

TEST REPORT

Applicant Name: JEM ACCESSORIES INC.

Address: 32 Brunswick Avenue, Edison, New Jersey, United

States,08817

Report Number: 2401W92117E-RF-00A

FCC ID: 2AHAS-EGD11001

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Smart 2K garage camera

Model No.: EGD1-1001

Multiple Model(s) No.: EGD1-1001-WHT, EGD1-1001-BLK

Trade Mark: N/A

Date Received: 2024-08-26 Issue Date: 2025-01-26

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

7

GaLa Liu Michelle Zeng
RF Engineer RF Supervisor

Note: The information marked * is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF004 Page 1 of 94 Version 4.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
REQUIREMENTS AND TEST PROCEDURES	
AC Line Conducted Emissions	
Spurious Emissions	
6 DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
100 kHz Bandwidth of Frequency Band Edge	
POWER SPECTRAL DENSITY	
DUTY CYCLE	21
ANTENNA REQUIREMENT	22
TEST DATA AND RESULTS	23
AC LINE CONDUCTED EMISSIONS	23
Spurious Emissions	26
RF CONDUCTED DATA	91
RF EXPOSURE EVALUATION	92
EUT PHOTOGRAPHS	93
TEST SETUP PHOTOGRAPHS	94

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401W92117E-RF-00A	Original Report	2025-01-26

Report No.: 2401W92117E-RF-00A

TR-EM-RF004 Page 3 of 94 Version 4.0

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Smart 2K garage camera
Tested Model	EGD1-1001
Multiple Model(s)	EGD1-1001-WHT, EGD1-1001-BLK
Frequency Range	2412~2462MHz
Maximum Conducted Output Peak Power	23.48 dBm
Modulation Technique	DSSS, OFDM
Antenna Specification#	3.42dBi (provided by the applicant)
Voltage Range	DC5V from USB port
Sample serial number	2QMR -1 for Conducted and Radiated Emissions Test 2QMR-2 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A

Report No.: 2401W92117E-RF-00A

Note: The multiple models are electrically identical with the test model except for Model No. and sales channels. Please refer to the declaration letter[#] for more detail, which was provided by manufacturer.

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

TR-EM-RF004 Page 4 of 94 Version 4.0

Measurement Uncertainty

Parameter			Uncertainty	
Occupied Channel Bandwidth		andwidth	109.2kHz(k=2, 95% level of confidence)	
RF output	RF output power, conducted		0.86dB(k=2, 95% level of confidence)	
AC Power Lines Cond	ucted	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)	
Emissions		150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)	
	0.	009MHz~30MHz	3.60dB(k=2, 95% level of confidence)	
	30MHz	~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)	
	Radiated Emissions 30MHz~200MHz (Vertical) 200MHz~1000MHz (Horizontal) 200MHz~1000MHz (Vertical)		5.43dB(k=2, 95% level of confidence)	
Dadiated Emissions			5.77dB(k=2, 95% level of confidence)	
Radiated Emissions			5.73dB(k=2, 95% level of confidence)	
	1GHz - 6GHz 5.34dB(k=2, 95% level of confidence)		5.34dB(k=2, 95% level of confidence)	
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)	
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)	
Temperature		e	±1°C	
Humidity			±1%	
Supply voltages		ges	$\pm 0.4\%$	

Report No.: 2401W92117E-RF-00A

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

TR-EM-RF004 Page 5 of 94 Version 4.0

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

Report No.: 2401W92117E-RF-00A

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11.

802.11n-HT40 mode was tested with Channel 3, 6 and 9.

EUT Exercise Software

Exercise Se	oftware#	Secure CRT Poratable		
Mode	Data rate	Power Level [#]		
Mode	Data Tate	Low Channel	Middle Channel	High Channel
802.11b	1Mbps	-16	-16	-16
802.11g	6Mbps	-16	-16	-16
802.11n20	MCS0	-16	-16	-16
802.11n40	MCS0	-16	-16	-16

Special Accessories

No special accessory.

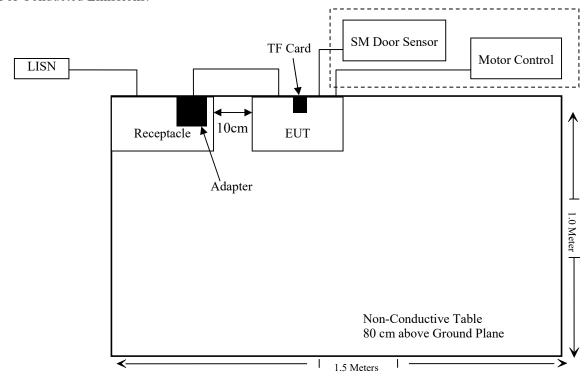
Equipment Modifications

No modification was made to the EUT tested.

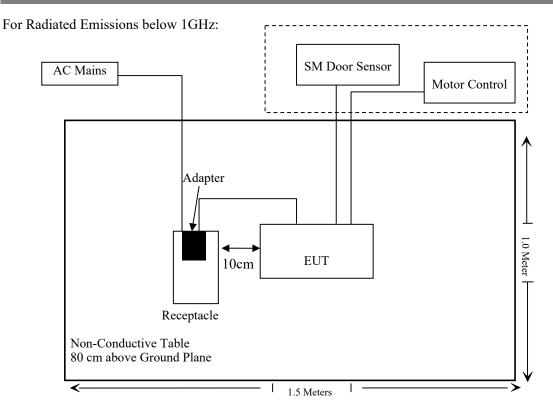
Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
YiBin Huafeng CommunicationCo.,Ltd	Adapter	HF-0502000U	Unknown
Bull	Receptacle	Unknown	Unknown
Sandisk	TF CARD	SDSQUNC-032G-ZN3MN	41311661269
JEM ACCESSORIES INC.	SM Door Sensor	Unknown	Unknown
JEM ACCESSORIES INC.	Motor Control	Unknown	Unknown

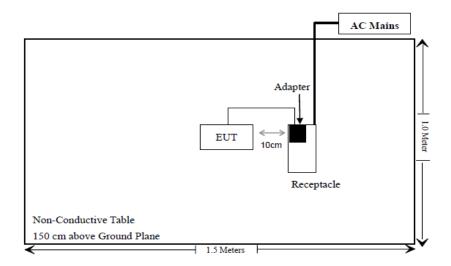
TR-EM-RF004 Page 6 of 94 Version 4.0


External I/O Cable

Cable Description	Length (m)	From Port	To
Unshielded Un-detachable Cable	1.0	Adapter	EUT
Unshielded Un-detachable AC Cable	1.0	Receptacle	LISN/ AC Mains
Unshielded Un-detachable SM Door Sensor Cable	5	EUT	SM Door Sensor
Unshielded Un-detachable Motor Control Cable	5	EUT	Motor Control


Report No.: 2401W92117E-RF-00A

Block Diagram of Test Setup


For Conducted Emissions:

TR-EM-RF004 Page 7 of 94 Version 4.0

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant
C63.10 §11.6	Duty Cycle	/
§15.247 (i), §1.1307 (b) & §2.1091	Maximum Permissible Exposure (MPE)	Compliant

Report No.: 2401W92117E-RF-00A

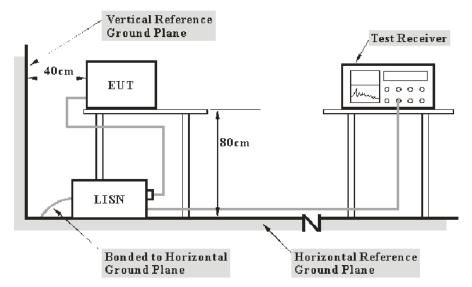
TR-EM-RF004 Page 9 of 94 Version 4.0

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission Test						
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15	
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20	
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20	
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR	
		Radiated Emis	sion Test			
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15	
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19	
Unknown	Cable	Chamber Cable 1	F-03-EM236	2024/06/18	2025/06/17	
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17	
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13	
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26	
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17	
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25	
Unknown	RF Cable	KMSE	0735	2024/06/18	2025/06/17	
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17	
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17	
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17	
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17	
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17	
Audix	EMI Test software	E3	191218(V9)	NCR	NCR	
RF Conducted Test						
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15	
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20	
Narda	20dB Attenuator	99899	0107	2024/06/27	2025/06/26	

Report No.: 2401W92117E-RF-00A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC§15.207

EUT Setup

Report No.: 2401W92117E-RF-00A

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: 2401W92117E-RF-00A

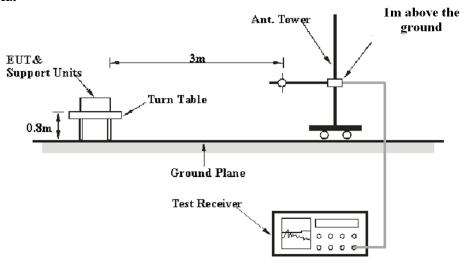
```
Factor = LISN VDF + Cable Loss
```

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

```
Over Limit = level – Limit
Level= reading level+ Factor
```

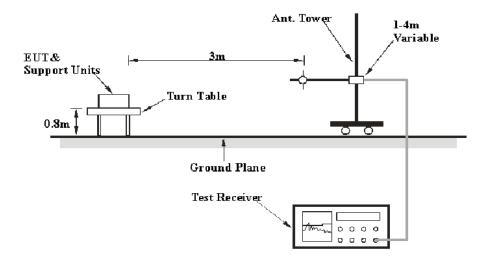
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

TR-EM-RF004 Page 12 of 94 Version 4.0

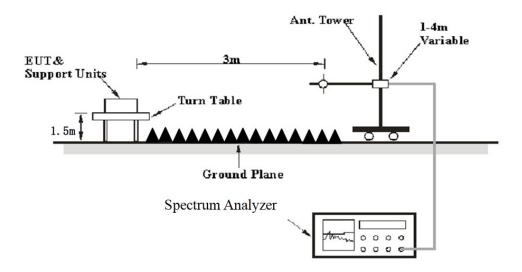

Spurious Emissions

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


EUT Setup

9 kHz-30MHz:



