

TEST REPORT

N°: 162144-738709-A (FILE#1020981)

Version: 03

Subject	Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart C RSS-247 Issue 2.0			
Issued to	Schneider Electric Industrie SAS 31 rue Pierre Mendès France, eybens grenoble cedex 9 FRANCE			
Apparatus under test				
<pre></pre>	Powertag 1P+N			
🖏 Trade mark	Schneider Electric			
🏷 Manufacturer	Schneider Electric			
🏷 Model under test	PLTE601P			
🏷 Serial number	None			
♥ FCCID	2AH7LPLT1P			
♦ IC	21522-PLT1P			
Conclusion	See Test Program chapter			
Test date	June 19, 2019 to June 25, 2019			
Test location	MOIRANS			
FCC Test site	FR0008 - 197516			
ISED Test site	FR0008 - 6500A			
Composition of document	52 pages			
Document issued on	October 26, 2021			
Written by :	Approved by :			
Majid MOURZAG	Anthony MERLIN			
Tests operator	Technical Capital Des Line Constant Line Constant Line Constant Line Constant Line Constant Fait of the Central Des Line Centra			

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél : +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

I

PUBLICATION HISTORY

Version	Date	Author	Modification
01	November 12,2019	ember 12,2019 Majid MOURZAGH Creation of the document	
02	April 12, 2021	April 12, 2021 Majid MOURZAGH Adding FCC/IC informa	
03	October 26, 2021 Majid MOURZAGH Correction		Correction FCC Name and Mailing Address

SUMMARY

1.	TEST PROGRAM	4
2.	SYSTEM TEST CONFIGURATION	5
3.	CONDUCTED EMISSION DATA	10
4.	RADIATED EMISSION DATA	13
5.	BANDWIDTH (15.247)	18
6.	MAXIMUM PEAK OUTPUT POWER (15.247)	20
7.	POWER SPECTRAL DENSITY (15.247)	23
8.	BAND EDGE MEASUREMENT (15.247)	26
9.	OCCUPIED BANDWIDTH	30
10.	ANNEX 1 (GRAPHS)	32
11.	UNCERTAINTIES CHART	52

1. **TEST PROGRAM**

Standard:

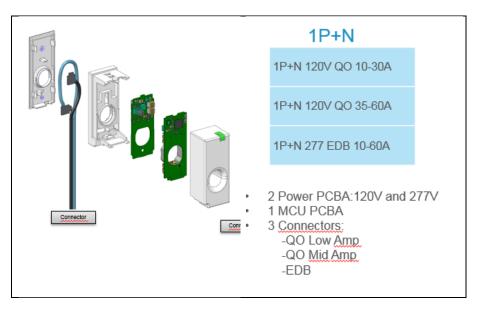
- FCC Part 15, Subpart C 15.247
- ANSI C63.10 (2013)
- RSS-247 Issue 2.0
- RSS-Gen Issue 5
- 558074 D01 DTS Measurement Guidance v05

EMISSION TEST LIMITS					
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	☑ PASS	
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46		
150kHz-30MHz	0.5-5MHz	56	46		
	5-30MHz	60	50		
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.209 (a) CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Highest frequency :16MHz (Declaration of provider)	9kHz-490kHz : Measure at 30 490kHz-1.705M 1.705MHz-30M Measure at 3m 30MHz-88MHz 88MHz-216MH 216MHz-960M	Measure at 300m 9kHz-490kHz : 67.6dBµV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBµV/m /F(kHz) 1.705MHz-30MHz : 29.5 dBµV/m Measure at 3m 30MHz-88MHz : 40 dBµV/m 88MHz-216MHz : 43.5 dBµV/m 216MHz-960MHz : 46.0 dBµV/m Above 960MHz : 54.0 dBµV/m			
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-247 §5.2	At least 500kH	At least 500kHz			
Power spectral Density CFR 47 §15.247 (e) RSS-247 §5.2	Limit: 8dBm/3	Limit: 8dBm/3kHz			
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-247 §5.4	Limit: 30dBm Conducted or F	Radiated measurement	t	□ NP ☑ PASS □ FAIL □ NA □ NP	
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5		Limit: -20dBc or Radiated emissions limits in restricted bands			
Occupied bandwidth RSS-Gen §6.7	No limit	No limit			
Receiver Spurious Emission** RSS-Gen §7.3		: 40 dBµV/m z : 43.5 dBµV/m Hz : 46.0 dBµV/m		□ PASS □ FAIL ☑ NA □ NP	

*§15.33: The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5GHz.
If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.
If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.
If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 GHz. while taking smallest of both.

**Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.



2. SYSTEM TEST CONFIGURATION

2.1. JUSTIFICATION

All test are performed on the product powered by 277Vac.

See below for details of the "Powertag 1P" range :

2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Power supply:

EUT is supplied by V_{nom} :277VAC or 120Vac according to configuration. For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Supply1	☑ AC □ DC □ Battery □USB	277Vac 50- 60Hz		Configuration n°1
Supply2	☑ AC □ DC □ Battery □USB	120Vac 50 – 60Hz		Configuration n°2
Supply 3	□ AC Ø DC □ Battery □USB	48 Vdc	1	Configuration n°3 For conducted method

Voltage table used:

Туре	Measurement performed:		
⊠ AC	☑ 120VAC/60Hz	☑ 240VAC/50Hz	

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Supply1	Line + Neutral	0.3			\checkmark	Configuration n°1
Supply2	Line + Neutral	0.3			\checkmark	Configuration n°2

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop	Lenovo P52	/	/
Interface Board	SmartRF05EB	0x61E7	/
AC source	EMTEST	NetWave 20/400	A7043058
Power supply DC	AFX	0	A7044292

Equipment information:

Туре:	ZIGBEE			RF4CE	
Frequency band:	[2400 – 2483.5] MHz				
Spectrum Modulation:	⊠ DSSS				
Number of Channel:		1	6		
Spacing channel:		5N	lHz		
Channel bandwidth:		2N	lHz		
Antenna Type:	☑ Integral		ternal	Dedicated	
Antenna connector:	□ Yes		No	Image Temporary for test	
			1		
Transmit chains:		Single a	antenna		
		-	4.4dBi		
Antenna requirements	The transmitter uses an int	tegral antenna	and it permane	ntly connected. Therefore,	
§15.203	the transm	nitter meets the	e requirements (of 15.203.	
Beam forming gain:		Ν	lo		
Receiver chains	1				
Type of equipment:	☑ Stand-alone	🗆 PI	ug-in	□ Combined	
Ad-Hoc mode:	□ Yes			⊠ No	
Adaptivity mode:	☑ Yes (Load Based)	□ Off	mode	🗆 No	
Adaptivity mode.	Clear Channel A	ssessment Tim	ne: Xµs		
Duty cycle:	Continuous duty	🗆 Interm	ittent duty	□ 100% duty	
Equipment type:	Production model	odel	🗆 Pre	e-production model	
Type of power source:	AC power supply	DC pov	ver supply	□ Battery	
Operating voltage range:		☑ 1	20V	☑ 48Vdc(modification	
	Vnom:	☑ 2	77V	used during conducted tests)	
Geo-location capability:	□ Yes (The geographical location determined by the equipment is not accessible to the end user as defined in section 4.3.2.12.2 of ETSI EN 300 328		ed in		
Minimum performance criteria for Receiver blocking test: NC: NOT COMMUNICATED	V2.1.1 standard) ☑ PER less than or equal to 10%		□ Alternative performance criteria (4)		

NC: NOT COMMUNICATED

2.3. **EUT CONFIGURATION**

The EUT is set in the following modes during tests with simulator / software : - Permanent emission with modulation on a fixed channel in the data rate that produced the highest power

- Permanent reception

All tests are performed at Cmin, Cmid and Cmax.

Following commands with the specific test software "EMC Zigbee Radio Test Tool V1.5.3" are used to set the product:

C	EMC Zigbee Radio Test Tool V1.5.3	- 🗆 ×
	COM7 CEM SourceId : Dis	Gp 15.4 Brick sconnect After Reset Soft v reset
	Signal Emission Test (T1) Packet Emission Test (T2) Packet Reception Test (T	T3) Reception Mode Test (T4) EMC Parameter
	Channel (11 - 26) 26 🜩 2480 MHz R	SSI-49 dBm
	Number of frames send (>0) 2 000 RSSI 1	Min -49 dBm RSSI mean -49,00 dB
-	Transmission delay (in ms) (>= 100 ms) 100 RSSI M	Max -48 dBm RSSI deviation 0,07 dBm
and a	Power Output (in dBm) 4,0 🜩	
	Size Frame (0 - 109) 109	Counter Total Frame 894
	Antenna Select None	Counter Receive Frame 890
	CSMA/CA	Counter Lost Frame
	Mode CSMA Always free	100 % months
	Seuil CSMA/CA (in dBm) -76 🜩	
	Configure	ntenna Antenna 1
	Delay start test (in second) 15 Select Local An	ntenna Antenna 1 V
	Star Test Stop Test	

2.4. **EQUIPMENT MODIFICATIONS**

☑ None □ Modification:

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF – AG

Where FS = Field Strength

- RA = Receiver Amplitude
 - AF = Antenna Factor
 - CF = Cable Factor
 - AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

FS = 52.5 + 7.4 + 1.1 – 29 = 32 dBµV/m

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

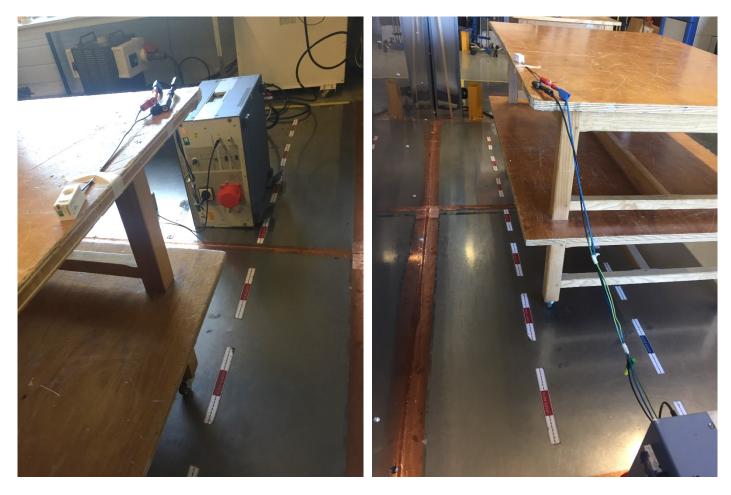
3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test Test performed by Atmospheric pressure (hPa)	: June 21, 2019 : Majid MOURZAG : 992	Η
Relative humidity (%) Ambient temperature (°C)	: 48 : 23	

3.2. TEST SETUP

Mains terminals


The EUT and auxiliaries are set:
☑ 80cm above the ground on the non-conducting table (Table-top equipment)
□ 10cm above the ground on isolating support (Floor standing equipment)
The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

<u>Test setup</u>

3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with a voltage sets (see the table voltage in §2.2) and compared to the FCC Part 15 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is $50\Omega / 50\mu$ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage (for example). Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329578	10/18	10/19
EMC comb generator	LCIE SUD EST	-	A3169098	-	-
LISN tri-phase ESH2-Z5	RHODE & SCHWARZ	33852.19.53	C2320062	11/18	11/19
Receiver 9kHz - 30MHz	ROHDE & SCHWARZ	ESHS10	A2642028	11/18	11/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	02/19	02/20

