measurements Test Graphs

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2440	0.28	1.06	26.42

Test Graphs

Spectro Ref Let	vel 20.00 dBr	Offset 1	5.74 dB 🖷	RBW 10 MH	z						
Att		B 👄 SWT	5 ms 🖷	VBW 10 MH	Iz						
SGL TRO											
1Pk Clrv	~								_		
					D2	[1]				.04 dB 00 ms	
10 dBm-		+ +		543	MI	[1]				9 dBm	
o dela	_			M1 C	7	D2		2 E	2.115	00 ms	
0 dBm-	TRG -3.800	dBm								· · · · · ·	
-10 HBm-	1000								-	-	
-20 dBm-											
-30 dBm-											
e elect	in a start when the s	1. Conciled	mathank	Con com	Underundente	a cost	and they	warment for the los		in the second	
40 dBm-	Patra Andrew Alfred	didlowed 1	Sama and	allow we	Mana Bardine	Whose .	and the work	Martin Marthan	+ '	-transform	
-50 dBm-											
-60 dBm-									-		
-70 dBm-	-								+		
CF 2.44	GHz			1001	ots			-	500.0	0 µs/	
Marker											
M1	Ref Trc	X-value	5 ms	2.09 dBm	Funct	ion	Fun	ction Resul	t		
D1			.0 µs	0.07 dB							
	M1 1		5 ms	-0.04 dB							

***** END OF REPORT *****