Report No.: 2401W92117E-RF-00A

30MHz-1GHz:

Above 1GHz:

Report No.: 2401W92117E-RF-00A

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
0 kHz 150 kHz	/	/	200 Hz	QP
9 kHz – 150 kHz	300 Hz	1 kHz	/	PK
150 kHz – 30 MHz	/	/	9 kHz	QP
	10 kHz	30 kHz	/	PK
30 MHz – 1000 MHz	/	/	120 kHz	QP
	100 kHz	300 kHz	/	PK

1-25GHz: Pre-scan

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A 3.7	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Report No.: 2401W92117E-RF-00A

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

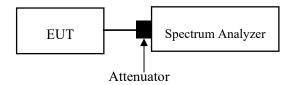
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

6 dB Emission Bandwidth

Applicable Standard

According to FCC §15.247(a) (2)


Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: 2401W92117E-RF-00A

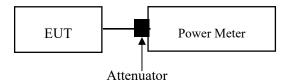
Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Maximum Conducted Output Power

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: 2401W92117E-RF-00A

Test Procedure

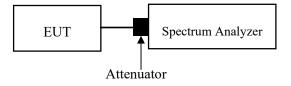
Test method: ANSI C63.10-2013 clause 11.9.1.3 for peak power method or clause 11.9.2.3.2 for average power method.

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

100 kHz Bandwidth of Frequency Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 2401W92117E-RF-00A

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Power Spectral Density

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: 2401W92117E-RF-00A

Test Procedure

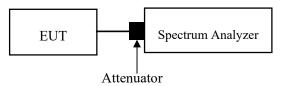
Test Method: ANSI C63.10-2013 Clause 11.10.2

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

- 1. Set the RBW to: 3kHz< RBW<100 kHz.
- 2. Set the VBW $\geq 3 \times RBW$.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Method: ANSI C63.10-2013 Clause 11.10.3 Method AVGPSD-1

The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (D \geq 98%), or else sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):


- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 4. Set the VBW $\geq 3 \times BW$.
- 5. Detector = power averaging (rms) or sample detector (when rms not available)
- 6. Ensure that the number of measurement points in the sweep \geq [2 \times span / RBW].
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Test Method: ANSI C63.10-2013 Clause 11.10.5 Method AVGPSD-2

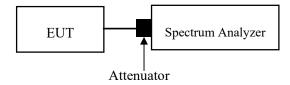
The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., D < 98%), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than $\pm 2\%$):

Report No.: 2401W92117E-RF-00A

- 1. Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. Set the RBW to: 3kHz < RBW < 100 kHz.
- 5. Set the VBW \geq 3×BW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available)
- 7. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- 8. Sweep time = auto couple.
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

Duty Cycle


Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

Report No.: 2401W92117E-RF-00A

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW \geq RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T $\le 16.7 \,\mu s$.)

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2401W92117E-RF-00A

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

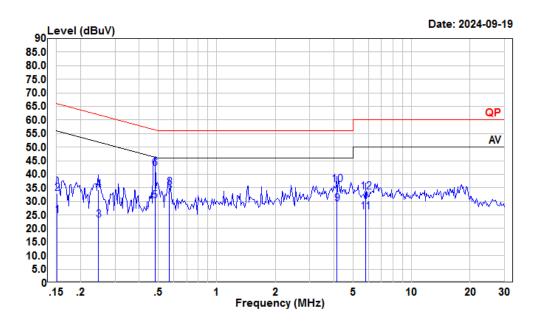
The EUT has an internal antenna arrangement, which was permanently attached, the antenna gain[#] is 3.42dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

TR-EM-RF004 Page 22 of 94 Version 4.0

TEST DATA AND RESULTS

AC Line Conducted Emissions


Environmental Conditions

Temperature (°C)	27	Relative Humidity (%)	59					
ATM Pressure (kPa)	101	Test engineer	Macy Shi					
Test date	2024.09.19	2024.09.19						
EUT operation mode	Transmitting(Maximum	Fransmitting(Maximum output power mode, 802.11g, middle Channel)						

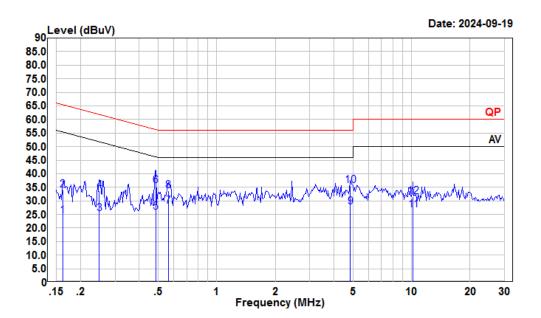
Report No.: 2401W92117E-RF-00A

AC 120V 60Hz, Line

Report No.: 2401W92117E-RF-00A

Condition: Line

Project : 2401W92117E-RF


tester : Macy.shi

Note : 2.4G WIFI transmitting

	Frea	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over	Remark
	11 64	LCVCI	LCVCI	i de coi	2033	LINC	LIMIT	Kellul K
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.152	3.71	24.74	10.90	10.13	55.91	-31.17	Average
2	0.152	11.97	33.00	10.90	10.13	65.91	-32.91	QP
3	0.247	2.28	23.09	10.73	10.08	51.86	-28.77	Average
4	0.247	13.41	34.22	10.73	10.08	61.86	-27.64	QP
5	0.481	9.50	30.14	10.51	10.13	46.32	-16.18	Average
6	0.481	21.57	42.21	10.51	10.13	56.32	-14.11	QP
7	0.570	11.16	31.79	10.50	10.13	46.00	-14.21	Average
8	0.570	14.54	35.17	10.50	10.13	56.00	-20.83	QP
9	4.136	8.61	29.13	10.31	10.21	46.00	-16.87	Average
10	4.136	15.66	36.18	10.31	10.21	56.00	-19.82	QP
11	5.805	5.49	26.10	10.43	10.18	50.00	-23.90	Average
12	5.805	12.97	33.58	10.43	10.18	60.00	-26.42	QP

AC 120V 60Hz, Neutral

Report No.: 2401W92117E-RF-00A

Condition: Neutral

Project : 2401W92117E-RF

tester : Macy.shi

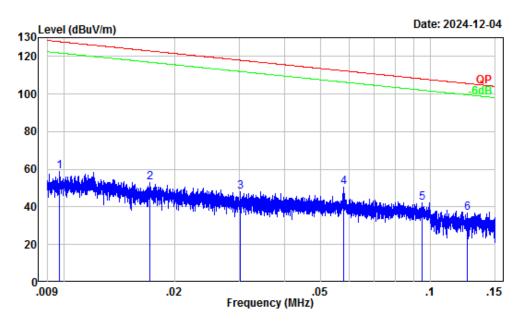
Note : 2.4G WIFI transmitting

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.162	3.90	24.56	10.55	10.11	55.38	-30.82	Average
2	0.162	13.46	34.12	10.55	10.11	65.38	-31.26	QP
3	0.249	4.63	25.18	10.47	10.08	51.78	-26.60	Average
4	0.249	13.26	33.81	10.47	10.08	61.78	-27.97	QP
5	0.486	5.03	25.85	10.69	10.13	46.23	-20.38	Average
6	0.486	14.91	35.73	10.69	10.13	56.23	-20.50	QP
7	0.564	7.26	28.09	10.70	10.13	46.00	-17.91	Average
8	0.564	12.80	33.63	10.70	10.13	56.00	-22.37	QP
9	4.848	6.94	27.62	10.50	10.18	46.00	-18.38	Average
10	4.848	14.95	35.63	10.50	10.18	56.00	-20.37	QP
11	10.179	5.78	26.79	10.80	10.21	50.00	-23.21	Average
12	10.179	10.64	31.65	10.80	10.21	60.00	-28.35	QP

Spurious Emissions

Environmental Conditions

Temperature (°C)	24-25	Relative Humidity (%)	50-54					
ATM Pressure (kPa):	101	Test engineer:	Carl Zhu & Zenos Qiao					
Test date:	2024.11.16~2024.12.04	2024.11.16~2024.12.04						
EUT operation mode:			ver mode, 802.11g mode, Middle					
Note:	orientation were recorde 2. For 9 kHz~30 MHz to	d.	el, perpendicular and ground parallel,					


Report No.: 2401W92117E-RF-00A

TR-EM-RF004 Page 26 of 94 Version 4.0

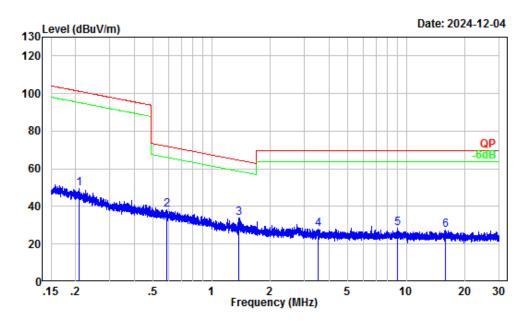
Below 1GHz:

9kHz-150kHz

Report No.: 2401W92117E-RF-00A

Site : Chamber A

Condition : 3m


Project Number : 2401W92117E-RF
Test Mode : Transmitting
Detector Peak RBW: 0.3KHz VBW:1KHz

Tester : Carl Zhu

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.36	26.36	58.72	127.87	-69.15	Peak
2	0.02	30.94	22.10	53.04	122.92	-69.88	Peak
3	0.03	28.47	19.58	48.05	117.98	-69.93	Peak
4	0.06	25.61	25.13	50.74	112.35	-61.61	Peak
5	0.09	22.37	19.65	42.02	108.08	-66.06	Peak
6	0.13	20.49	16.54	37.03	105.63	-68.60	Peak

