



# **TEST REPORT**

N°: 162144-738709-B (FILE#1020981)

Version: 03

| Subject                | Electromagnetic compatibility and Radio spectrum Matters<br>(ERM) tests according to standards:<br>FCC CFR 47 Part 15, Subpart C<br>RSS-247 Issue 2.0 |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Issued to              | <b>Schneider Electric Industrie SAS</b><br>31 rue Pierre Mendès France, eybens<br>grenoble cedex 9<br>FRANCE                                          |  |  |  |  |  |
| Apparatus under test   |                                                                                                                                                       |  |  |  |  |  |
| ♥ Product              | Powertag 3P                                                                                                                                           |  |  |  |  |  |
| 🗞 Trade mark           | Schneider Electric                                                                                                                                    |  |  |  |  |  |
| 🏷 Manufacturer         | Schneider Electric                                                                                                                                    |  |  |  |  |  |
| Nodel under test       | PLTE603P                                                                                                                                              |  |  |  |  |  |
| 🏷 Serial number        | None                                                                                                                                                  |  |  |  |  |  |
| ♦ FCCID                | 2AH7LPLT3P                                                                                                                                            |  |  |  |  |  |
| ∜ IC                   | 21522-PLT3P                                                                                                                                           |  |  |  |  |  |
| Conclusion             | See Test Program chapter                                                                                                                              |  |  |  |  |  |
| Test date              | June 19, 2019 to June 25, 2019                                                                                                                        |  |  |  |  |  |
| Test location          | MOIRANS                                                                                                                                               |  |  |  |  |  |
| FCC Test site          | FR0008 - 197516                                                                                                                                       |  |  |  |  |  |
| ISED Test site         | FR0008 - 6500A                                                                                                                                        |  |  |  |  |  |
| Composition of documer | t 61 pages                                                                                                                                            |  |  |  |  |  |
| Document issued on     | October 26, 2021                                                                                                                                      |  |  |  |  |  |
| Written by             | Approved by :                                                                                                                                         |  |  |  |  |  |
| Majid MOURZ            | GH Anthony MERLIN                                                                                                                                     |  |  |  |  |  |
| Tests operat           | Or Technical manager                                                                                                                                  |  |  |  |  |  |

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

# LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél : +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

7 36 36 5 90 88

Fax

SAS au capital de 15 745 984 € / RCS Nanterre B 408 363 174 / N° TVA intracommunautaire FR01 408 363 174 / N° SIRET 408 363 174 00017



# **PUBLICATION HISTORY**

| Version | Date Author      |                | Modification                            |
|---------|------------------|----------------|-----------------------------------------|
| 01      | November 12,2019 | Majid MOURZAGH | Creation of the document                |
| 02      | April 12, 2021   | Majid MOURZAGH | Adding FCC/IC informations              |
| 03      | October 26, 2021 | Majid MOURZAGH | Correction FCC Name and Mailing Address |



# SUMMARY

| 1.  | TEST PROGRAM                       | 4  |
|-----|------------------------------------|----|
| 2.  | SYSTEM TEST CONFIGURATION          | 5  |
| 3.  | CONDUCTED EMISSION DATA            | 10 |
| 4.  | RADIATED EMISSION DATA             | 14 |
| 5.  | BANDWIDTH (15.247)                 | 19 |
| 6.  | MAXIMUM PEAK OUTPUT POWER (15.247) | 21 |
| 7.  | POWER SPECTRAL DENSITY (15.247)    | 24 |
| 8.  | BAND EDGE MEASUREMENT (15.247)     | 27 |
| 9.  | OCCUPIED BANDWIDTH                 | 31 |
| 10. | ANNEX 1 (GRAPHS)                   | 33 |
| 11. | UNCERTAINTIES CHART                | 61 |
|     |                                    |    |



#### 1. **TEST PROGRAM**

#### Standard:

- FCC Part 15, Subpart C 15.247
- ANSI C63.10 (2013)
- RSS-247 Issue 2.0
- RSS-Gen Issue 5
- 558074 D01 DTS Measurement Guidance v05

| EMISSION TEST                                                                                                                                            |                                                                                                  |                                                                                                                                               | RESULTS                          |                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--|--|
|                                                                                                                                                          | Frequency                                                                                        | Quasi-peak<br>value (dBµV)                                                                                                                    | Average<br>value (dBµV)          | ☑ PASS                           |  |  |
| Limits for conducted disturbance at mains ports                                                                                                          | 150-500kHz                                                                                       | 66 to 56                                                                                                                                      | 56 to 46                         |                                  |  |  |
| 150KHZ-30MHZ                                                                                                                                             | 0.5-5MHz                                                                                         | 56                                                                                                                                            | 46                               |                                  |  |  |
|                                                                                                                                                          | 5-30MHz                                                                                          | 60                                                                                                                                            | 50                               |                                  |  |  |
| Radiated emissions<br>9kHz-30MHz<br>CFR 47 §15.209 (a)<br>CFR 47 §15.247 (d)<br>RSS-247 §5.5                                                             | Measure at 300m<br>9kHz-490kHz : 67.0<br>Measure at 30m<br>490kHz-1.705MHz<br>1.705MHz-30MHz     | Measure at 300m<br>9kHz-490kHz : 67.6dBµV/m /F(kHz)<br>Measure at 30m<br>490kHz-1.705MHz : 87.6dBµV/m /F(kHz)<br>1.705MHz-30MHz : 29.5 dBµV/m |                                  |                                  |  |  |
| Radiated emissions<br>30MHz-25GHz*<br>CFR 47 §15.209 (a)<br>CFR 47 §15.247 (d)<br>RSS-247 §5.5<br>Highest frequency : 16MHz<br>(Declaration of provider) | Measure at 3m<br>30MHz-88MHz : 40<br>88MHz-216MHz : 4<br>216MHz-960MHz : 54<br>Above 960MHz : 54 |                                                                                                                                               | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP |                                  |  |  |
| Bandwidth 6dB<br>CFR 47 §15.247 (a) (2)<br>RSS-247 §5.2                                                                                                  | At least 500kHz                                                                                  |                                                                                                                                               | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP |                                  |  |  |
| Power spectral Density<br>CFR 47 §15.247 (e)<br>RSS-247 §5.2                                                                                             | Limit: 8dBm/3kHz                                                                                 |                                                                                                                                               | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP |                                  |  |  |
| Maximum Peak Output Power<br>CFR 47 §15.247 (b)<br>RSS-247 §5.4                                                                                          | Limit: 30dBm<br>Conducted or Radi                                                                | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP                                                                                                              |                                  |                                  |  |  |
| Band Edge Measurement<br>CFR 47 §15.209 (a)<br>CFR 47 §15.247 (d)<br>RSS-247 §5.5                                                                        | Limit: -20dBc or<br>Radiated emission                                                            | bands                                                                                                                                         | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP |                                  |  |  |
| Occupied bandwidth<br>RSS-Gen §6.7                                                                                                                       | No limit                                                                                         |                                                                                                                                               |                                  | ☑ PASS<br>□ FAIL<br>□ NA<br>□ NP |  |  |
| Receiver Spurious Emission**<br>RSS-Gen §7.3                                                                                                             | Measure at 3m<br>30MHz-88MHz : 40<br>88MHz-216MHz : 4<br>216MHz-960MHz : 5<br>Above 960MHz : 5   |                                                                                                                                               | □ PASS<br>□ FAIL<br>☑ NA<br>□ NP |                                  |  |  |

\*§15.33: The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

 If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.
 If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.
 If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

\*\*Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.