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:

3.6. TEST RESULTS

AC tests Results:

Measurements are performed on the phase (L1) and neutral (N) of the power line. **Results: (PEAK detection)**

Graph	Graph identifier Line		Comments	Configuration	
Emc#	1	Neutral	120VAC/50Hz	Configuration n°2	See Annex
Emc#	2	Line 1	120VAC/50Hz	Configuration n°2	See Annex
Emc#	3	Neutral	277VAC/50Hz	Configuration n°1	See Annex
Emc#	4	Line 1	277VAC/50Hz	Configuration n°1	See Annex
Emc#	5	Neutral	120VAC/60Hz	Configuration n°2	See Annex
Emc#	6	Line 1	120VAC/60Hz	Configuration n°2	See Annex
Emc#	7	Neutral	277VAC/60Hz	Configuration n°1	See Annex
Emc#	8	Line 1	277VAC/60Hz	Configuration n°1	See Annex

3.7. CONCLUSION

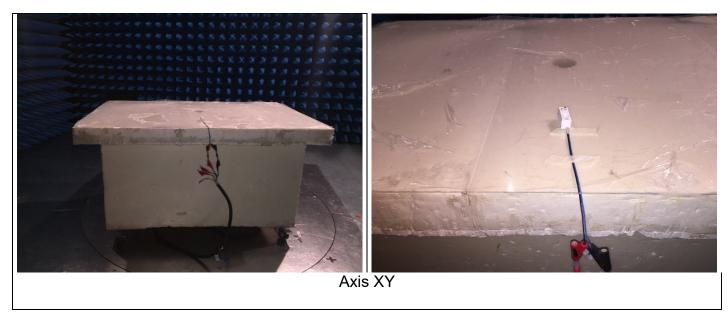
Conducted emission data measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

4. RADIATED EMISSION DATA

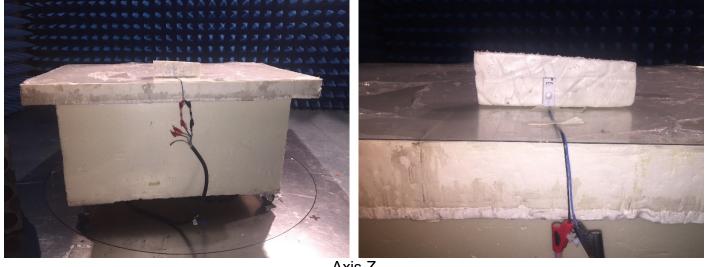
4.1. ENVIRONMENTAL CONDITIONS

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.


The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz


☑ 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz

□ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom} .

Axis Z

Test setup in anechoic chamber

4.3. TEST METHOD

The product has been tested according to ANSI C63.10, FCC part 15 subpart C.

Pre-characterisation measurement: (9kHz - 1GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 1GHz.

Characterization on 10 meters open site from 9kHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 26GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 26GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

 \Box On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Amplifier 20MHz – 6 GHz	LCIE	-	A7085025	11/18	11/19
Antenna Bi-Log	AH System	SAS-521-7	C2040180	09/18	09/20
Antenna Bi-log	CHASE	CBL6111A	C2040051	06/18	06/20
Cable	-	6GHz	A5329191	06/18	06/19
Emission Cable	MICRO-COAX	18GHz	A5329657	06/18	06/19
Emission Cable	MICRO-COAX	17GHz	A5329658	03/19	03/20
Semi-Anechoic chamber #1	SIEPEL	-	D3044016	09/18	09/19
Radiated emission comb generator	BARDET	-	A3169050	-	-
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060051	03/18	03/20
BAT EMC	NEXIO	v3.17.0.10	L1000115	-	-
Turntable chamber (Cage#1)	MATURO Gmbh	TT 2.0 SI	F2000406	-	-
Antenna mast (Cage#1)	MATURO Gmbh	AM 4.0	F2000407	-	-
Turntable controller (Cage#1)	MATURO Gmbh	Control Unit	F2000408	-	-
Table C1/OATS	LCIE	-	F2000445	-	-
Amplifier 9kHz - 40GHz	LCIE SUD EST	_	A7102082	10/18	10/19
Antenna horn 18GHz	EMCO	3115	C2042029	09/18	09/20
Emission Cable (SMA 30cm)	TELEDYNE	26GHz	A5329873	01/19	01/20
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	01/19	01/20
Emission Cable (SMA 3.3m)	TELEDYNE	26GHz	A5329875	01/19	01/20
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	03/17	03/20
Comb RADIO	YORK	25MHz - 26GHz	A3169114	-	-
High Pass (4.8-18GHz)	BL Microwave	SH4800-1800	A7484076	07/19	07/20
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	-	-
Table C3	LCIE	-	F2000461	-	-
Rehausse Table C3	LCIE	-	F2000511	-	-
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444	-	-
Cable (OATS)	_	1GHz	A5329623	05/19	05/20
Emission Cable	SUCOFLEX	6GHz	A5329061	06/19	06/20
OATS	_	_	F2000409	04/19	04/20
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	11/18	11/220
Turntable (OATS)	ETS Lingren	Model 2187	F2000403		
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372		

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

4.6. TEST RESULTS

4.6.1. Pre-characterization at 3 meters [9kHz-30MHz

See graphs for 9k-30MHz:

Graph identifier	Polarization	Mode	EUT position	Configuration	Comments
Emr# 1	0°/90°	TX	Axis XY	Configuration n°2	See annex 1
Emr# 2	180°	TX	Axis Z	Configuration n°2	See annex 1
Emr# 3	0°/90°	TX	Axis XY	Configuration n°2	See annex 1
Emr# 4	180°	TX	Axis Z	Configuration n°2	See annex 1