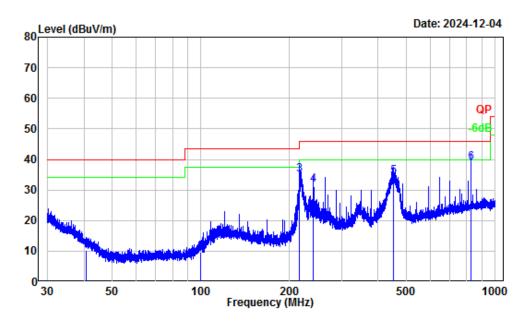
150kHz-30MHz

Report No.: 2401W92117E-RF-00A

Site : Chamber A

Condition : 3m

Project Number : 2401W92117E-RF
Test Mode : Transmitting
Detector Peak RBW: 10KHz VBW:30KHz

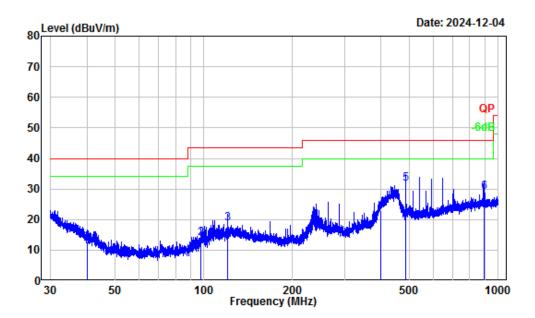

Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
_							
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.21	15.63	33.70	49.33	101.25	-51.92	Peak
2	0.59	5.29	32.80	38.09	72.15	-34.06	Peak
3	1.39	0.12	33.62	33.74	64.58	-30.84	Peak
4	3.53	-2.44	30.54	28.10	69.54	-41.44	Peak
5	9.00	-2.90	31.17	28.27	69.54	-41.27	Peak
6	15.90	-2.32	29.97	27.65	69.54	-41.89	Peak

TR-EM-RF004 Page 28 of 94 Version 4.0

30MHz-1GHz_Horizontal

Report No.: 2401W92117E-RF-00A


Site : Chamber A
Condition : 3m Horizontal
Project Number : 2401W92117E-RF
Test Mode : Transmitting

Detector QP RBW: 120KHz Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-		-In /-	-dp. v	In all	In all		
	MHZ	dB/m	abuv	aBuv/m	aBuv/m	ав	
1	40.67	-12.84	23.16	10.32	40.00	-29.68	QP
	100.01	-15.89	25.65	9.76	43.50	-33.74	QP
3	216.02	-14.20	49.11	34.91	46.00	-11.09	QP
4	239.99	-13.32	44.89	31.57	46.00	-14.43	QP
5	451.14	-7.48	41.96	34.48	46.00	-11.52	QP
6	825.32	-1.94	40.76	38.82	46.00	-7.18	QP

30MHz-1GHz_Vertical

Report No.: 2401W92117E-RF-00A

Site : Chamber A
Condition : 3m Vertical
Project Number : 2401W92117E-RF
Test Mode : Transmitting

Detector QP RBW: 120KHz Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.01	-12.38	24.98	12.60	40.00	-27.40	QP
2	97.84	-16.55	30.51	13.96	43.50	-29.54	QP
3	120.01	-11.45	30.12	18.67	43.50	-24.83	QP
4	399.73	-8.42	31.46	23.04	46.00	-22.96	QP
5	486.04	-6.14	37.85	31.71	46.00	-14.29	QP
6	898.57	-1.31	30.44	29.13	46.00	-16.87	QP

TR-EM-RF004 Page 30 of 94 Version 4.0

Above 1GHz:

Frequency (MHz)	Reading (dBµV)	Detector (PK/AV)	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			802	.11b			
			Low C	Channel			
4824	50.37	PK	Н	2.45	52.82	74	-21.18
4824	43.25	AV	Н	2.45	45.7	54	-8.3
4824	49.73	PK	V	2.45	52.18	74	-21.82
4824	42.84	AV	V	2.45	45.29	54	-8.71
•			Middle	Channel	1		
4874	50.18	PK	Н	2.56	52.74	74	-21.26
4874	43.02	AV	Н	2.56	45.58	54	-8.42
4874	49.57	PK	V	2.56	52.13	74	-21.87
4874	42.76	AV	V	2.56	45.32	54	-8.68
			High C	Channel	4		
4924	50.89	PK	Н	2.63	53.52	74	-20.48
4924	43.64	AV	Н	2.63	46.27	54	-7.73
4924	50.31	PK	V	2.63	52.94	74	-21.06
4924	43.25	AV	V	2.63	45.88	54	-8.12
•			802	.11g	1		
			Low C	hannel			
4824	46.64	PK	Н	2.45	49.09	74	-24.91
4824	33.52	AV	Н	2.45	35.97	54	-18.03
4824	46.4	PK	V	2.45	48.85	74	-25.15
4824	33.35	AV	V	2.45	35.8	54	-18.2
			Middle	Channel	•		
4874	46.78	PK	Н	2.56	49.34	74	-24.66
4874	33.65	AV	Н	2.56	36.21	54	-17.79
4874	46.51	PK	V	2.56	49.07	74	-24.93
4874	33.46	AV	V	2.56	36.02	54	-17.98
			High C	Channel			
4924	47.29	PK	Н	2.63	49.92	74	-24.08
4924	34.3	AV	Н	2.63	36.93	54	-17.07
4924	46.91	PK	V	2.63	49.54	74	-24.46
4924	34.04	AV	V	2.63	36.67	54	-17.33

Report No.: 2401W92117E-RF-00A

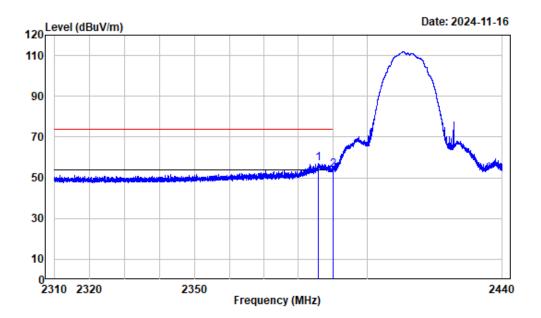
Frequency (MHz)	Reading (dBµV)	Detector (PK/AV)	Polar (H/V)	Factor (dB/m)	Corrected Amplitude	Limit (dBµV/m)	Margin (dB)			
,	,				(dBµV/m)	, ,	. ,			
	802.11n20									
				Channel	1					
4824	46.79	PK	Н	2.45	49.24	74	-24.76			
4824	33.46	AV	Н	2.45	35.91	54	-18.09			
4824	46.55	PK	V	2.45	49	74	-25			
4824	33.37	AV	V	2.45	35.82	54	-18.18			
				Channel						
4874	47.03	PK	Н	2.56	49.59	74	-24.41			
4874	33.72	AV	Н	2.56	36.28	54	-17.72			
4874	46.84	PK	V	2.56	49.4	74	-24.6			
4874	33.56	AV	V	2.56	36.12	54	-17.88			
			High (Channel						
4924	47.52	PK	Н	2.63	50.15	74	-23.85			
4924	34.34	AV	Н	2.63	36.97	54	-17.03			
4924	47.27	PK	V	2.63	49.9	74	-24.1			
4924	34.15	AV	V	2.63	36.78	54	-17.22			
			802.	11n40						
			Low C	Channel						
4844	46.95	PK	Н	2.45	49.4	74	-24.6			
4844	33.06	AV	Н	2.45	35.51	54	-18.49			
4844	46.67	PK	V	2.45	49.12	74	-24.88			
4844	32.89	AV	V	2.45	35.34	54	-18.66			
			Middle	Channel						
4874	46.8	PK	Н	2.56	49.36	74	-24.64			
4874	32.94	AV	Н	2.56	35.5	54	-18.5			
4874	46.53	PK	V	2.56	49.09	74	-24.91			
4874	32.76	AV	V	2.56	35.32	54	-18.68			
		, <u> </u>	High (Channel	1	1				
4904	46.98	PK	Н	2.64	49.62	74	-24.38			
4904	33.19	AV	Н	2.64	35.83	54	-18.17			
4904	46.71	PK	V	2.64	49.35	74	-24.65			
4904	33.02	AV	V	2.64	35.66	54	-18.34			

Report No.: 2401W92117E-RF-00A

Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude/Level = Corrected Factor + Reading

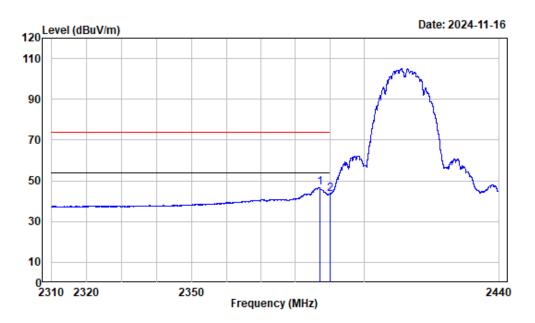

Margin = Corrected Amplitude/Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

Test plots

Left Band edge_Horizontal_Peak_802.11b

Report No.: 2401W92117E-RF-00A

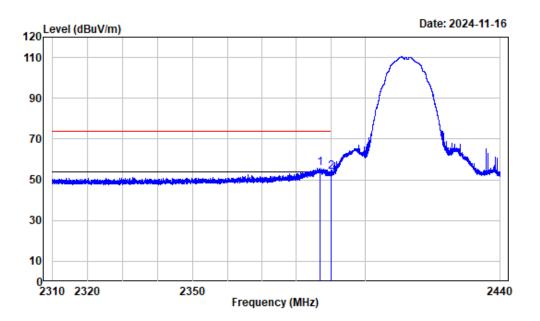

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-b-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	2385.783	-3.19	60.03	56.84	74.00	-17.16	Peak	
2	2390.000	-3.20	57.24	54.04	74.00	-19.96	Peak	