# 2. SYSTEM TEST CONFIGURATION

# 2.1. JUSTIFICATION

All test are performed on the product powered by 480Vac. See below for details of the "Powertag 3P" range :



# 2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): PLTE603P Serial Number: None





<u>**Power supply:**</u> During all the tests, EUT is supplied by  $V_{nom}$ : 480VAC or 240Vac according to configuration. For measurement with different voltage, it will be presented in test method.

| Name    | Туре                     | Rating           | Reference / Sn | Comments                                  |
|---------|--------------------------|------------------|----------------|-------------------------------------------|
| Supply1 | ☑ AC □ DC □ Battery □USB | 480Vac 50- 60Hz  | /              | Configuration n°1                         |
| Supply2 | ☑ AC □ DC □ Battery □USB | 240Vac 50 – 60Hz | /              | Configuration n°2                         |
| Supply3 | □ AC I DC □ Battery □USB | 48Vdc            | /              | Configuration n°3 for<br>conducted method |

# Voltage table used:

| Туре | Measurement performed: |  |  |  |  |  |
|------|------------------------|--|--|--|--|--|
| ⊠ AC | ☑ 480VAC/60Hz          |  |  |  |  |  |

# Inputs/outputs - Cable:

| Access  | Туре              | Length<br>used (m) | Declared<br><3m | Shielded | Under test   | Comments          |
|---------|-------------------|--------------------|-----------------|----------|--------------|-------------------|
| Supply1 | 3 Lines + Neutral | 0.3                |                 |          | M            | Configuration n°1 |
| Supply2 | 3 Lines + Neutral | 0.3                |                 |          | $\checkmark$ | Configuration n°2 |

# Auxiliary equipment used during test:

| Туре            | Reference   | Sn             | Comments |
|-----------------|-------------|----------------|----------|
| Laptop          | Lenovo P52  | /              | /        |
| Interface Board | SmartRF05EB | 0x61E7         | /        |
| AC source       | EMTEST      | NetWave 20/400 | A7043058 |
| Power supply DC | AFX         | 0              | A7044292 |



# Equipment information:

| Туре:                        | ⊠ ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GBEE    |                | □ RF4CE                 |                         |                      |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------------------|-------------------------|----------------------|--|
| Frequency band:              | [2400 – 2483.5] MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                |                         |                         |                      |  |
| Spectrum Modulation:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | ⊠ D            | SSS                     |                         |                      |  |
| Number of Channel:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 1              | 6                       |                         |                      |  |
| Spacing channel:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 5M             | Hz                      |                         |                      |  |
| Channel bandwidth:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 2M             | Hz                      |                         |                      |  |
| Antenna Type:                | ☑ Integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                | ernal                   |                         | Dedicated            |  |
| Antenna connector:           | 🗆 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\checkmark$   | No                      |                         | emporary for test    |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                |                         |                         |                      |  |
| Transmit chains:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Single a       | antenna                 |                         |                      |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Gain :4        | 1.4 dBi                 |                         |                      |  |
| Beam forming gain:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | N              | 0                       |                         |                      |  |
| Receiver chains              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                |                         |                         |                      |  |
| Type of equipment:           | ☑ Stand-alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Э       | 🗆 Pl           | Jg-in                   |                         | Combined             |  |
| Ad-Hoc mode:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes     |                | ⊠ No                    |                         | No                   |  |
| Adaptivity mode:             | ☑ Yes (Load Based)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | mode           |                         | □ No                    |                      |  |
| Adaptivity mode.             | Clear Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | annel A | Assessment Tim | ne: Xµs                 |                         |                      |  |
| Duty cycle:                  | Continuous de | uty     | 🗆 Intermi      | ittent duty 🛛 100% duty |                         | □ 100% duty          |  |
| Equipment type:              | ☑ Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion me | odel           |                         | Pre-produ               | iction model         |  |
|                              | Tmin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | □ -20°C        |                         | D°C                     | ⊠ NC                 |  |
| Operating temperature range: | Tnom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                | 20°C                    |                         |                      |  |
|                              | Tmax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | □ 35°C         | □ 5                     | 5°C                     | ⊠ NC                 |  |
| Type of power source:        | ☑ AC power supp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oly     | DC powe        | r supply                |                         | Battery              |  |
| Operating voltage range:     | Vnom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _       | ⊠ 240V/6       | 50Hz                    | 48Vdc(modification used |                      |  |
| operating voltage range.     | VIIOIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | ⊠ 480V/6       | 50Hz                    | during                  | conducted tests)     |  |
|                              | Yes (The geogram)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | graphic | cal location   |                         |                         |                      |  |
|                              | determined by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e equip | oment is not   |                         |                         |                      |  |
| Geo-location capability:     | accessible to the er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd user | as defined in  | ⊠ No                    |                         |                      |  |
|                              | section 4.3.2.12.2 of ETSI EN 300 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                |                         |                         |                      |  |
|                              | V2.1.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | standar | rd)            |                         |                         |                      |  |
| Minimum performance criteria | ☑ PER less that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n or ea | ual to 10%     | 🗆 Alterna               | ative perfo             | ormance criteria (4) |  |
| for Receiver blocking test:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٦       |                |                         |                         |                      |  |



# 2.3. EUT CONFIGURATION

The EUT is set in the following modes during tests with simulator / software :

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power

- Permanent reception

All tests are performed at Cmin, Cmid and Cmax.

Following commands with the specific test software "EMC Zigbee Radio Test Tool V1.5.3" are used to set the product:

| EMC Zigbee Radio Test Tool V1.5.            | 3                                                                   |                                                          | - 🗆 🗙                     |
|---------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|---------------------------|
| Communication<br>COM7<br>connect disconnect | CEM Setting<br>CEM SourceId :<br>E2E2E2E2<br>Mode :<br>Concentrator | Reset Gp 15.4 Brick  Disconnect After Reset  Soft  reset | Schneider<br>Electric     |
| Signal Emission Test (T1) Packet Emission   | n Test (T2) Packet Receptio                                         | n Test (T3) Reception Mode                               | e Test (T4) EMC Parameter |
| Channel (11 - 26) 2                         | 2480 MHz                                                            | RSSI-49 dBm                                              |                           |
| Number of frames send (>0) 2 0              | 000                                                                 | RSSI Min -49 dBm                                         | RSSI mean -49,00 dB       |
| Transmission delay (in ms) (>= 100 ms) 10   | 0                                                                   | RSSI Max-48 dBm                                          | RSSI deviation 0,07 dBm   |
| Power Output (in dBm)                       | 4,0 荣                                                               |                                                          |                           |
| Size Frame (0 - 109) 10                     | 9                                                                   | Counter Total F                                          | rame 894                  |
| Antenna Select No                           | one V                                                               | Counter Receive F                                        | rame 890                  |
| CSMA/CA                                     |                                                                     | Counter Lost F                                           | rame 4                    |
| Mode CSMA A                                 | ways free 🔗 🗸 🗸                                                     | 10                                                       | 0 %                       |
| Seuil CSMA/CA (in dBm)                      | -76                                                                 |                                                          |                           |
| Configure                                   | ]                                                                   |                                                          |                           |
| Delay start test (i                         | n second) 15 Select                                                 | Local Antenna Antenna 1                                  | ~                         |
|                                             | Start Test Sto                                                      | p Test                                                   |                           |

# 2.4. EQUIPMENT MODIFICATIONS

 $\ensuremath{\boxtimes}$  None  $\ensuremath{\square}$  Modification:



# 2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

- Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor
  - AG = Amplifier Gain

Assume a receiver reading of  $52.5dB\mu V$  is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB $\mu V/m$ .