4.6.2. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

eee graphe												
Graph identifier		Polarization	Mode	EUT position	Configuration	Comments						
Emr#	5	H/V	TX	Axis XY	Configuration n°1	See annex 1						
Emr#	6	H/V	TX	Axis Z	Configuration n°1	See annex 1						
Emr#	7	H/V	TX	Axis XY	Configuration n°2	See annex 1						
Emr#	8	H/V	ΤX	Axis Z	Configuration n°2	See annex 1						

4.6.3. Pre-characterization at 3 meters [30MHz-1GHz]

Graph identifier	Polarization	Mode	EUT position	Configuration	Comments
Emr# 9	H/V	TX	Axis XY	Configuration n°2	See annex 1
Emr# 10	H/V	ТХ	Axis Z	Configuration n°2	See annex 1

4.6.4.

Pre-characterization at 3 meters [30MHz-1GHz]

Graph identifier	Polarization	Mode	EUT position	Configuration	Comments
Emr# 11	H/V	TX	Axis XY	Configuration n°2	See annex 1
Emr# 12	H/V	TX	Axis Z	Configuration n°2	See annex 1

4.6.5. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. Factor (dB)	Comments
			No significa	nt frequency ob	served				

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

4.6.6. Characterization on anechoic chamber from 1GHz to 26GHz

Worst case final data result:

Measurements are performed using a PEAK and AVERAGE detection.

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
7214.801	50.6	74	-23.4	49.3	54	-4.7	Horizontal	-19.8
13220.186	54.3	74	-19.7	41.8	54	-12.2	Horizontal	-13.6
13634.932	54.7	74	-19.3	42.1	54	-11.9	Horizontal	-13.0
13965.342	54.2	74	-19.8	42.6	54	-11.4	Horizontal	-12.5
4809.398	47.5	74	-26.5	47.5	54	-6.5	Vertical	-24.7
5184.062	48.6	74	-25.4	39.4	54	-14.6	Vertical	-24.0
7215.224	58.7	74	-15.3	49.6	54	-4.4	Vertical	-19.8
13605.472	53.9	74	-20.1	42.3	54	-11.7	Vertical	-12.9
13904.689	53.6	74	-20.4	42.6	54	-11.4	Vertical	-12.7

Note: Measures have been done at 3m distance

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
14039	57.7	83.5	-25.8	47.1	63.5	-16.4	Vertical	5.5
17749	52.5	83.5	-31	41.1	63.5	-22.4	Vertical	-1.5
17876	51.6	83.5	-31.9	40.8	63.5	-22.7	Vertical	-2.2
19739	46.2	83.5	-37.3	34.1	63.5	-29.4	Vertical	-2.2
20690	45.2	83.5	-38.3	34.3	63.5	-29.2	Vertical	-1.9
25588	48.3	83.5	-35.2	37.4	63.5	-26.1	Vertical	0.4

Note: Measures have been done at 1m distance

4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

5. BANDWIDTH (15.247)

5.1. TEST CONDITIONS

Date of test	: June 21, 2019
Test performed by	: Majid MOURZAGH
Atmospheric pressure (hPa)	: 1001
Relative humidity (%)	: 41
Ambient temperature (°C)	: 23

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.65dB

□ Radiated measurement:

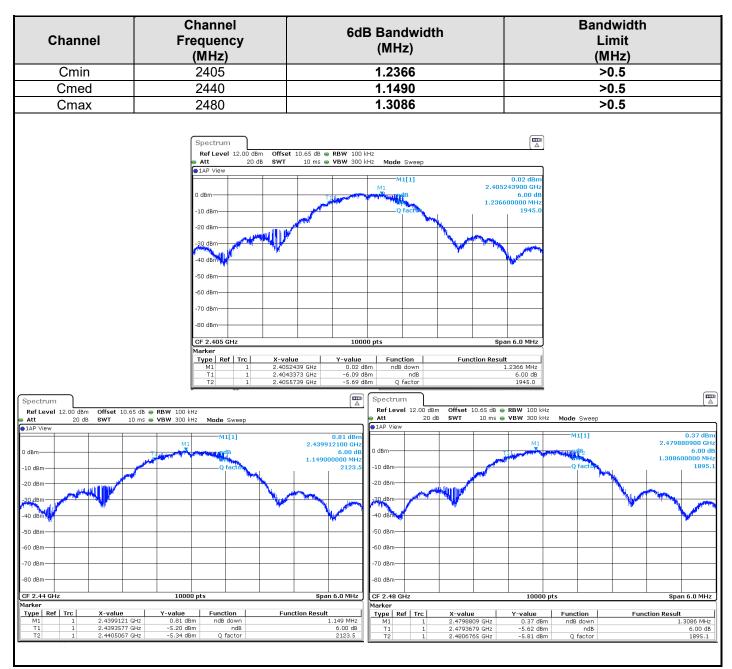
The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

5.3. TEST EQUIPMENT LIST


DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329863	11/18	11/19
Attenuator 10dB	TECHNIWAVE	-	A7122273	06/18	06/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	12/17	12/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:

5.5. TEST SEQUENCE AND RESULTS

5.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

6. **MAXIMUM PEAK OUTPUT POWER (15.247)**

6.1. **TEST CONDITIONS**

Date of test	:	June 21, 2019
Test performed by	:	Majid MOURZAGH
Atmospheric pressure (hPa)	:	1001
Relative humidity (%)	:	41
Ambient temperature (°C)	:	23

6.2. SETUP

✓ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.65dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured. $(- 1)^2$

- P is the power in watts for which you are solving:

$$P = \frac{(Ed)}{30G}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. ● Ø *RBW* ≥ *DTS bandwidth* §9.1.1 (*DTS Measurement Guidance*)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq 3 x RBW.

c) Set span ≥ 3 x RBW

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

• Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

a) Set the RBW = 1 MHz.

b) Set the VBW \geq 3 x RBW

c) Set the span \geq 1.5 x DTS bandwidth.

