

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4 \pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Prediction Frequency MHz	Conducted Output Power dBm	Max Antenna Gain dBi	Distance cm	Power Density mW/cm2	Limit mW/cm2
2405	4.64	4.4	20	0.0016	1.00
2440	4.63	4.4	20	0.0016	1.00
2480	4.50	4.4	20	0.0015	1.00

<u>Conclusion:</u> Therefore our device complies with FCC's RF radiation exposure limits for general population without SAR evaluation with at least 20cm separation from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.