# FS = 52.5 + 7.4 + 1.1 – 29 = 32 dBµV/m

The 32 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m. Level in  $\mu$ V/m = Common Antilogarithm [(32dB $\mu$ V/m)/20] = 39.8  $\mu$ V/m.

# 2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period



# 3. CONDUCTED EMISSION DATA

# 3.1. ENVIRONMENTAL CONDITIONS

| Date of test               | : | June 21, 2019<br>Maiid MOURZAGH |
|----------------------------|---|---------------------------------|
| Atmospheric pressure (hPa) | : | 992                             |
| Relative humidity (%)      | : | 48                              |
| Amplent temperature ( C)   | • | 23                              |

# 3.2. TEST SETUP

## Mains terminals

The EUT and auxiliaries are set:
☑ 80cm above the ground on the non-conducting table (Table-top equipment)
□ 10cm above the ground on isolating support (Floor standing equipment)
The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by  $V_{\text{nom.}}$ 

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.





<u>Test setup</u>



# 3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with a voltage sets (see the table voltage in §2.2) and compared to the FCC Part 15 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is  $50\Omega / 50\mu$ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage (for example). Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.



# 3.4. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL       | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|-------------|----------|----------|---------|
| Cable + self                | -               | -           | A5329578 | 10/18    | 10/19   |
| EMC comb generator          | LCIE SUD EST    | -           | A3169098 | -        | -       |
| LISN tri-phase ESH2-Z5      | RHODE & SCHWARZ | 33852.19.53 | C2320062 | 11/18    | 11/19   |
| Receiver 9kHz - 30MHz       | ROHDE & SCHWARZ | ESHS10      | A2642028 | 11/18    | 11/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210      | B4206022 | 08/18    | 08/20   |
| Transient limiter           | RHODE & SCHWARZ | ESH3-Z2     | A7122204 | 02/19    | 02/20   |

# 3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 $\square$  None  $\square$  Divergence:

# 3.6. TEST RESULTS

#### AC tests Results:

Measurements are performed on the phase (L1) and neutral (N) of the power line. **Results: (PEAK detection)** 

| Graph id | lentifier | Line    | Comments    | Configuration     |           |
|----------|-----------|---------|-------------|-------------------|-----------|
| Emc# 7   | 1         | Neutral | 240VAC/50Hz | Configuration n°2 | See Annex |
| Emc# 2   | 2         | Line 1  | 240VAC/50Hz | Configuration n°2 | See Annex |
| Emc# 3   | 3         | Line 2  | 240VAC/50Hz | Configuration n°2 | See Annex |
| Emc# 4   | 4         | Line 3  | 240VAC/50Hz | Configuration n°2 | See Annex |
| Emc# 5   | 5         | Neutral | 240VAC/60Hz | Configuration n°2 | See Annex |
| Emc# 6   | 6         | Line 1  | 240VAC/60Hz | Configuration n°2 | See Annex |
| Emc#     | 7         | Line 2  | 240VAC/60Hz | Configuration n°2 | See Annex |
| Emc# 8   | 8         | Line 3  | 240VAC/60Hz | Configuration n°2 | See Annex |
| Emc# 9   | 9         | Neutral | 480VAC/50Hz | Configuration n°1 | See Annex |
| Emc# 2   | 10        | Line 1  | 480VAC/50Hz | Configuration n°1 | See Annex |
| Emc# 7   | 11        | Line 2  | 480VAC/50Hz | Configuration n°1 | See Annex |
| Emc# 2   | 12        | Line 3  | 480VAC/50Hz | Configuration n°1 | See Annex |
| Emc# 2   | 13        | Neutral | 480VAC/60Hz | Configuration n°1 | See Annex |
| Emc# 2   | 14        | Line 1  | 480VAC/60Hz | Configuration n°1 | See Annex |
| Emc#     | 15        | Line 2  | 480VAC/60Hz | Configuration n°1 | See Annex |
| Emc#     | 16        | Line 3  | 480VAC/60Hz | Configuration n°1 | See Annex |

# 3.7. CONCLUSION

Conducted emission data measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 4. RADIATED EMISSION DATA

# 4.1. ENVIRONMENTAL CONDITIONS

# 4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz

☑ 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz

□ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by  $V_{\text{nom}}$ .





<u>Test setup in anechoic chamber < 1GHz (Axis XY)</u>







# Test setup in anechoic chamber < 1GHz (AxisZ)



# 4.3. TEST METHOD

The product has been tested according to ANSI C63.10, FCC part 15 subpart C.

Pre-characterisation measurement: (9kHz – 1GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

# Characterization on 10 meters open site from 9kHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.



Characterization on 3 meters full anechoic chamber from 1GHz to 26GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 26GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

 $\Box$  On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.

## 4.4. TEST EQUIPMENT LIST

| DESCRIPTION                      | MANUFACTURER    | MODEL         | N° LCIE  | Cal_Date | Cal_Due |
|----------------------------------|-----------------|---------------|----------|----------|---------|
| Amplifier 20MHz – 6 GHz          | LCIE            | -             | A7085025 | 11/18    | 11/19   |
| Antenna Bi-Log                   | AH System       | SAS-521-7     | C2040180 | 09/18    | 09/20   |
| Cable                            | -               | 6GHz          | A5329191 | 06/18    | 06/19   |
| Emission Cable                   | MICRO-COAX      | 18GHz         | A5329657 | 06/18    | 06/19   |
| Emission Cable                   | MICRO-COAX      | 17GHz         | A5329658 | 03/19    | 03/20   |
| Semi-Anechoic chamber #1         | SIEPEL          | -             | D3044016 | 09/18    | 09/19   |
| Radiated emission comb generator | BARDET          | -             | A3169050 | -        | -       |
| Spectrum analyzer                | ROHDE & SCHWARZ | FSV 30        | A4060051 | 03/18    | 03/20   |
| BAT EMC                          | NEXIO           | v3.17.0.10    | L1000115 | -        | -       |
| Turntable chamber (Cage#1)       | MATURO Gmbh     | TT 2.0 SI     | F2000406 | -        | -       |
| Antenna mast (Cage#1)            | MATURO Gmbh     | AM 4.0        | F2000407 | -        | -       |
| Turntable controller (Cage#1)    | MATURO Gmbh     | Control Unit  | F2000408 | -        | -       |
| Table C1/OATS                    | LCIE            | -             | F2000445 | -        | -       |
| Amplifier 9kHz - 40GHz           | LCIE SUD EST    | _             | A7102082 | 10/18    | 10/19   |
| Antenna horn 18GHz               | EMCO            | 3115          | C2042029 | 09/18    | 09/20   |
| Emission Cable (SMA 30cm)        | TELEDYNE        | 26GHz         | A5329873 | 01/19    | 01/20   |
| Emission Cable (SMA 1m)          | TELEDYNE        | 26GHz         | A5329874 | 01/19    | 01/20   |
| Emission Cable (SMA 3.3m)        | TELEDYNE        | 26GHz         | A5329875 | 01/19    | 01/20   |
| Semi-Anechoic chamber #3         | SIEPEL          | -             | D3044017 | 03/17    | 03/20   |
| Comb RADIO                       | YORK            | 25MHz - 26GHz | A3169114 | -        | -       |
| High Pass (4.8-18GHz)            | BL Microwave    | SH4800-1800   | A7484076 | 07/19    | 07/20   |
| Thermo-hygrometer (PM1/2/3)      | KIMO            | HQ 210        | B4206022 | 08/18    | 08/20   |
| Turntable chamber (Cage#3)       | ETS Lingren     | Model 2165    | F2000371 | -        | -       |
| Table C3                         | LCIE            | -             | F2000461 | -        | -       |
| Rehausse Table C3                | LCIE            | -             | F2000511 | -        | -       |
| Turntable controller (Cage#3)    | ETS Lingren     | Model 2090    | F2000444 | -        | -       |