Left Band edge_Horizontal_Average_802.11b

Report No.: 2401W92117E-RF-00A

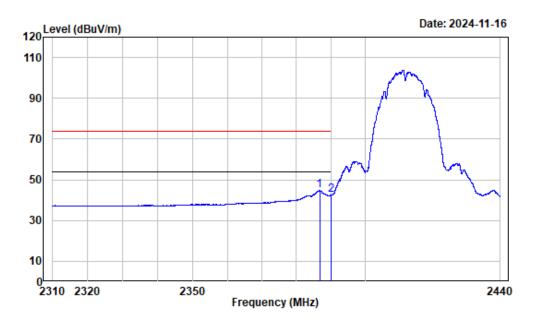

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2387.067	-3.19	49.86	46.67	54.00	-7.33	Average	
2	2390.000	-3.20	46.82	43.62	54.00	-10.38	Average	

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

Left Band edge_Vertical_Peak_802.11b

Report No.: 2401W92117E-RF-00A

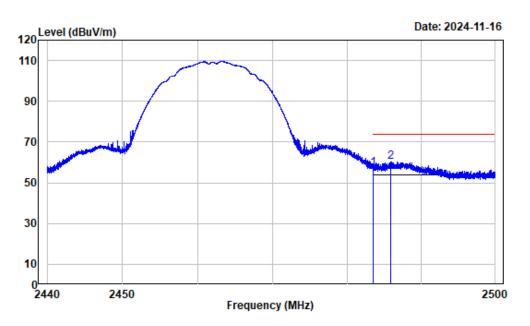

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-b-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2386.775	-3.19	59.06	55.87	74.00	-18.13	Peak	
2	2390.000	-3.20	56.91	53.71	74.00	-20.29	Peak	

Left Band edge_Vertical_Average_802.11b

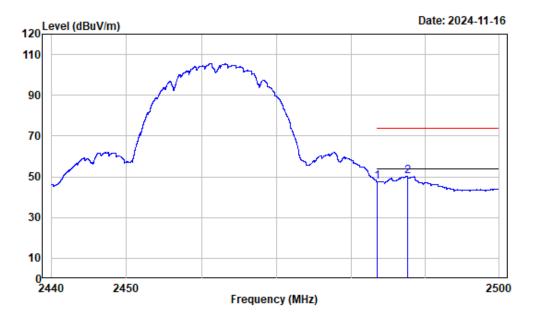
Report No.: 2401W92117E-RF-00A


Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-b-2412

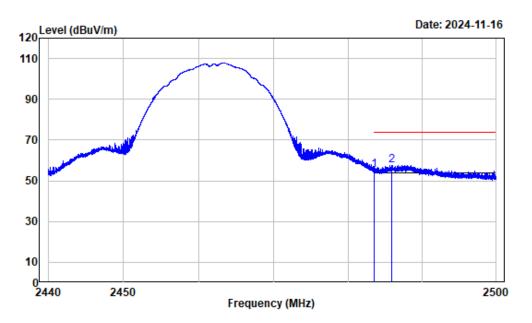
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2386.726	-3.19	47.99	44.80	54.00	-9.20	Average	
2	2390.000	-3.20	45.61	42.41	54.00	-11.59	Average	

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz


Right Band edge_Horizontal_Peak_802.11b

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

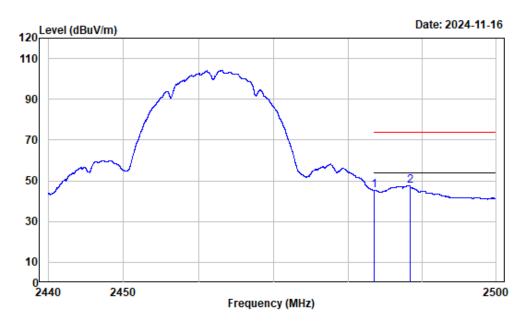
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	60.10	56.93	74.00	-17.07	Peak
2	2485 926	-3 17	63 51	60 34	74 00	-13 66	Deak


Right Band edge_Horizontal_Average_802.11b

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	50.65	47.48	54.00	-6.52	Average
2	2487.563	-3.18	53.49	50.31	54.00	-3.69	Average

Right Band edge_Vertical_Peak_802.11b

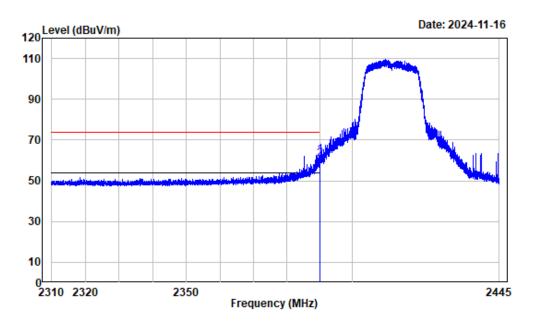

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	58.60	55.43	74.00	-18.57	Peak
2	2485.921	-3.17	60.83	57.66	74.00	-16.34	Peak

Right Band edge_Vertical_Average_802.11b

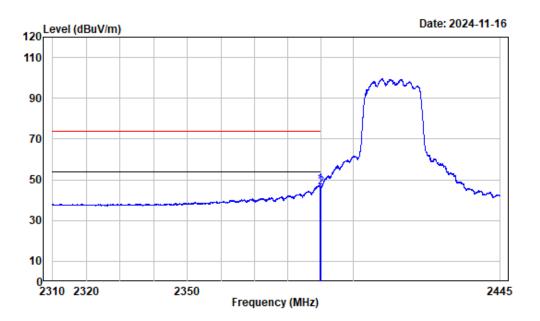

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-b-2462

	Freq	Factor		Level			Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	48.63	45.46	54.00	-8.54	Average
2	2488.374	-3.18	50.87	47.69	54.00	-6.31	Average

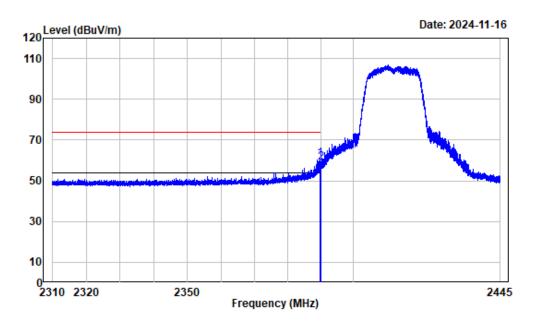
Left Band edge_Horizontal_Peak_802.11g



Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2389.947	-3.20	65.82	62.62	74.00	-11.38	Peak	
2	2390 000	-3 20	63 85	60 65	74 00	-13 35	Peak	

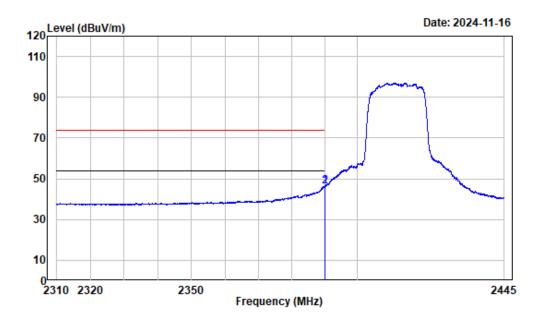
TR-EM-RF004 Page 41 of 94 Version 4.0


Left Band edge_Horizontal_Average_802.11g

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.761	-3.20	50.74	47.54	54.00	-6.46	Average
2	2390.000	-3.20	49.28	46.08	54.00	-7.92	Average

Left Band edge_Vertical_Peak_802.11g

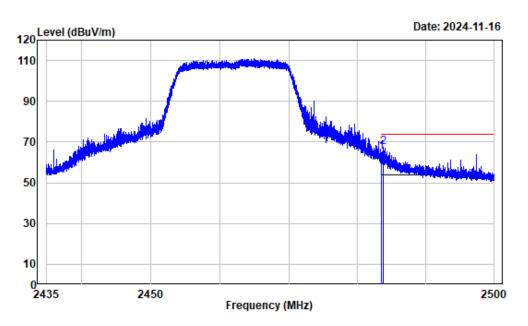

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-g-2412

Read Limit Over Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m dB l 2389.778 -3.20 63.95 60.75 74.00 -13.25 Peak l 2390.000 -3.20 62.20 59.00 74.00 -15.00 Peak

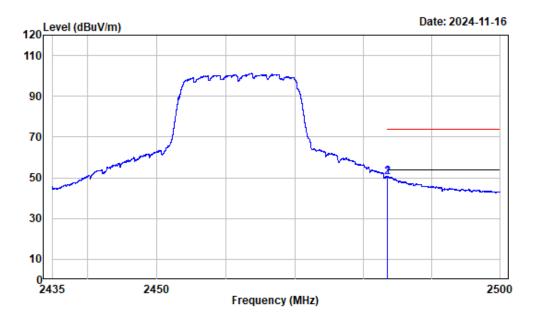
Left Band edge_Vertical_Average_802.11g



Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-g-2412

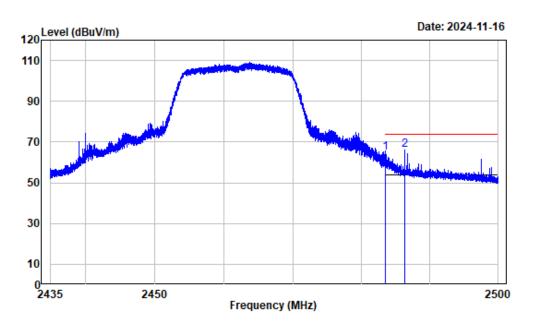
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.998	-3.20	49.26	46.06	54.00	-7.94	Average
2	2390.000	-3.20	49.51	46.31	54.00	-7.69	Average


