

3216 Chip antenna

For Bluetooth / WLAN Applicationsd

P/N: RANT3216F245M02

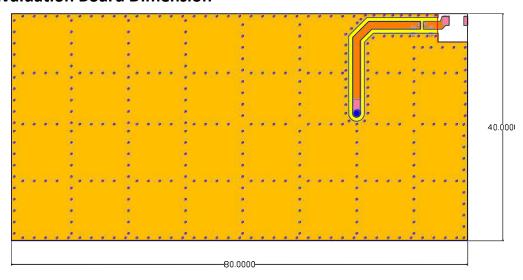
	Dimension (mm)			
L	3.23 ± 0.20			
W	1.66 ± 0.20			
Т	1.23 ± 0.20			

Part Number Information

A	Product Series	Antenna		
В	Dimension L x W	3.2X1.6mm (+-0.2mm)		
С	Material	High K material		
D	Working Frequency	2.4 ~ 2.5GHz		
E	Feeding mode	Monopole & Single Feeding		
F	Antenna type	Type=02		

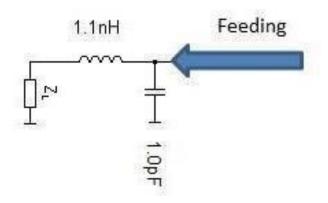
1. Electrical Specification

Specification				
Part Number	RANT3216F245M02			
Central Frequency	2450 N			
Bandwidth	100 (Min.)	MHz		
Return Loss	-6.5 (Max)			
Peak Gain	3	dBi		
Impedance	50	Ohm		
Operating Temperature	-40 ~ +85	°C		
Maximum Power	4 V			
Resistance to Soldering Heats	10 (@ 260°C) se			
Polarization	Linear			
Azimuth Beamwidth	Omni-directional			
Termination	Cu / Sn (Leadless)			


Remark: Bandwidth & Peak Gain was measured under evaluation board of next page

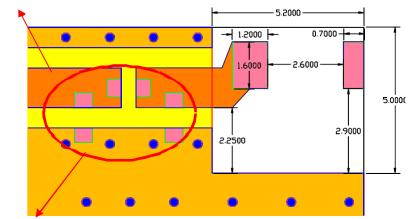
Dongguan Zconnlink Electronic Technology Co.,Ltd

2. Recommended PCB Pattern

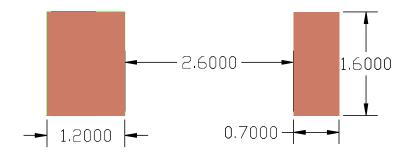

Evaluation Board Dimension

Unit: mm

Suggested Matching Circuit



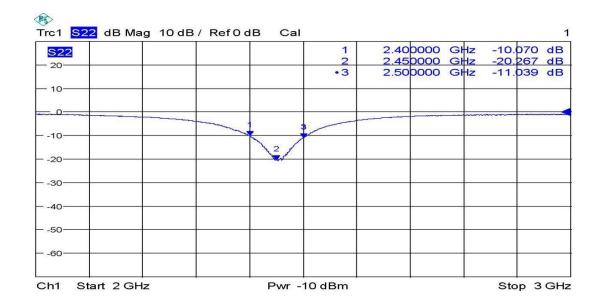
Dongguan Zconnlink Electronic Technology Co.,Ltd


Layout Dimensions in Clearance area(Size=5.2*5.0mm)