# 4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 $\square$  None  $\square$  Divergence:

#### 4.6. TEST RESULTS

# 4.6.1. Pre-characterization at 3 meters [9kHz-30MHz]

See graphs for 9k-30MHz:

| Graph id | entifier | Polarization | Mode | EUT position | Configuration     | Comments    |
|----------|----------|--------------|------|--------------|-------------------|-------------|
| Emr#     | 1        | 0°/90°       | TX   | Axis XY      | Configuration n°1 | See annex 1 |
| Emr#     | 2        | 180°         | TX   | Axis Z       | Configuration n°1 | See annex 1 |
| Emr#     | 3        | 0°/90°       | TX   | Axis XY      | Configuration n°1 | See annex 1 |
| Emr#     | 4        | 180°         | TX   | Axis Z       | Configuration n°1 | See annex 1 |

# 4.6.2. Pre-characterization at 3 meters [30MHz-1GHz]

#### See graphs for 30MHz-1GHz:

| Graph id | entifier | Polarization | Mode | EUT position | Configuration     | Comments    |
|----------|----------|--------------|------|--------------|-------------------|-------------|
| Emr#     | 5        | H/V          | TX   | Axis XY      | Configuration n°1 | See annex 1 |
| Emr#     | 6        | H/V          | TX   | Axis Z       | Configuration n°1 | See annex 1 |
| Emr#     | 7        | H/V          | TX   | Axis XY      | Configuration n°2 | See annex 1 |
| Emr#     | 8        | H/V          | TX   | Axis Z       | Configuration n°2 | See annex 1 |

# 4.6.3. Pre-characterization at 3 meters [1GHz-14GHz]

#### See graphs for 1GHz-14GHz:

| Graph id | entifier | Polarization | Mode | EUT position | Configuration     | Comments    |
|----------|----------|--------------|------|--------------|-------------------|-------------|
| Emr#     | 9        | Н            | TX   | Axis XY      | Configuration n°2 | See annex 1 |
| Emr#     | 10       | V            | TX   | Axis Z       | Configuration n°2 | See annex 1 |
| Emr#     | 11       | Н            | TX   | Axis XY      | Configuration n°2 | See annex 1 |
| Emr#     | 12       | V            | ΤX   | Axis Z       | Configuration n°2 | See annex 1 |

# Pre-characterization at 3 meters [14GHz-26GHz]

#### See graphs for 14MHz-26GHz:

4.6.4.

| Graph ider | ntifier | Polarization | Mode | EUT position | Configuration     | Comments    |
|------------|---------|--------------|------|--------------|-------------------|-------------|
| Emr# 1     | 11      | H/V          | TX   | Axis XY      | Configuration n°2 | See annex 1 |
| Emr# 1     | 12      | H/V          | TX   | Axis Z       | Configuration n°2 | See annex 1 |

#### 4.6.5. Characterization on 10 meters open site from 30MHz to 1GHz

#### Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

| No | Frequency<br>(MHz)                | Limit<br>Quasi-Peak<br>(dBµV/m) | Measure<br>Quasi-Peak<br>(dBµV/m) | Margin<br>(Mes-Lim)<br>(dB) | Angle<br>Table<br>(deg) | Pol<br>Ant. | Ht<br>Ant.<br>(cm) | Correc.<br>Factor<br>(dB) | Comments |
|----|-----------------------------------|---------------------------------|-----------------------------------|-----------------------------|-------------------------|-------------|--------------------|---------------------------|----------|
|    | No significant frequency observed |                                 |                                   |                             |                         |             |                    |                           |          |

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e)  $(M@3m = \underline{M@10m+10.5dB})$ 



# 4.6.6. Characterization on 3meters anechoic chamber for frequencies observed on § 8.6

# Worst case final data result:

The frequency list is created from for frequencies observed on § 8.6. Measurements are performed using a PEAK and AVERAGE detection.

| Test<br>Frequenc | Meter<br>Readin | Detector       | Polarit<br>y | Azimuth       | Antenn<br>a    | Transduc<br>er | Level<br>(dBµV/ | Limit<br>(dBµV/ | Margin | Remark         |
|------------------|-----------------|----------------|--------------|---------------|----------------|----------------|-----------------|-----------------|--------|----------------|
| y<br>(MHz)       | g<br>dB(µV)     | (PK/QP/A<br>v) | (V/H)        | (Degree<br>s) | Height<br>(cm) | Factor<br>(dB) | ` .<br>m)       | ` .<br>m)       | (dB)   |                |
| 2484.000         | 92              | Pk             | V            | 0             | 100            | -31.6          | 60.4            | 74.0            | -13.6  | Axis Z<br>Cmax |
| 2484.000         | 75              | Av             | V            | 0             | 100            | -31.6          | 43.4            | 54.0            | -10.6  | Axis Z<br>Cmax |
| 2485.000         | 90.1            | Pk             | V            | 0             | 100            | -31.6          | 58.5            | 74.0            | -15.5  | Axis Z<br>Cmax |
| 2485.000         | 73.0            | Av             | V            | 0             | 100            | -31.6          | 41.4            | 54.0            | -12.6  | Axis Z<br>Cmax |
| 2486.000         | 85.0            | Pk             | V            | 0             | 100            | -31.6          | 53.4            | 74.0            | -20.6  | Axis Z<br>Cmax |
| 2486.000         | 71.2            | Av             | V            | 0             | 100            | -31.6          | 39.6            | 54.0            | -14.4  | Axis Z<br>Cmax |
| 2487.000         | 83.2            | Pk             | V            | 0             | 100            | -31.6          | 51.6            | 74.0            | -22.4  | Axis Z<br>Cmax |
| 2487.000         | 69.8            | Av             | V            | 0             | 100            | -31.6          | 38.2            | 54.0            | -15.8  | Axis Z<br>Cmax |
| 9618.000         | 53.0            | Pk             | V            | 30            | 100            | -5.5           | 47.5            | 74.0            | -26.5  | Axis Z<br>Cmin |
| 9618.000         | 43.0            | Av             | V            | 30            | 100            | -5.5           | 37.5            | 54.0            | -16.5  | Axis Z<br>Cmin |
| 9706.000         | 49.0            | Pk             | V            | 30            | 100            | -5.1           | 43.9            | 74.0            | -30.1  | Axis Z<br>Cmed |
| 9706.000         | 42.0            | Av             | V            | 30            | 100            | -5.1           | 36.9            | 54.0            | -17.1  | Axis Z<br>Cmed |
| 9918.000         | 46.0            | Pk             | V            | 30            | 100            | -4.4           | 38.6            | 74.0            | -32.4  | Axis Z<br>Cmax |
| 9918.000         | 42.0            | Av             | V            | 30            | 100            | -4.4           | 37.6            | 54.0            | -16.4  | Axis Z<br>Cmax |

Note: Measures have been done at 3m distance.