Right Band edge_Horizontal_Peak_802.11g

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	68.19	65.02	74.00	-8.98	Peak
2	2483.691	-3.17	70.59	67.42	74.00	-6.58	Peak

Right Band edge_Horizontal_Average_802.11g

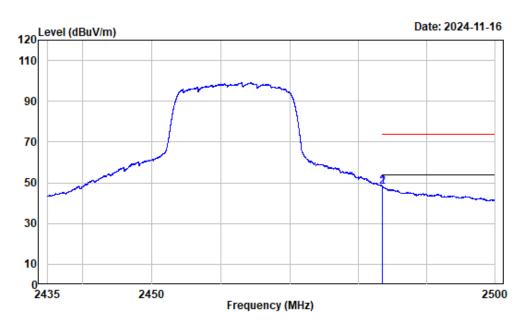

Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor		Level			Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	53.35	50.18	54.00	-3.82	Average
2	2483.504	-3.17	53.62	50.45	54.00	-3.55	Average

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

TR-EM-RF004 Page 46 of 94 Version 4.0

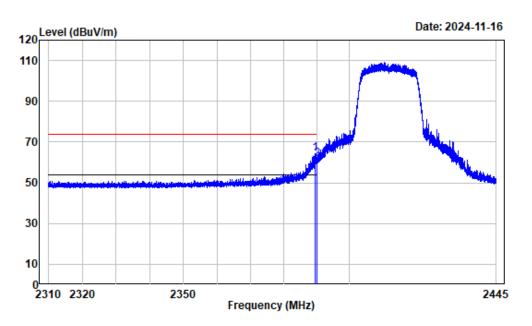
Right Band edge_Vertical_Peak_802.11g



Condition : Vertical Project No.: 2401W92117E-RF

Tester : Zenos Qiao Note : 2.4GWiFi-g-2462

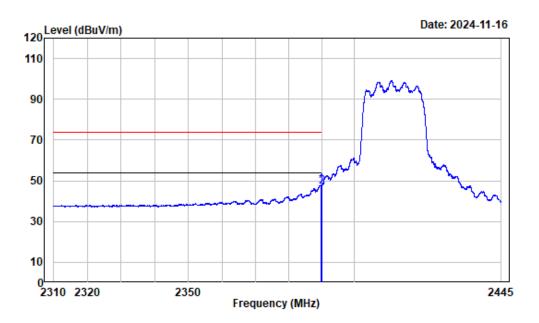
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	67.86	64.69	74.00	-9.31	Peak
2	2486.356	-3.17	69.19	66.02	74.00	-7.98	Peak


Right Band edge_Vertical_Average_802.11g

Condition : Vertical
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		_
1	2483.500	-3.17	51.05	47.88	54.00	-6.12	Average	
2	2483.504	-3.17	51.32	48.15	54.00	-5.85	Average	

Left Band edge_Horizontal_Peak_802.11n20

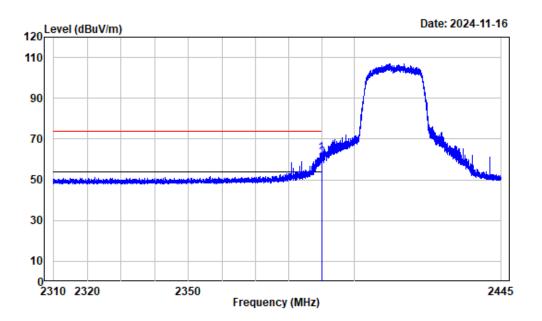

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2389.424	-3.20	67.62	64.42	74.00	-9.58	Peak	
2	2390.000	-3.20	64.70	61.50	74.00	-12.50	Peak	

TR-EM-RF004 Page 49 of 94 Version 4.0

Left Band edge_Horizontal_Average_802.11n20

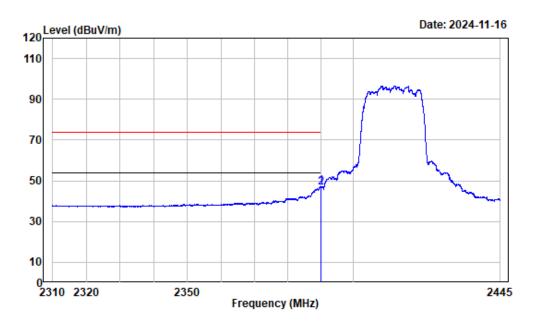


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.711	-3.20	51.10	47.90	54.00	-6.10	Average
2	2390.000	-3.20	50.48	47.28	54.00	-6.72	Average

Left Band edge_Vertical_Peak_802.11n20

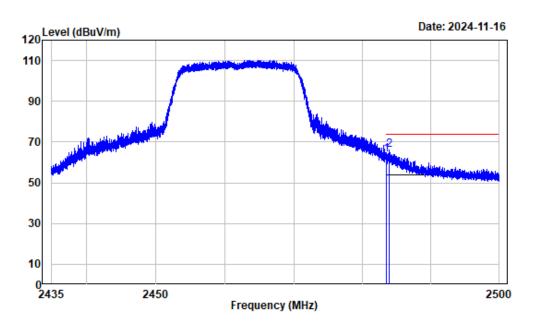

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.930	-3.20	66.34	63.14	74.00	-10.86	Peak
2	2390.000	-3.20	63.92	60.72	74.00	-13.28	Peak

Left Band edge_Vertical_Average_802.11n20

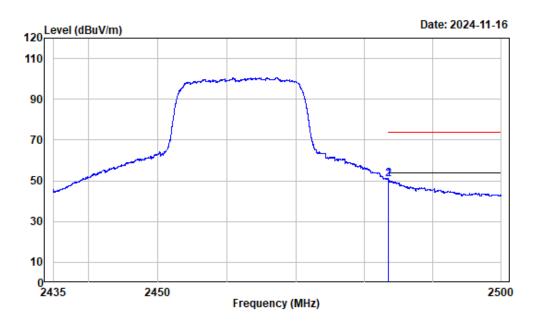

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2412

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	2389.981	-3.20	50.14	46.94	54.00	-7.06	Average	
2	2390.000	-3.20	50.00	46.80	54.00	-7.20	Average	

Right Band edge_Horizontal_Peak_802.11n20

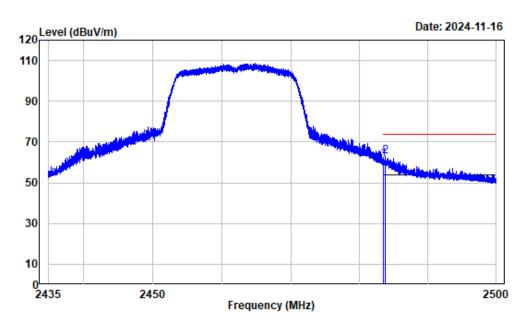

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor		Level		Over Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2483.500	-3.17	67.13	63.96	74.00	-10.04	Peak	
2	2483.910	-3.17	69.12	65.95	74.00	-8.05	Peak	

TR-EM-RF004 Page 53 of 94 Version 4.0

Right Band edge_Horizontal_Average_802.11n20

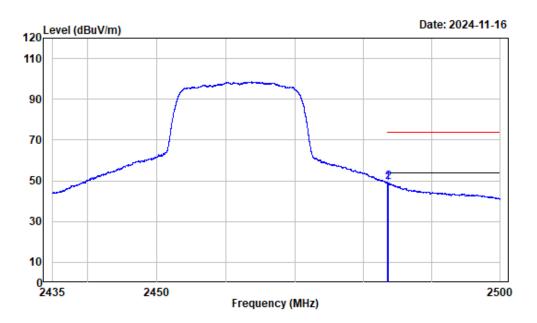


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	53.75	50.58	54.00	-3.42	Average
2	2483.504	-3.17	54.02	50.85	54.00	-3.15	Average

Right Band edge_Vertical_Peak_802.11n20


Condition : Vertical

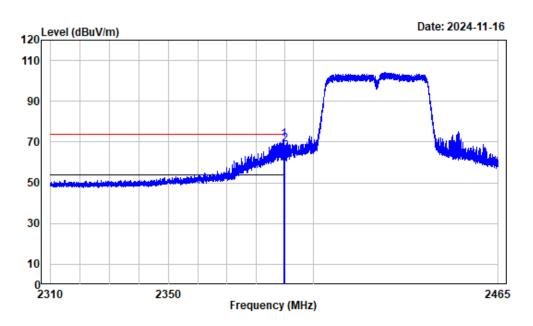
Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	64.81	61.64	74.00	-12.36	Peak
2	2483.748	-3.17	66.32	63.15	74.00	-10.85	Peak

Right Band edge_Vertical_Average_802.11n20

Condition : Vertical

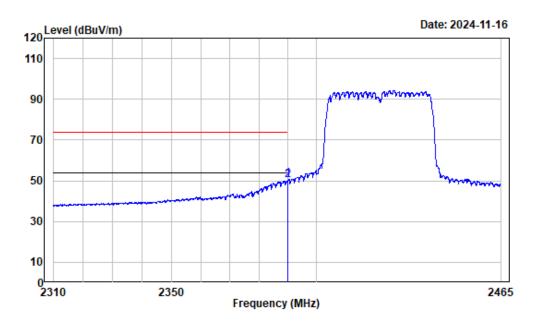

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	52.15	48.98	54.00	-5.02	Average
2	2483.634	-3.17	52.41	49.24	54.00	-4.76	Average