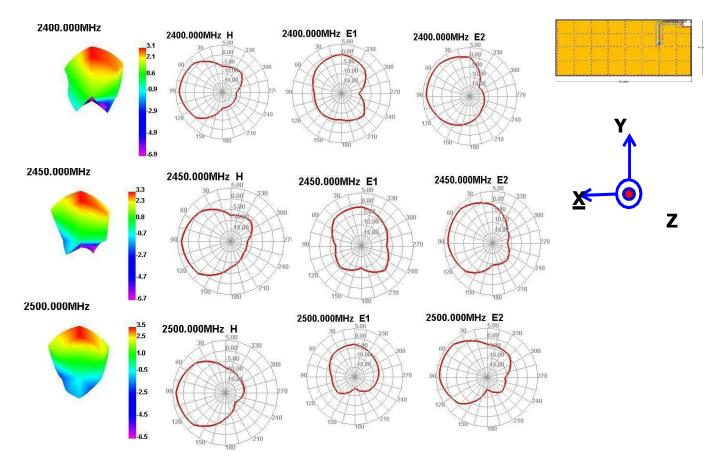
50 ohm transmission Line

Matching Circuit

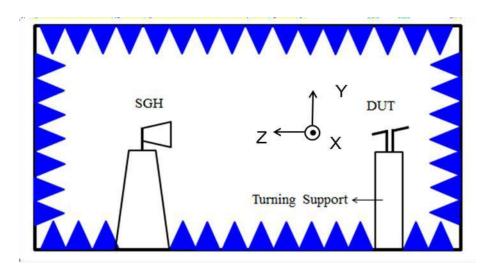
(Unit:mm) **FootPrint**



Dongguan Zconnlink Electronic Technology Co.,Ltd


3. Measurement Results

Return Loss

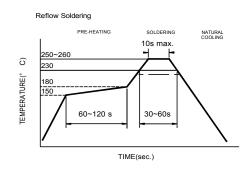


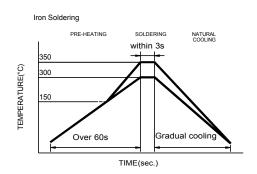
Radiation Pattern



	Efficiency	Gain(dBi)	
2400MHz	55.21 %	2.81	
2450MHz	66.45 %	3.00	
2500MHz	57.53 %	2.95	

4. Reliability and Test Condictions




Dongguan Zconnlink Electronic Technology Co.,Ltd

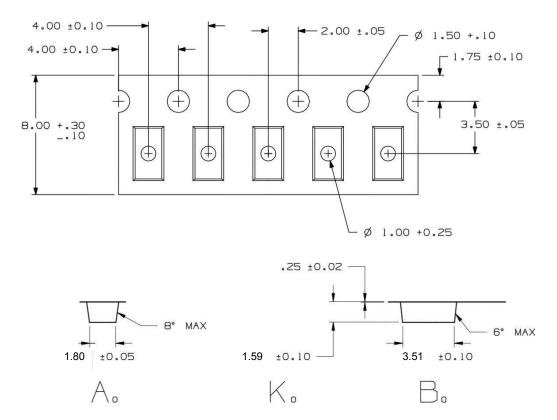
Thermal shock	No visible mechanical damage Central Freq. change :within ±6%			+85°C=>30±3min -40°C=>30±3min	
	Phase Temperature(°C) Time(min)			Test cycle:10 cycles The chip shall be stabilized at normal	
	1	+85±5°C	30±3	condition for 2~3 hours before	
	2	Room Temperature	Within 3sec	measuring.	
	3	-40±2°C	30±3		
	4	Room Temperature	Within 3sec		
Resistance to High Temperature	No visible mechanical damage Central Freq. change :within±6% No disconnection or short circuit.			Temperature: 85±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.	
Resistance to Low Temperature	No visible mechanical damage Central Freq. change :within±6% No disconnection or short circuit.			Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.	
Humidity	No visible mechanical damage Central Freq. change :within±6% No disconnection or short circuit.			Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.	

5. Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

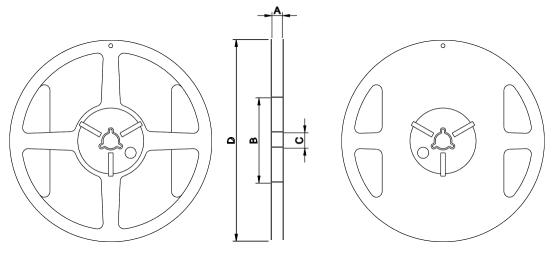
Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent



Dongguan Zconnlink Electronic Technology Co.,Ltd

- Preheat circuit and products to 150°C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.


6. Packaging Information

♦ Tape Specification:

♦ Reel Specification: (7", Φ180 mm)

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40°C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.