# 4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 5. BANDWIDTH (15.247)

## 5.1. TEST CONDITIONS

| Date of test               | : June 20, 2019  |
|----------------------------|------------------|
| Test performed by          | : Majid MOURZAGH |
| Atmospheric pressure (hPa) | : 999            |
| Relative humidity (%)      | : 39             |
| Ambient temperature (°C)   | : 23             |

## 5.2. SETUP

## ☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.65dB

#### □ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

#### Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW)  $\ge$  3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

# 5.3. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL  | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|--------|----------|----------|---------|
| Cable SMA                   | -               | 18GHz  | A5329863 | 11/18    | 11/19   |
| Attenuator 10dB             | TECHNIWAVE      | -      | A7122273 | 06/18    | 06/20   |
| Spectrum analyzer           | ROHDE & SCHWARZ | FSV 30 | A4060050 | 12/17    | 12/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210 | B4206022 | 08/18    | 08/20   |

# 5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:



# 5.5. TEST SEQUENCE AND RESULTS



# 5.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 6. MAXIMUM PEAK OUTPUT POWER (15.247)

# 6.1. TEST CONDITIONS

| Date of test               | : | June 20, 2019  |
|----------------------------|---|----------------|
| Test performed by          | : | Majid MOURZAGH |
| Atmospheric pressure (hPa) | : | 999            |
| Relative humidity (%)      | : | 39             |
| Ambient temperature (°C)   | : | 23             |

## 6.2. SETUP

## ☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.65dB

#### □ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving:

$$=\frac{(Ed)^2}{30G}$$

Ρ



# Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. ● Ø *RBW* ≥ *DTS bandwidth* §9.1.1 (*DTS Measurement Guidance*)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

a) Set the RBW  $\geq$  DTS bandwidth.

b) Set VBW  $\geq$  3 x RBW.

c) Set span ≥ 3 x RBW

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

## • Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

a) Set the RBW = 1 MHz.

b) Set the VBW  $\geq$  3 x RBW

c) Set the span  $\ge$  1.5 x DTS bandwidth.

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

#### 6.3. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL  | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|--------|----------|----------|---------|
| Cable SMA                   | -               | 18GHz  | A5329863 | 11/18    | 11/19   |
| Attenuator 10dB             | TECHNIWAVE      | -      | A7122273 | 06/18    | 06/20   |
| Spectrum analyzer           | ROHDE & SCHWARZ | FSV 30 | A4060050 | 12/17    | 12/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210 | B4206022 | 08/18    | 08/20   |

# 6.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

 $\Box$  Divergence:



# 6.5. TEST SEQUENCE AND RESULTS

#### Modulation:



# 6.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 7. **POWER SPECTRAL DENSITY (15.247)**

# 7.1. TEST CONDITIONS

| Date of test               | : June 20, 2019  |
|----------------------------|------------------|
| Test performed by          | : Majid MOURZAGH |
| Atmospheric pressure (hPa) | : 999            |
| Relative humidity (%)      | : 39             |
| Ambient temperature (°C)   | : 23             |

# 7.2. SETUP

# ☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.65dB

## □ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

# - E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

# Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz.

d) Set the VBW  $\geq$  3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.



# 7.3. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL  | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|--------|----------|----------|---------|
| Cable SMA                   | -               | 18GHz  | A5329863 | 11/18    | 11/19   |
| Attenuator 10dB             | TECHNIWAVE      | -      | A7122273 | 06/18    | 06/20   |
| Spectrum analyzer           | ROHDE & SCHWARZ | FSV 30 | A4060050 | 12/17    | 12/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210 | B4206022 | 08/18    | 08/20   |

# 7.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

Divergence:



# 7.5. TEST SEQUENCE AND RESULTS

#### Modulation:



# 7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 8. BAND EDGE MEASUREMENT (15.247)

# 8.1. TEST CONDITIONS

| Date of test               | : | June 19, 2019  |
|----------------------------|---|----------------|
| Test performed by          | : | Majid MOURZAGH |
| Atmospheric pressure (hPa) | : | 998            |
| Relative humidity (%)      | : | 41             |
| Ambient temperature (°C)   | : | 22             |

## 8.2. LIMIT

## RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. *For -20dBc limit, lowest power output level is considered, worst case.* 

## Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

# 8.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz VBW: 300kHz

#### 8.4. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL  | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|--------|----------|----------|---------|
| Cable SMA                   | -               | 18GHz  | A5329863 | 11/18    | 11/19   |
| Attenuator 10dB             | TECHNIWAVE      | -      | A7122273 | 06/18    | 06/20   |
| Spectrum analyzer           | ROHDE & SCHWARZ | FSV 30 | A4060050 | 12/17    | 12/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210 | B4206022 | 08/18    | 08/20   |

#### 8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:



# 8.6. TEST SEQUENCE AND RESULTS

# Offset: Attenuator+cable 10.65dB **GRAPH / MODULATION.**



-20dBc limit used:

Worst case : Channel MAX, limit at : -19.51dBm



| Spectrum              | ר                            |                        |                                  |                      |                  |                        |                              |                  |                    | Spectrur              | n                   |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      | Ē            |
|-----------------------|------------------------------|------------------------|----------------------------------|----------------------|------------------|------------------------|------------------------------|------------------|--------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------|----------------------|--------------|
| Ref Level -8.0<br>Att | 00 dBm Offset<br>20 dB • SWT | 10.65 dB 🖷<br>500 ms 🖷 | <b>RBW</b> 200<br><b>VBW</b> 1 k | Hz<br>Hz <b>Mode</b> | Sweep            |                        |                              |                  |                    | Ref Leve              | I -8.00 dBr<br>20 d | n Offset<br>B = SWT                                                                                               | 10.65 dB =                                                                                                      | RBW 3 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :Hz<br>:Hz Mode   | Sween                            |                |                      |              |
| ●1AP View●2AP         | Viewo3AP View                | 1                      | 1                                | 1                    | 1                | 1                      |                              | 1                | 7                  | 1AP View              | e2AP View           | 3AP View                                                                                                          | 000 115 -                                                                                                       | 1011 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ine moue          | энсер                            |                |                      |              |
|                       |                              |                        |                                  |                      |                  |                        |                              |                  | ΠF                 |                       |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -20 dBm 01 -          | -19.510 dBm                  |                        |                                  |                      |                  |                        |                              |                  | ┥┠                 | -20 d8m               | D1 -19.51           | ) dBm                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -30 dBm               |                              |                        |                                  |                      |                  |                        |                              |                  | 41.                | -30 dBm               |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -40 dBm               |                              |                        |                                  |                      |                  |                        |                              |                  |                    | 40 d9m                |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| 50 d0-1               |                              |                        |                                  |                      |                  |                        |                              |                  |                    | 40 abiii              |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -50 dBm               |                              |                        |                                  |                      |                  |                        |                              |                  |                    | -50 dBm               |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -60 dBm               |                              |                        |                                  |                      |                  |                        |                              |                  | ٦ŀ                 | 60 dBm                |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -70 dBm               |                              |                        |                                  |                      |                  |                        |                              |                  | 41.                | -70 dBm               |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
|                       |                              |                        |                                  |                      |                  |                        |                              |                  |                    |                       |                     | ومنادا لسليس                                                                                                      | a la desella des las                                                                                            | de la contraction de la contra | dissection and    | Patter and a line                | Longloweign    | ana ang pang kalanan | Serveloupe   |
|                       | which the states             |                        | a la colorida do la la           | History              | distribution     | -                      | le, theile is it has a st    |                  | . 01 <sup>(*</sup> | rite after the states | and and the second  | n produce and a second | In the second | ana itali fi talan dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulia pirmetribuet | <mark>Herdwitzte wager (M</mark> | , enna phraite | alpithicashila.,     | Milian and . |
| -90 dBm               |                              |                        | a a la stradigi (                |                      | and Shirth And A | a od til dan gå dit sk | antine the start of the last | derterseterseter |                    | -90 dBm               |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| -100 dBm              |                              |                        |                                  |                      |                  |                        |                              |                  | 41                 | -100 dBm—             |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
|                       |                              |                        |                                  |                      |                  |                        |                              |                  |                    |                       |                     |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                  |                |                      |              |
| etart n n kua         |                              |                        | 1000                             | 0 ntc                |                  |                        | Ston                         | 150 0 kH         | 7 I I I            | Start 150             | 0 kHz               |                                                                                                                   |                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 nts            |                                  |                | Ston                 | 30.0 MHz     |