Left Band edge_Horizontal_Peak_802.11n40

Report No.: 2401W92117E-RF-00A

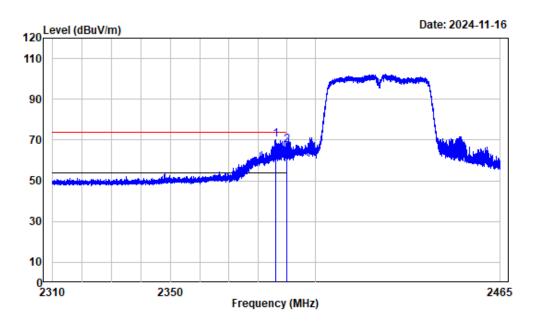


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2422

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	2389.603	-3.20	74.10	70.90	74.00	-3.10	Peak
2	2390.000	-3.20	71.96	68.76	74.00	-5.24	Peak

Left Band edge_Horizontal_Average_802.11n40

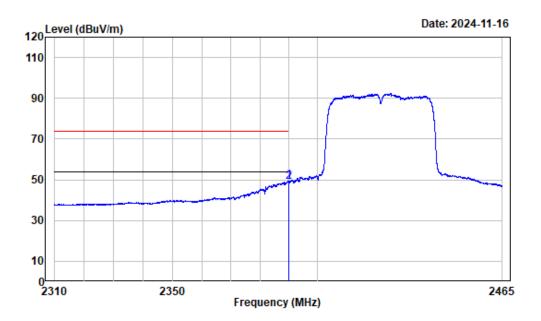


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2422

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.913	-3.20	53.97	50.77	54.00	-3.23	Average
2	2390.000	-3.20	53.42	50.22	54.00	-3.78	Average

Left Band edge_Vertical_Peak_802.11n40


Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

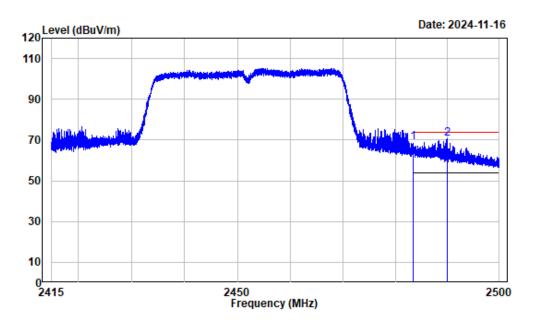
Note : 2.4GWiFi-n40-2422

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		
1	2386.231	-3.19	73.21	70.02	74.00	-3.98	Peak	
2	2390.000	-3.20	70.87	67.67	74.00	-6.33	Peak	

Left Band edge_Vertical_Average_802.11n40

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

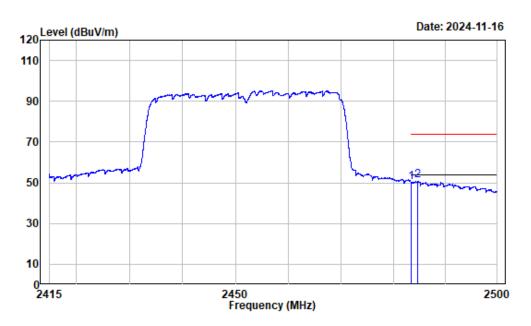

Note : 2.4GWiFi-n40-2422

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.777	-3.20	52.69	49.49	54.00	-4.51	Average
2	2390.000	-3.20	52.23	49.03	54.00	-4.97	Average

Note: Spectrum Analyzer Setting: RBW=1MHz, VBW=5kHz

TR-EM-RF004 Page 60 of 94 Version 4.0

Right Band edge_Horizontal_Peak_802.11n40

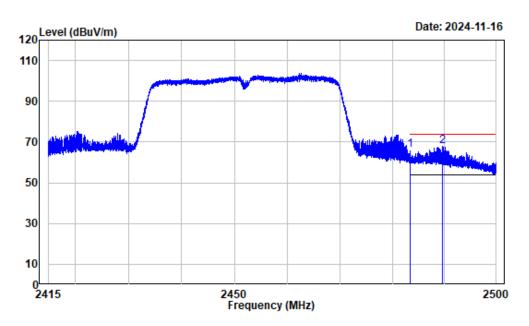

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	71.82	68.65	74.00	-5.35	Peak
2	2490.001	-3.18	73.63	70.45	74.00	-3.55	Peak

TR-EM-RF004 Page 61 of 94 Version 4.0

Right Band edge_Horizontal_Average_802.11n40

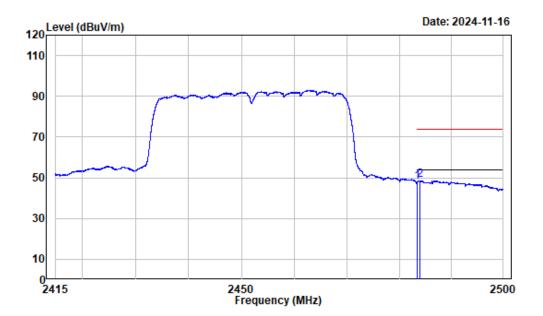


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	53.24	50.07	54.00	-3.93	Average
2	2484.666	-3.17	54.16	50.99	54.00	-3.01	Average

Right Band edge_Vertical_Peak_802.11n40


Condition : Vertical

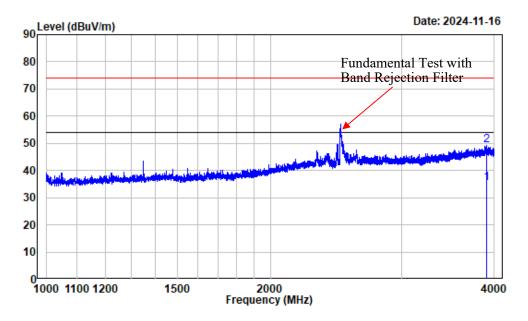
Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		-
1	2483.500	-3.17	69.42	66.25	74.00	-7.75	Peak	
2	2489.692	-3.18	71.30	68.12	74.00	-5.88	Peak	

Right Band edge_Vertical_Average_802.11n40

Condition : Vertical

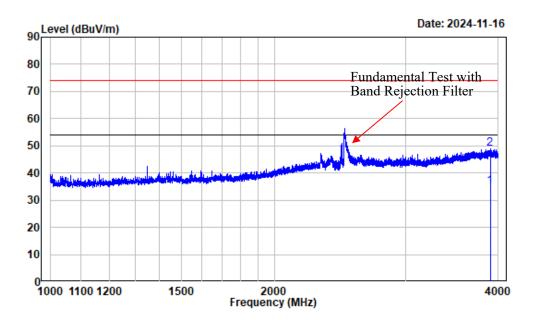

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-3.17	51.38	48.21	54.00	-5.79	Average	
2	2484.039	-3.17	52.22	49.05	54.00	-4.95	Average	

Worst harmonic test plots for each mode as below

1-4GHz_Horizontal_802.11b


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

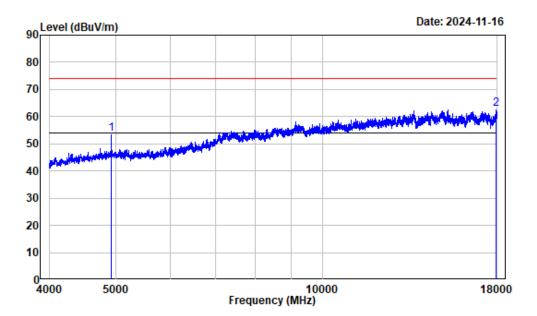
Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3909.614	-0.46	35.75	35.29	54.00	-18.71	Average
2	3909.614	-0.46	49.66	49.20	74.00	-24.80	Peak

1-4GHz_Vertical_802.11b

Report No.: 2401W92117E-RF-00A

Condition : Vertical

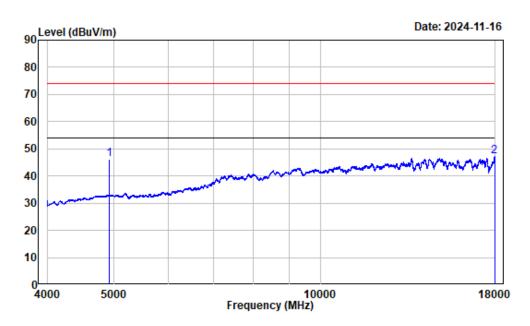

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3900.988	-0.52	35.54	35.02	54.00	-18.98	Average
2	3900.988	-0.52	49.52	49.00	74.00	-25.00	Peak

TR-EM-RF004 Page 66 of 94 Version 4.0

4-18GHz_Horizontal_Peak_802.11b

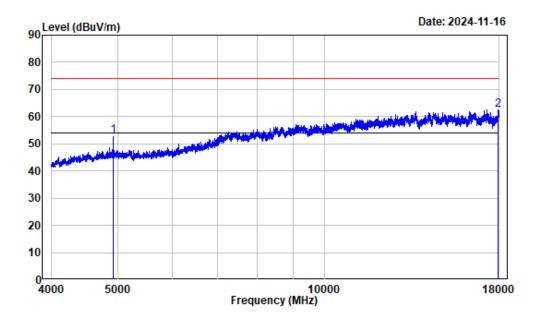


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

Freq	Factor			Limit Line		Remark	
MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1 4924.000						Peak	
2 17954.490	24.30	38.43	62.73	74.00	-11.27	Peak	

TR-EM-RF004 Page 67 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11b

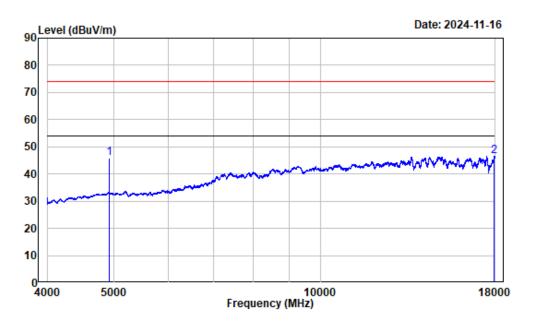


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	43.64	46.27	54.00	-7.73	Average
2	17956 240	24 31	22 80	47 11	54 00	-6 89	Average