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329863	11/18	11/19
Attenuator 10dB	TECHNIWAVE	-	A7122273	06/18	06/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	12/17	12/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20

6.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

 \Box Divergence:

6.5. TEST SEQUENCE AND RESULTS

Modulation:

Channel	Channel Frequency (MHz)	Frequency (dBm)			
Cmin	2405	4.64	30.0		
Cmid	2440	4.63	30.0		
Cmax	2480	4.50	30.0		
	Spectrum Ref Level 12.00 dBm Offset 1 Att 20 dB SWT 14P View 0 dBm	0.65 dB • RBW 2 MHz 10 ms • VBW 10 MHz Mode Sweep 			
	-20 dBm				
	-50 dBm				
	-70 dBm				
	-80 dBm	10000 pts	Span 6.0 MHz		
Att 20 dB SWT 10 1AP View	: dB ● RBW 2 MHz ms ● VBW 10 MHz Mode Sweep	4.63 dBm			
0 dBm		2.439538300 GHz	M1 2.480471900 GF		
-20 dBm		-20 dBm			
-30 dBm		-40 dBm			
-60 dBm		-60 dBm			
		-70 dBm			
-80 dBm	10000 pts	Span 6.0 MHz CF 2.48 GHz	10000 pts Span 6.0 MH2		

6.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

7. POWER SPECTRAL DENSITY (15.247)

7.1. TEST CONDITIONS

June 21, 2019
Majid MOURZAGH
1001
41
23

7.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.65dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

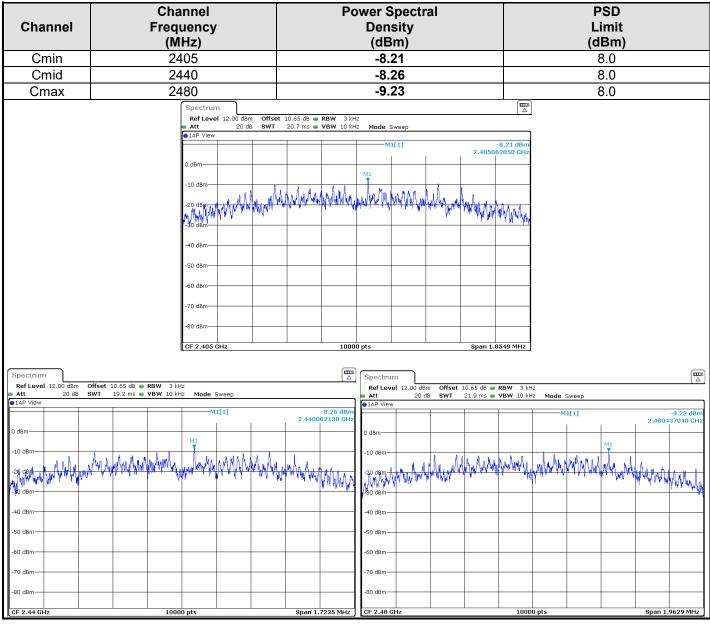
h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329863	11/18	11/19
Attenuator 10dB	TECHNIWAVE	-	A7122273	06/18	06/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	12/17	12/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20


7.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

7.5. TEST SEQUENCE AND RESULTS

Modulation:

7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

8. BAND EDGE MEASUREMENT (15.247)

8.1. TEST CONDITIONS

: June 19, 2019
: Majid MOURZAGH
: 998
: 41
: 22

8.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. *For -20dBc limit, lowest power output level is considered, worst case.*

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

8.3. SETUP

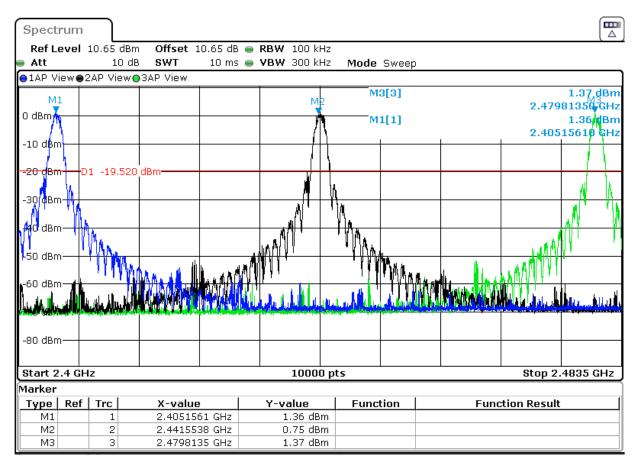
The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz VBW: 300kHz

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329863	11/18	11/19
Attenuator 10dB	TECHNIWAVE	-	A7122273	06/18	06/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	12/17	12/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20

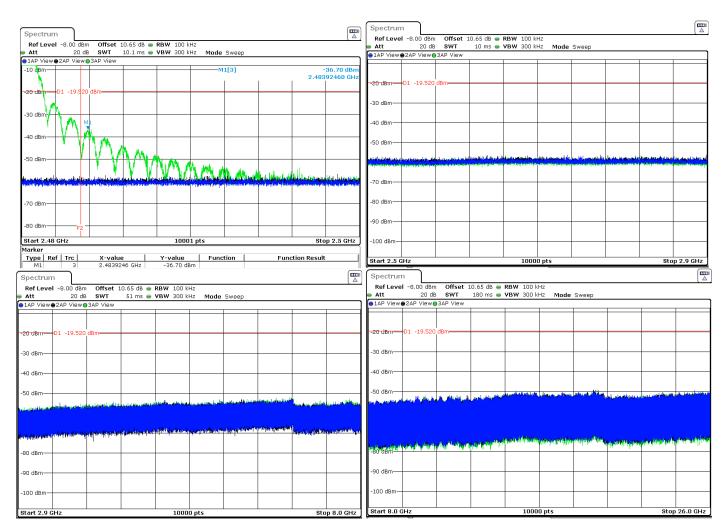
8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION


☑ None

□ Divergence:

8.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.65dB **GRAPH / MODULATION.**


-20dBc limit used:

Worst case : Channel MAX, limit at : -19.52dBm

Spectrum	
Ref Level -8.00 dBm Offset 10.65 dB • RBW 200 Hz	
Att 20 dB SWT 353 ms VBW 1 kHz Mode Sweep	RefLevel -8.00 dBm Offset 10.65 dB ● RBW 3 kHz ● Att 20 dB SWT 332 ms ● VBW 10 kHz Mode Sweep
● 1AP View●2AP View●3AP View	●1AP View●2AP View●3AP View
-20 dBm D1 -19.520 dBm	
-30 dBm	
-40 dBm	-40 dBm
-50 dBm	-50 dBm-
-60 d8m	
	-60 dBm
-70 dBm	-70 dBm-
-80 dBm	
	ורע איז
	90 dBm
-100 dBm	-100 dBm
Start 9.0 kHz 10000 pts Stop 150.0 kH	z Start 150.0 kHz 10000 pts Stop 30.0 MHz
Spectrum 🗖	Spectrum
Ref Level -8.00 dBm Offset 10.65 dB 👄 RBW 100 kHz	Ref Level -8.00 dBm Offset 10.65 dB ● RBW 100 kHz
■ Att 20 dB SWT 10 ms ● VBW 300 kHz Mode Sweep ●1AP View●2AP View●3AP View	● Att 20 dB SWT 12 ms ● VBW 300 kHz Mode Sweep ● 1AP View●2AP View●3AP View
-20 dBm-01 -19.520 dBm-	-20 dBm
-30 dBm-	-30 dBm-
-40 dBm	-40 dBm
	-50 dBm
-50 dBm	-50 0811
معتقا الاستعاد فيسترج والمعالي والمحالية والمعالية والمحالية	SOL 200
	والمنافع والمحالية
-70 dBm	-70 dBm-
-80 dBm	-80 dBm-
-90 dBm	-90 dBm
-100 dBm	-100 dBm
Start 30.0 MHz 10000 pts Stop 1.0 GHz	Start 1.0 GHz 10000 pts Stop 2.2 GHz
Start 30.0 MH2 10000 pts Stop 1.0 GH2	
Spectrum 🛄	
' RefLevel -8.00 dBm Offset 10.65 dB ● RBW 100 kHz	Spectrum A
Att 20 dB SWT 10 ms • YBW 300 kHz Mode Sweep	RefLevel -8.00 dBm Offset 10.65 dB RBW 100 kHz Att 20 dB SWT 10 ms VBW 300 kHz Mode Sweep
●1AP View●2AP View●3AP View	● TAP View ● 2AP View ● 3AP View
-20 dBm-01 -19.520 dBm-	
	-20 dBm D1 -19.520 dBm
-30 dBm	
	-30 dBm
-40 dBm	
	-40 dBm
-50 dBm	-50 dBm
is an instrument of the second second and the second s	and the state of the
man nuther and all all and all all and all all all and all all all all all all all all all al	
-70 dBm	-70 dBm-
-80 dBm	-80 dBm
-90 dBm	-90 dBm
-100 dBm	-100 dBm F1
Start 2.2 GHz 10000 pts Stop 2.39 GHz	Start 2.39 GHz 10000 pts Stop 2.405 GHz

Measurement from 8GHz to 26GHz: See Radiated emission §4.6.3 for frequencies observed

8.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **PLTE601P**, SN: None, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

9. OCCUPIED BANDWIDTH

9.1. TEST CONDITIONS

Date of test	: June 21, 2019
Test performed by	: Majid MOURZAGH
Atmospheric pressure (hPa)	: 1001
Relative humidity (%)	: 41
Ambient temperature (°C)	: 23
	. 20

9.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.65dB

□ Radiated measurement:

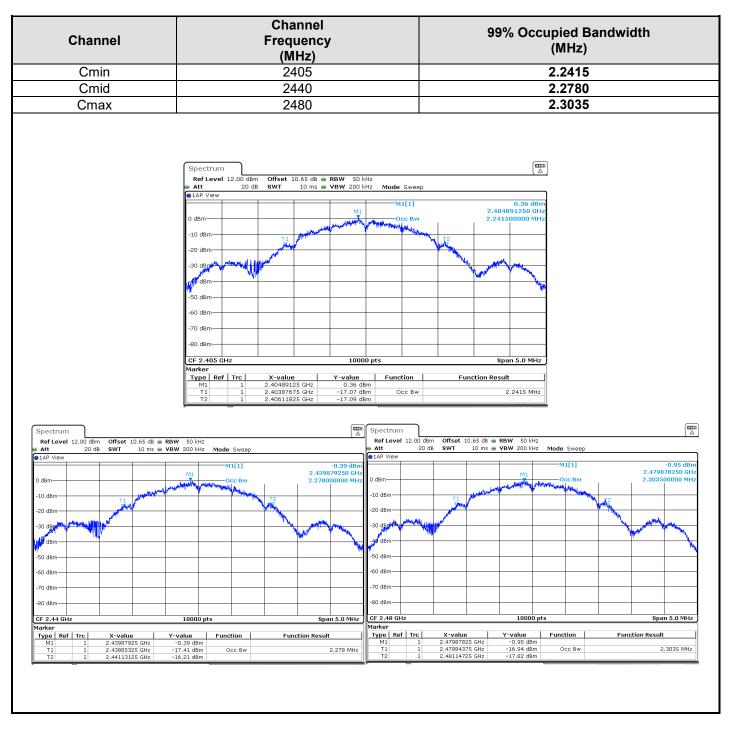
The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