| Spectrum                 |                                                                                                              |                                                       |                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| RefLevel -8.00 dBm       | Offset 10.65 dB  RBW 100 kHz                                                                                 |                                                       | Spectrum A                         |
| ●1AP View●2AP View●3     | SAP View                                                                                                     |                                                       | RefLevel -8.00 dBm Offset 10.65 dB |
|                          |                                                                                                              |                                                       | ●1AP View●2AP View●3AP View        |
| -20 dBm D1 -19.510 c     | dBm                                                                                                          |                                                       |                                    |
| -30 dBm                  |                                                                                                              |                                                       | -20 dem                            |
| -40 dBm                  |                                                                                                              |                                                       | -50 00m                            |
| -50 dBm                  |                                                                                                              |                                                       | -50 dBm                            |
| y kanataan na malamalana | ويحطونك جافيه أحيطتها المرقب المراجع ومستجمعهم والمجيد للجريا كالمرد والجافية المتكرم للمرجل وبالرار ليجمعهم | . w. I. Line Jourge Da biser of the with a shore bear |                                    |
| -70 dBm                  |                                                                                                              |                                                       |                                    |
| -80 dBm                  |                                                                                                              |                                                       |                                    |
| -90 dBm                  |                                                                                                              |                                                       | 0.0 dbm                            |
| -100 dBm                 |                                                                                                              |                                                       | 100 dbm                            |
| Start 30.0 MHz           | 10000 pts                                                                                                    | Stop 1.0 GHz                                          |                                    |

| Spectrum            | ·                                     |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | Spectrum                                                                                                        |               |
|---------------------|---------------------------------------|-----------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| Ref Level           | -8.00 dBm                             | Offset 1              | 0.65 dB 👄 I   | RBW 100 ki                                                                                                                             | lz           |                     |                                                                                                                |                                                                                                                 |                                        | Ref Level -8.00 dBm Offset 10.65 dB  RBW 100 kHz                                                                |               |
| Att                 | 20 dB                                 | SWT                   | 10 ms 👄 '     | <b>VBW</b> 300 ki                                                                                                                      | Iz Mode      | Sweep               |                                                                                                                |                                                                                                                 |                                        | Att 20 dB SWT 10 ms 👄 VBW 300 kHz Mode Sweep                                                                    |               |
| O TAP VIEW          | 2AP VIEWO                             | 3AP VIEW              |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | ●1AP View●2AP View●3AP View                                                                                     |               |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
| -20 JBm-            | D1 -19,510                            | dBm                   |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | -20 UBIN 01 -19.510 UBIN                                                                                        |               |
| -30 dBm             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | 1 -20 dbm                                                                                                       |               |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
| -40 dBm             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | -40 dBm                                                                                                         |               |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
| -50 dBm             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | -50 dBm                                                                                                         | _             |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | A A A A A A AN AN AN AN AN AN AN AN AN A                                                                        |               |
| week with the state | d the start while                     | ubi znala biljen koly | وهزيله ويرويه | langa dalah sebelah<br>Sebelah sebelah | un under des | le di Hele e Herene | a the second | And the state of the | un il patricu                          | Alter and the second second second property of the second second second second second second second second seco | <b>ini</b> ii |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 | Ċ 'I          |
| -70 dBm             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | -70 dBm                                                                                                         | -             |
|                     |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
| -80 dBm             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | 1 -80 dBm                                                                                                       |               |
| 00 40               |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        |                                                                                                                 |               |
| -90 uBM             |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | 1 -90 dBm                                                                                                       |               |
| -100 dBm            |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | 100 dbm                                                                                                         |               |
| -100 0011           |                                       |                       |               |                                                                                                                                        |              |                     |                                                                                                                |                                                                                                                 |                                        | -100 dbin                                                                                                       |               |
| Start 2.2 G         | Start 2.2 GHz 10000 pts Stop 2.39 GHz |                       |               |                                                                                                                                        |              |                     | 1                                                                                                              | Stop                                                                                                            | Start 2.39 GHz 10000 pts Stop 2.405 GH | Hz                                                                                                              |               |





# Measurement from 8GHz to 26GHz: See Radiated emission §4.6.6 for frequencies observed

# 8.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **PLTE603P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.



# 9. OCCUPIED BANDWIDTH

#### 9.1. TEST CONDITIONS

| Date of test               | : | June 20, 2019  |
|----------------------------|---|----------------|
| Test performed by          | : | Majid MOURZAGH |
| Atmospheric pressure (hPa) | : | 999            |
| Relative humidity (%)      | : | 39             |
| Ambient temperature (°C)   | : | 23             |

## 9.2. SETUP

## ☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.65dB

## □ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

#### Measurement Procedure:

- a) RBW shall be in the range of 1% to 5% of the anticipated occupied bandwidth
- b) Set the video bandwidth (VBW)  $\ge$  3 x RBW
- c) SPAN = Capture all products of the modulation process
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.
- h) OBW 99% function of spectrum analyzer used

#### 9.3. TEST EQUIPMENT LIST

| DESCRIPTION                 | MANUFACTURER    | MODEL  | N° LCIE  | Cal_Date | Cal_Due |
|-----------------------------|-----------------|--------|----------|----------|---------|
| Cable SMA                   | -               | 18GHz  | A5329863 | 11/18    | 11/19   |
| Attenuator 10dB             | TECHNIWAVE      | -      | A7122273 | 06/18    | 06/20   |
| Spectrum analyzer           | ROHDE & SCHWARZ | FSV 30 | A4060050 | 12/17    | 12/19   |
| Thermo-hygrometer (PM1/2/3) | KIMO            | HQ 210 | B4206022 | 08/18    | 08/20   |

# 9.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

🗹 None

 $\Box$  Divergence:



# 9.5. TEST SEQUENCE AND RESULTS





# **10.** ANNEX 1 (GRAPHS)



No significative frequency observed





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line   | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|--------|--------------------|
| 0.415              | 1.3                  | 57.6            | -56.2                       | -2.0              | 47.6             | -49.5                      | Neutre | 10.1               |
| 2.245              | 13.8                 | 56.0            | -42.2                       | 6.4               | 46.0             | -39.6                      | Neutre | 10.4               |
| 4.125              | 15.4                 | 56.0            | -40.6                       | 8.2               | 46.0             | -37.8                      | Neutre | 10.6               |
| 9.130              | 12.5                 | 60.0            | -47.5                       | 7.3               | 50.0             | -42.7                      | Neutre | 11.1               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 2.240              | 14.8                 | 56.0            | -41.2                       | 7.6               | 46.0             | -38.4                      | Phase 1 | 10.4               |
| 3.975              | 5.6                  | 56.0            | -50.4                       | 1.0               | 46.0             | -45.0                      | Phase 1 | 10.5               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 2.365              | 19.1                 | 56.0            | -36.9                       | 10.7              | 46.0             | -35.3                      | Phase 2 | 10.4               |
| 4.140              | 13.0                 | 56.0            | -43.0                       | 5.7               | 46.0             | -40.3                      | Phase 2 | 10.6               |
| 7.930              | 12.8                 | 60.0            | -47.2                       | 7.5               | 50.0             | -42.5                      | Phase 2 | 10.9               |
| 9.165              | 12.4                 | 60.0            | -47.6                       | 7.2               | 50.0             | -42.8                      | Phase 2 | 11.1               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 2.365              | 17.2                 | 56.0            | -38.8                       | 8.5               | 46.0             | -37.5                      | Phase 3 | 10.4               |
| 9.165              | 8.9                  | 60.0            | -51.1                       | 4.0               | 50.0             | -46.0                      | Phase 3 | 11.1               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line   | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|--------|--------------------|
| 0.310              | 1.2                  | 60.0            | -58.8                       | -2.0              | 50.0             | -52.0                      | Neutre | 10.1               |
| 2.235              | 12.2                 | 56.0            | -43.8                       | 5.1               | 46.0             | -40.9                      | Neutre | 10.4               |
| 4.180              | 16.4                 | 56.0            | -39.6                       | 8.6               | 46.0             | -37.4                      | Neutre | 10.6               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 2.120              | 12.7                 | 56.0            | -43.3                       | 6.9               | 46.0             | -39.1                      | Phase 1 | 10.4               |
| 2.295              | 10.5                 | 56.0            | -45.5                       | 2.9               | 46.0             | -43.1                      | Phase 1 | 10.4               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 0.205              | 3.2                  | 63.4            | -60.2                       | -0.9              | 53.4             | -54.3                      | Phase 2 | 10.1               |
| 2.360              | 18.6                 | 56.0            | -37.4                       | 10.0              | 46.0             | -36.0                      | Phase 2 | 10.4               |
| 4.175              | 13.4                 | 56.0            | -42.6                       | 6.4               | 46.0             | -39.6                      | Phase 2 | 10.6               |
| 7.800              | 12.5                 | 60.0            | -47.5                       | 7.2               | 50.0             | -42.8                      | Phase 2 | 10.9               |





| Frequency<br>(MHz) | Mes.QPea<br>k (dBµV) | LimQP<br>(dBµV) | Mes.QPea<br>k-LimQP<br>(dB) | Mes.Avg<br>(dBµV) | LimAvg<br>(dBµV) | Mes.Avg-<br>LimAvg<br>(dB) | Line    | Correction<br>(dB) |
|--------------------|----------------------|-----------------|-----------------------------|-------------------|------------------|----------------------------|---------|--------------------|
| 2.365              | 14.7                 | 56.0            | -41.3                       | 6.7               | 46.0             | -39.3                      | Phase 3 | 10.4               |





















| Frequency<br>(MHz) | Peak<br>(dBµV/m) | LimQP<br>(dBµV/m) | Peak-LimQP<br>(dB) | Hauteur (m) | Polarization | Correction<br>(dB) |
|--------------------|------------------|-------------------|--------------------|-------------|--------------|--------------------|
| 30.034             | 25.8             | 40.0              | -14.2              | 1.6         | Vertical     | -7.2               |





| Frequency<br>(MHz) | Peak<br>(dBµV/m) | LimQP<br>(dBµV/m) | Peak-LimQP<br>(dB) | Hauteur (m) | Polarization | Correction<br>(dB) |
|--------------------|------------------|-------------------|--------------------|-------------|--------------|--------------------|
| 30.153             | 25.4             | 40.0              | -14.6              | 1.6         | Horizontal   | -7.2               |





No significative frequency observed





No significative frequency observed



|               |                  | RADI                  | ATED EM    | SSIONS                            |           |                                                                                    |                                                                                                                      |                                                                                        |         |
|---------------|------------------|-----------------------|------------|-----------------------------------|-----------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|
| Graph name:   | E                | mr#5                  |            | Test co                           | nfigurati | on:                                                                                |                                                                                                                      |                                                                                        |         |
| Limit:        | F                | CC CFR47 Part15C      |            | (H+V) -                           | TX mode   | - Wors                                                                             | t case i                                                                                                             | presented - T                                                                          | TX mode |
| Class:        |                  |                       |            | Configuration n° 2:240Vac Axis XY |           |                                                                                    |                                                                                                                      |                                                                                        |         |
|               | Frequency range: |                       |            |                                   | GHz]      |                                                                                    |                                                                                                                      |                                                                                        |         |
| Antenna pola  | rization: ⊢      | lorizontal & Vertical | - · -      | RBW :                             | 1MHz      |                                                                                    |                                                                                                                      |                                                                                        |         |
| Azimuth:      | 0                | ° - 360°              |            | VBW :                             | 3MHz      |                                                                                    |                                                                                                                      |                                                                                        |         |
|               |                  |                       |            |                                   | <         | FCC/FCC<br>FCC/FCC<br>Niveau (Su<br>Mes.Peak<br>Mes.Peak<br>Mes.Avg (<br>Mes.Avg ( | CFR47 Part15C<br>CFR47 Part15C<br>ispect Manuel) (<br>ispect Manuel) (<br>(Horizontale)<br>(Verticale)<br>Verticale) | : - Classe: - Moyenne/3.0m,<br>: - Classe: - Crête/3.0m/<br>Horizontale)<br>Verticale) | ,<br>,  |
| 120<br>dBµV/m |                  |                       |            |                                   |           |                                                                                    |                                                                                                                      | 14GHz                                                                                  |         |
|               |                  |                       | Fréque     | nce                               |           |                                                                                    |                                                                                                                      |                                                                                        | ]       |
|               |                  | Spi                   | ırious emi | ssions                            |           |                                                                                    |                                                                                                                      |                                                                                        |         |

| Frequency (MHz) | Peak Level (dBµV/m) | Limit<br>Peak (dBµV) | Polarization<br>Worst case | Correction (dB) |
|-----------------|---------------------|----------------------|----------------------------|-----------------|
| 2402.500        | 90.9                | /                    | Vertical                   | 33.4            |
| 4259.000        | 52.3                | 74                   | Vertical                   | 38.2            |
| 4433.500        | 53.4                | 74                   | Horizontal                 | 38.2            |
| 13639.594       | 53.6                | 74                   | Horizontal                 | -14.3           |
| 13793.375       | 51.6                | 74                   | Vertical                   | -14.0           |

| Frequency (MHz) | Average Level<br>(dBµV/m) | Limit<br>Average (dBµV) | Polarization<br>Worst case | Correction (dB) |
|-----------------|---------------------------|-------------------------|----------------------------|-----------------|
| 2402.500        | 89.06                     | /                       | Vertical                   | 33.4            |
| 4259.000        | 47.8                      | 54                      | Vertical                   | 38.2            |
| 4433.500        | 47.8                      | 54                      | Horizontal                 | 38.2            |
| 13639.594       | 46.7                      | 54                      | Horizontal                 | -14.3           |
| 13793.375       | 52.6                      | 54                      | Vertical                   | -14.0           |