4-18GHz_Vertical_Peak_802.11b

Report No.: 2401W92117E-RF-00A



Condition : Vertical
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	50.31	52.94	74.00	-21.06	Peak
2	17952 740	24 29	38 24	62 53	74 00	-11 47	Deak

TR-EM-RF004 Page 69 of 94 Version 4.0

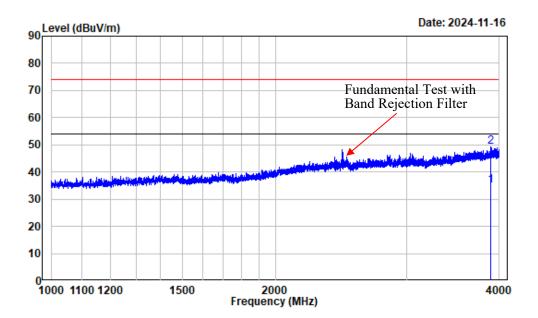
4-18GHz_Vertical_Average_802.11b

Condition : Vertical
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	43.25	45.88	54.00	-8.12	Average
2	17947 490	24 24	22 29	46 53	54 00	-7 47	Average

1-4GHz_Horizontal_802.11g

Report No.: 2401W92117E-RF-00A


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	3968.496	-0.19	35.68	35.49	54.00	-18.51	Average	
2	3968 496	-0 19	49 64	49 45	74 00	-24 55	Deak	

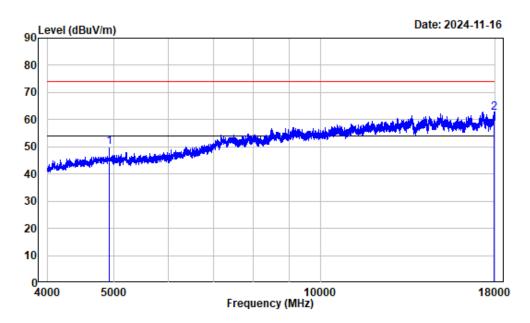
TR-EM-RF004 Page 71 of 94 Version 4.0

1-4GHz_Vertical_802.11g

Report No.: 2401W92117E-RF-00A

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-g-2462

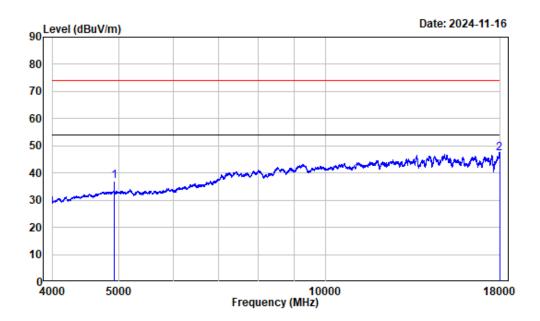

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 3892.362 -0.56 35.47 34.91 54.00 -19.09 Average
2 3892.362 -0.56 49.85 49.29 74.00 -24.71 Peak

4-18GHz_Horizontal_Peak_802.11g

Report No.: 2401W92117E-RF-00A

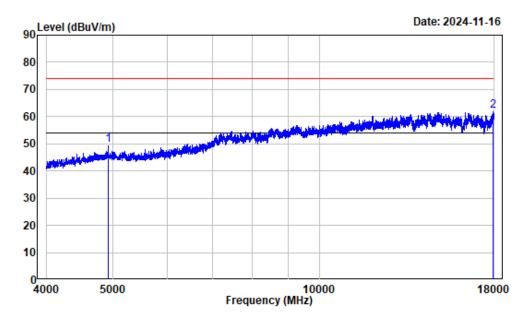


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	47.29	49.92	74.00	-24.08	Peak
2	17950 990	24 28	38 13	62 41	74 00	-11 59	Deak

TR-EM-RF004 Page 73 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11g

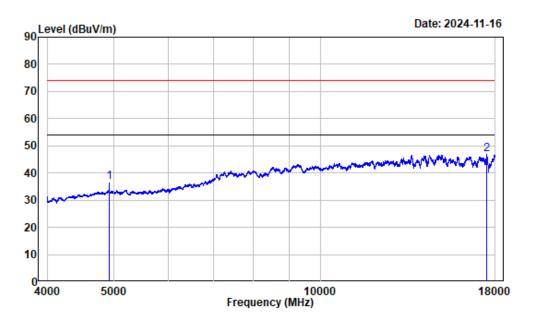


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4924.000	2.63	34.30	36.93	54.00	-17.07	Average	
2	17956.240	24.31	22.75	47.06	54.00	-6.94	Average	

4-18GHz_Vertical_Peak_802.11g

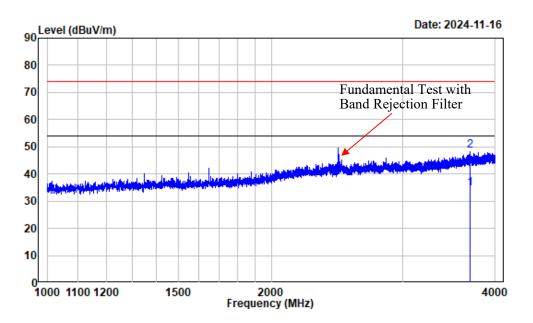
Report No.: 2401W92117E-RF-00A



Condition : Vertical
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	46.91	49.54	74.00	-24.46	Peak
2	17947.490	24.24	37.82	62.06	74.00	-11.94	Peak

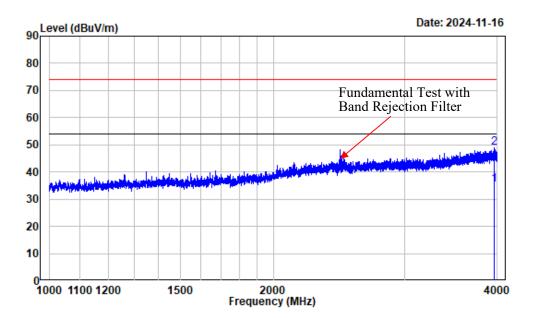
TR-EM-RF004 Page 75 of 94 Version 4.0


4-18GHz_Vertical_Average_802.11g

Condition : Vertical
Project No.: 2401W92117E-RF
Tester : Zenos Qiao
Note : 2.4GWiFi-g-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	34.04	36.67	54.00	-17.33	Average
2	17492 440	20 33	26 41	46 74	54 00	-7 26	Average

1-4GHz_Horizontal_802.11n-HT20

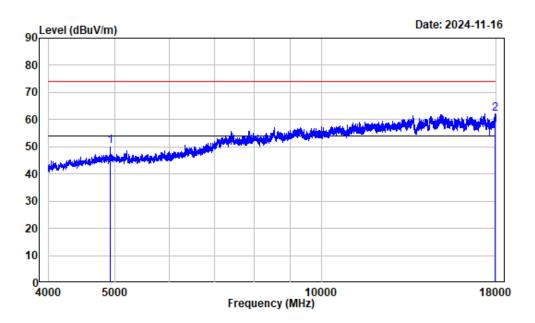

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	3698.462	-1.17	35.96	34.79	54.00	-19.21	Average	
2	3698.462	-1.17	49.57	48.40	74.00	-25.60	Peak	

TR-EM-RF004 Page 77 of 94 Version 4.0

1-4GHz_Vertical_802.11n-HT20

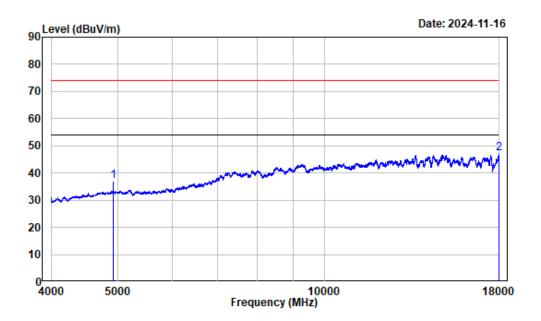

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	3966.996	-0.18	35.59	35.41	54.00	-18.59	Average	
2	3966.996	-0.18	49.12	48.94	74.00	-25.06	Peak	

4-18GHz_Horizontal_Peak_802.11n-HT20

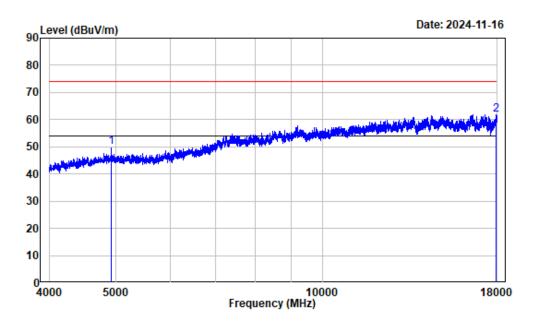

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Fren	Factor			Limit		Demark	
	1104	1 ac coi	Level	Level	LINE	LIMIC	Kelliul K	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4924.000	2.63	47.52	50.15	74.00	-23.85	Peak	
2	17940.490	24.19	38.04	62.23	74.00	-11.77	Peak	

TR-EM-RF004 Page 79 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11n-HT20


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

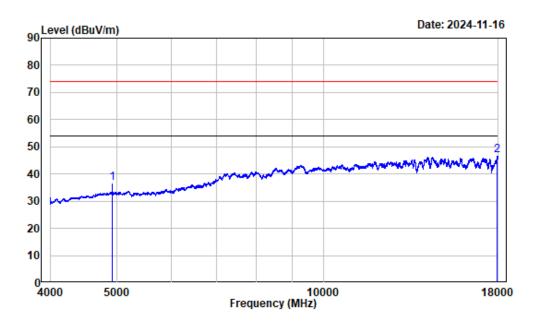
Note : 2.4GWiFi-n20-2462

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	34.34	36.97	54.00	-17.03	Average
2	17998.250	24.61	22.51	47.12	54.00	-6.88	Average