|                          | RADIATED EMISSIONS                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Graph name:              | Emr#6 Test configuration:                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Limit:                   | FCC CFR47 Part15C (H+V) - TX mode - Worst case presented - TX mode                                                                                                                                                                                                                      |  |  |  |  |  |
| Class:                   | - Configuration n° 2:240Vac Axis Z                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                          | Frequency range: [1GHz - 14GHz]                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Antenna pola             | arization: Horizontal & Vertical RBW : 1MHz                                                                                                                                                                                                                                             |  |  |  |  |  |
| Azimuth:                 | 0° - 360° <b>VBW</b> : 3MHz                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                          | FCC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m/     FCC/FCC CFR47 Part15C - Classe: - Crête/3.0m/     Niveau (Suspect Manuel) (Horizontale)     Niveau (Suspect Manuel) (Verticale)     Mes.Peak (Horizontale)     Mes.Peak (Verticale)     Mes.Avg (Verticale)     Mes.Avg (Verticale) |  |  |  |  |  |
| <sup>120</sup><br>dBµV/m |                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 0                        | IGHz Fréquence 14GHz                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                          | Spurious emissions                                                                                                                                                                                                                                                                      |  |  |  |  |  |

| Frequency (MHz) | Peak Level (dBµV/m) | Limit<br>Peak (dBµV) | Polarization<br>Worst case | Correction (dB) |
|-----------------|---------------------|----------------------|----------------------------|-----------------|
| 2402.000        | /                   | /                    | Vertical                   | 33.4            |
| 4250.000        | 53.6                | 74                   | Vertical                   | 38.2            |
| 4422.000        | 53.5                | 74                   | Vertical                   | 38.2            |
| 13506.368       | 52.9                | 74                   | Horizontal                 | -14.6           |
| 13912.125       | 53.6                | 74                   | Horizontal                 | -13.8           |

| Frequency (MHz) | Average Level<br>(dBµV/m) | Limit<br>Average (dBµV) | Polarization<br>Worst case | Correction (dB) |
|-----------------|---------------------------|-------------------------|----------------------------|-----------------|
| 2402.000        | /                         | /                       | Vertical                   | 33.4            |
| 4250.000        | 48.30                     | 54                      | Vertical                   | 38.2            |
| 4422.000        | 48.19                     | 54                      | Vertical                   | 38.2            |
| 13506.368       | 48.13                     | 54                      | Horizontal                 | -14.6           |
| 13912.125       | 47.25                     | 54                      | Horizontal                 | -13.8           |



| RADIATED EMISSIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Graph              | name: Emr#5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test configuration:                                                                                                                                                                                                                                                                                                 |  |  |
| Limit:             | FCC CFR47 Part15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (H+V) - Worst case presented - TX mode -                                                                                                                                                                                                                                                                            |  |  |
| Class:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Configuration n° 2:240Vac Axis XY                                                                                                                                                                                                                                                                                   |  |  |
|                    | Frequency range: [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [14GHz - 26GHz]                                                                                                                                                                                                                                                                                                     |  |  |
| Antenr             | na polarization:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW: 1MHz                                                                                                                                                                                                                                                                                                           |  |  |
| Azimu              | <b>th:</b> 0° - 360°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW: 3MHz                                                                                                                                                                                                                                                                                                           |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FCC/FCC CFR47 Part15C - Classe: - Moyenne/1.0         FCC/FCC CFR47 Part15C - Classe: - Crête/1.0m/         Niveau (Suspect Manuel) (Horizontale)         Niveau (Suspect Manuel) (Verticale)         Mes.Peak (Horizontale)         Mes.Peak (Verticale)         Mes.Avg (Horizontale)         Mes.Avg (Verticale) |  |  |
| 100<br>dBµV/m      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |  |  |
|                    | Hannan and the second design of the second |                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |  |  |
| 0.                 | 14GHz Fréc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26GH                                                                                                                                                                                                                                                                                                                |  |  |
|                    | Spurious emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                     |  |  |

| Frequency (MHz) | Peak Level (dBµV/m) | Polarization | Correction (dB) |
|-----------------|---------------------|--------------|-----------------|
| 14036.000       | 57.6                | Horizontal   | 5.5             |
| 14108.500       | 57.3                | Vertical     | 4.6             |
| 17879.000       | 51.6                | Vertical     | -2.3            |
| 21587.000       | 47.4                | Horizontal   | -1.2            |
| 23433.000       | 48.9                | Horizontal   | -0.2            |
| 25386.000       | 48.2                | Horizontal   | 0.5             |



| RADIATED EMISSIONS |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Graph              | name: Emr#6                                                                                                        | Test configuration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |  |  |
| Limit:             | FCC CFR47 Part15C                                                                                                  | (H+)/) Warst case presented TX mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Avic 7                                                         |  |  |
| Class:             |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    | Frequency range:                                                                                                   | [14GHz - 26GHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
| Antenr             | na polarization:                                                                                                   | RBW: 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |  |  |
| Azimu              | <b>th</b> : 0° - 360°                                                                                              | VBW: 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |  |  |
| 100<br>dBµV/m      |                                                                                                                    | FCC/FCC CFR47 Part15C -<br>FCC/FCC CFR47 Part15C -<br>Niveau (Suspect Manuel) (H<br>Mes.Peak (Horizontale)<br>Mes.Peak (Verticale)<br>Mes.Avg (Horizontale)<br>Mes.Avg (Verticale)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Classe: - Moyenne/1.0m<br>Classe: - Crête/1.0m/<br>orizontale) |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    | Real harman had a low for the second and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne antie deselation dat second                                 |  |  |
|                    | Helder white her her her her her her her her her he                                                                | and and a star and a start and a start and a start and a start in the start and the star |                                                                |  |  |
|                    |                                                                                                                    | man and a second and a second se | - Marken Marken                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
| 0                  | 14GHz                                                                                                              | réquence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26GHz                                                          |  |  |
|                    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |
|                    | Spurious emissions                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |  |  |

| Frequency (MHz) | Peak Level (dBµV/m) | Polarization | Correction (dB) |
|-----------------|---------------------|--------------|-----------------|
| 14031.500       | 58.1                | Horizontal   | 5.5             |
| 15060.000       | 52.4                | Horizontal   | -1.2            |
| 17743.500       | 53.1                | Horizontal   | -1.5            |
| 18791.000       | 46.4                | Horizontal   | -2.1            |
| 21492.000       | 47.3                | Horizontal   | -1.3            |
| 25476.000       | 48.8                | Horizontal   | 0.4             |



# 11. UNCERTAINTIES CHART

| Type de mesure / Kind of measurement                                                                                                                                | Incertitude élargie<br>Iaboratoire /<br>Wide uncertainty<br>Iaboratory<br>(k=2) ± x | Incertitude<br>limite du CISPR<br>/ CISPR<br>uncertainty limit<br>± y |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Mesure des perturbations conduites en tension sur le réseau d'énergie<br>Measurement of conducted disturbances in voltage on the power port                         | 3.51 dB                                                                             | 3.6 dB                                                                |
| Mesure des perturbations conduites en tension sur le réseau de télécommunication<br>Measurement of conducted disturbances in voltage on the telecommunication port. | 3.26 dB                                                                             | A l'étude /<br>Under consid.                                          |
| Mesure des perturbations discontinues conduites en tension<br>Measurement of discontinuous conducted disturbances in voltage                                        | 3.45 dB                                                                             | 3.6 dB                                                                |
| Mesure des perturbations conduites en courant<br>Measurement of conducted disturbances in current                                                                   | 3.09 dB                                                                             | A l'étude /<br>Under consid.                                          |
| Mesure du champ électrique rayonné sur le site en espace libre de Moirans<br>Measurement of radiated electric field on the Moirans open area test site              | 5.20 dB                                                                             | 6.3 dB                                                                |

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.