4-18GHz_Vertical_Peak_802.11n-HT20

Report No.: 2401W92117E-RF-00A

Condition : Vertical

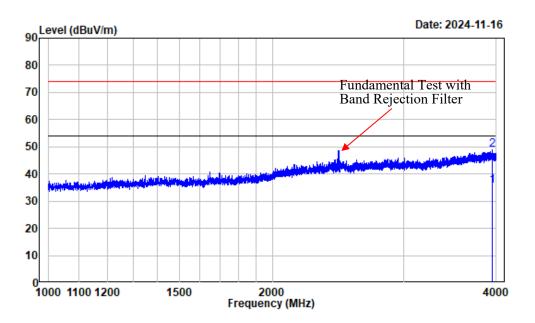

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	2.63	47.27	49.90	74.00	-24.10	Peak
2	17950.990	24.28	37.55	61.83	74.00	-12.17	Peak

TR-EM-RF004 Page 81 of 94 Version 4.0

4-18GHz_Vertical_Average_802.11n-HT20

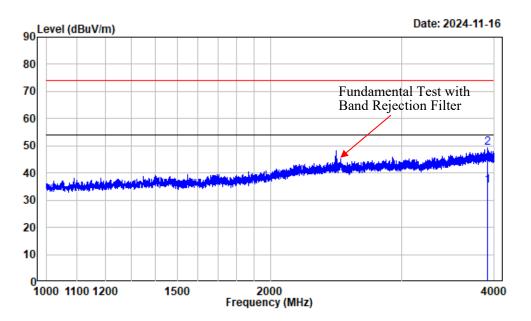

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n20-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4924.000	2.63	34.15	36.78	54.00	-17.22	Average	
2	17943.990	24.22	22.70	46.92	54.00	-7.08	Average	

1-4GHz_Horizontal_802.11n-HT40


Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

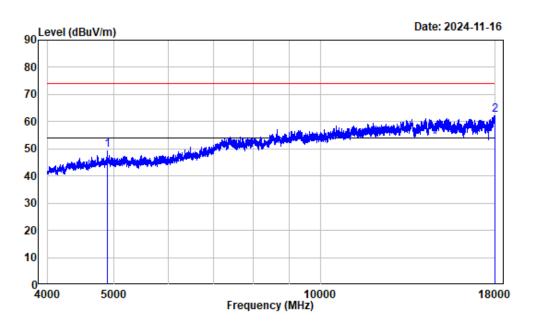
Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3950.494	-0.16	35.89	35.73	54.00	-18.27	Average
2	3950.494	-0.16	49.00	48.84	74.00	-25.16	Peak

TR-EM-RF004 Page 83 of 94 Version 4.0

1-4GHz_Vertical_802.11n-HT40

Condition : Vertical

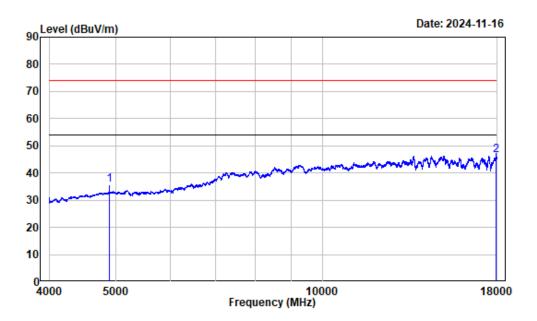

Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3917.490	-0.40	35.64	35.24	54.00	-18.76	Average
2	3917.490	-0.40	49.55	49.15	74.00	-24.85	Peak

TR-EM-RF004 Page 84 of 94 Version 4.0

4-18GHz_Horizontal_Peak_802.11n-HT40

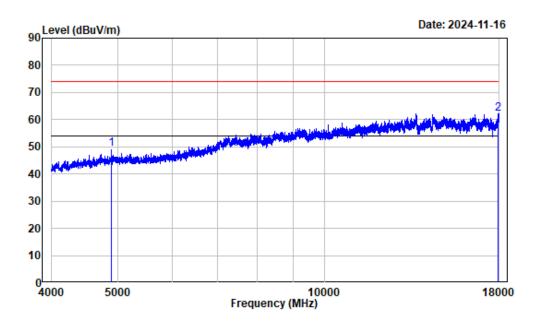

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao

Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4904.000	2.64	46.98	49.62	74.00	-24.38	Peak
2	17993.000	24.57	37.91	62.48	74.00	-11.52	Peak

TR-EM-RF004 Page 85 of 94 Version 4.0

4-18GHz_Horizontal_Average_802.11n-HT40


Condition : Horizontal
Project No.: 2401W92117E-RF
Tester : Zenos Qiao

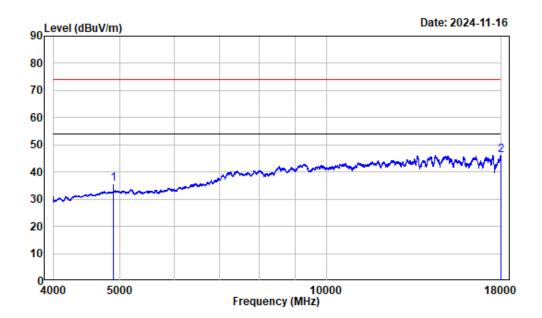
Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4904.000	2.64	33.19	35.83	54.00	-18.17	Average	
2	17947.490	24.24	22.31	46.55	54.00	-7.45	Average	

4-18GHz_Vertical_Peak_802.11n-HT40

Report No.: 2401W92117E-RF-00A

Condition : Vertical Project No.: 2401W92117E-RF


Tester : Zenos Qiao

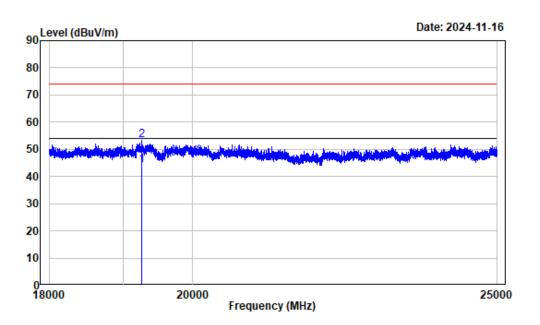
Note : 2.4GWiFi-n40-2452

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4904.000	2.64	46.71	49.35	74.00	-24.65	Peak
2	17929.990	24.12	38.15	62.27	74.00	-11.73	Peak

4-18GHz_Vertical_Average_802.11n-HT40

Report No.: 2401W92117E-RF-00A

Condition : Vertical Project No.: 2401W92117E-RF Tester : Zenos Qiao


Note : 2.4GWiFi-n40-2452

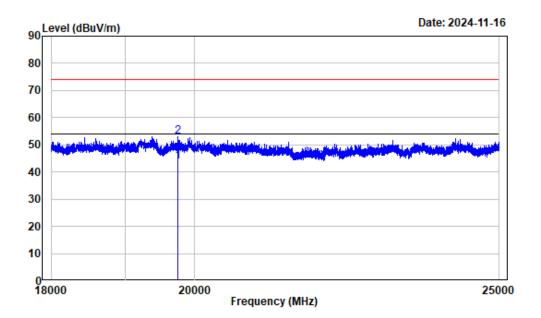
Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 4904.000 2.64 33.02 35.66 54.00 -18.34 Average
2 17994.540 24.62 21.59 46.21 54.00 -7.79 Average

For 18-25 GHz test plots, just show the worst case (802.11b mode) 18-25GHz_Horizontal

Condition : Horizontal Project No.: 2401W92117E-RF Tester : Zenos Qiao


Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	19258.410	15.25	28.87	44.12	54.00	-9.88	Average	
2	19258.410	15.25	38.03	53.28	74.00	-20.72	Peak	

TR-EM-RF004 Page 89 of 94 Version 4.0

18-25GHz_Vertical

Report No.: 2401W92117E-RF-00A

Condition : Vertical

Project No.: 2401W92117E-RF Tester : Zenos Qiao Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	19752.840	15.39	28.59	43.98	54.00	-10.02	Average	
2	19752.840	15.39	37.71	53.10	74.00	-20.90	Peak	

Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401W92117E-RF-00A
RF Conducted data	
Please refer to Annex "Appendix A" for detail test data.	

RF EXPOSURE EVALUATION

MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: 2401W92117E-RF-00A

According to KDB 447498 D04 Interim General RF Exposure Guidance V01

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § $1.1307(b)(3)(i)(C)$ - Single RF So	urces Subject to Routine Environmental Evaluation
RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Ris the minimum separation distance in meters

f = frequency in MHz

Result

Mode	Frequency (MHz)	Tune up	Antenn	a Gain [#]	EF	RP.	Evaluation Distance	ERP Limit
	(IVIIIZ)	power [#] (dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
2.4G Wi-Fi	2412-2462	24.00	3.42	1.27	25.27	0.337	0.2	0.768

Note:

- 1. The tune up conducted power[#] and antenna gain[#] were declared by the applicant.
- 2. The 2.4G and 5G Wi-Fi cannot transmit at same time.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401W92117E-RF-00A
TAKE PARAMETER OF A P	
EUT PHOTOGRAPHS	
Please refer to the attachment 2401W92117E-RF External p	hoto and 2401W92117E-RF Internal photo.

TR-EM-RF004 Page 93 of 94 Version 4.0

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401W92117E-RFA Test Setup photo.

***** END OF REPORT *****

Report No.: 2401W92117E-RF-00A

TR-EM-RF004 Page 94 of 94 Version 4.0