- a) RBW shall be in the range of 1% to 5% of the anticipated occupied bandwidth
- b) Set the video bandwidth (VBW) \ge 3 x RBW
- c) SPAN = Capture all products of the modulation process
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.
- h) OBW 99% function of spectrum analyzer used

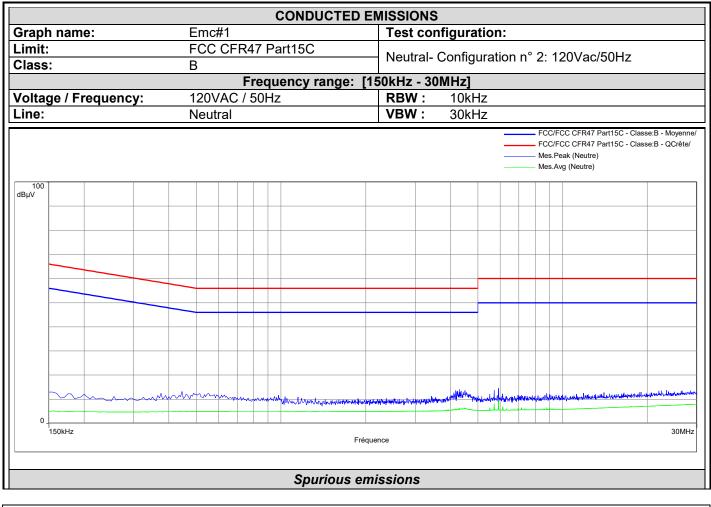
9.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MANUFACTURER MODEL N° LCIE		Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329863	11/18	11/19
Attenuator 10dB	TECHNIWAVE	-	A7122273	06/18	06/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	12/17	12/19
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20

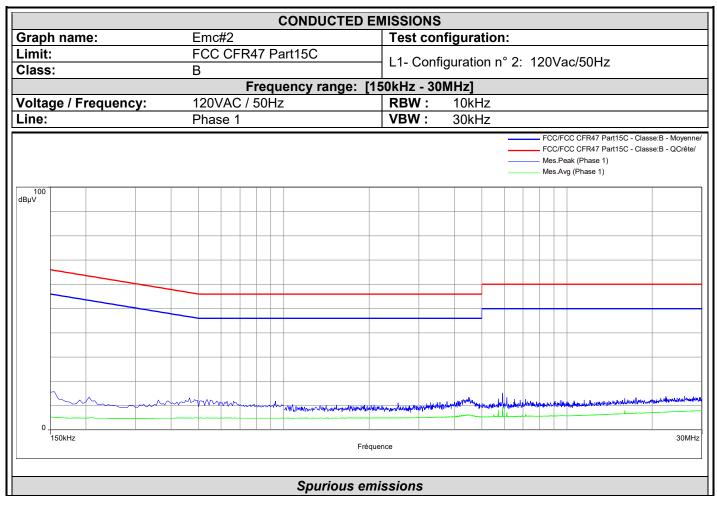

9.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

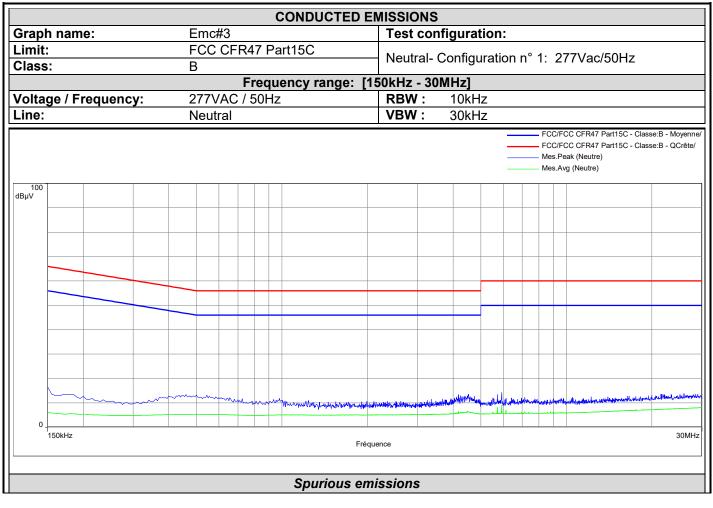
 \Box Divergence:

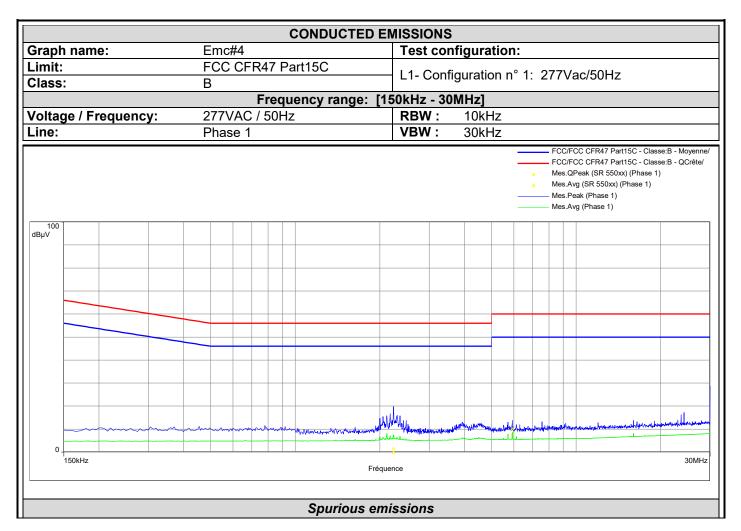


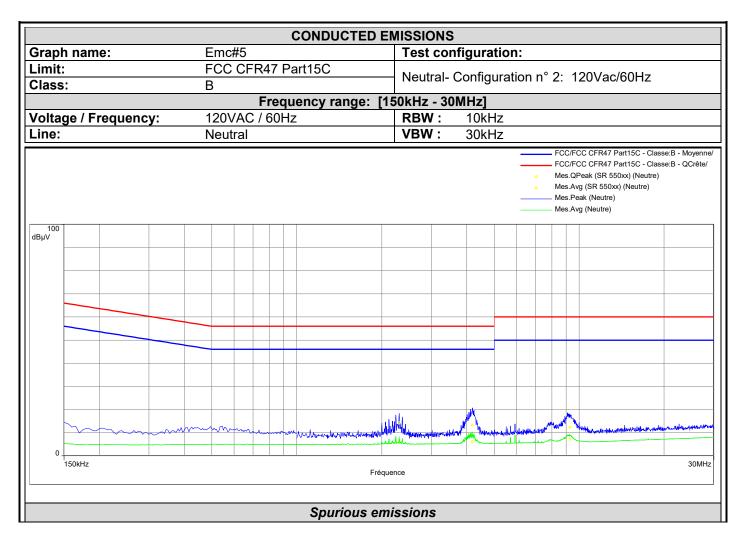
9.5. TEST SEQUENCE AND RESULTS

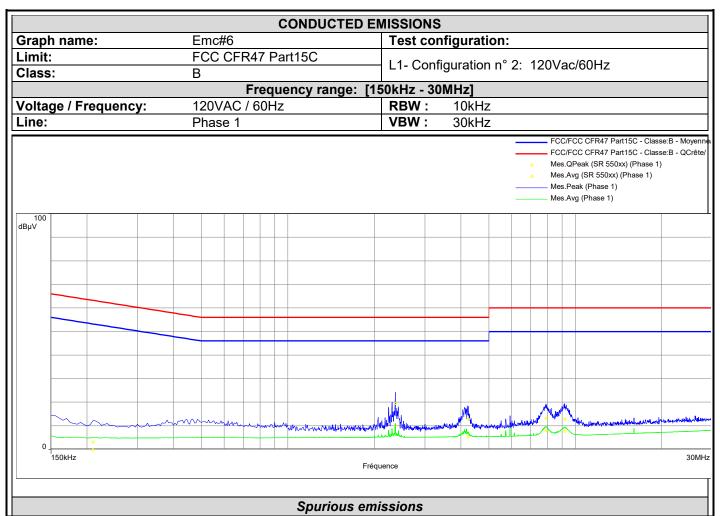


10. ANNEX 1 (GRAPHS)


No significative frequency observed


No significative frequency observed


No significative frequency observed


Frequency (MHz)	Mes.QPea k (dBµV)	LimQP (dBµV)	Mes.QPea k-LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correction (dB)
2.240	1.4	56.0	-54.6	-1.7	46.0	-47.7	Phase 1	10.4
5.925	10.0	60.0	-50.0	7.6	50.0	-42.4	Phase 1	10.8

Frequency (MHz)	Mes.QPea k (dBµV)	LimQP (dBµV)	Mes.QPea k-LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correction (dB)
2.305	14.2	56.0	-41.8	5.8	46.0	-40.2	Neutre	10.4
4.190	13.2	56.0	-42.8	6.1	46.0	-39.9	Neutre	10.6
9.265	12.3	60.0	-47.7	7.1	50.0	-42.9	Neutre	11.1

Mes.QPea Mes.Avg-Mes.QPea LimQP Correction Frequency Mes.Avg LimAvg k-LimQP LimAvg Line (MHz) k (dBµV) (dBµV) (dBµV) (dBµV) (dB) (dB) (dB) 0.210 63.2 53.2 -54.5 10.1 3.1 -60.1 -1.3 Phase 1 Phase 1 2.365 19.5 56.0 -36.5 10.2 46.0 -35.8 10.4 4.240 12.9 56.0 -43.1 5.2 46.0 -40.8 Phase 1 10.6 7.8 -42.2 7.905 13.1 60.0 -46.9 50.0 Phase 1 10.9

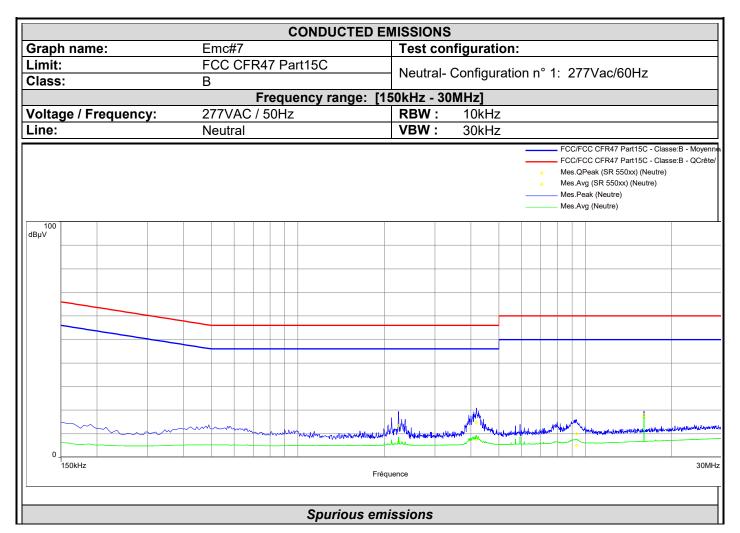
-47.2

9.195

12.8

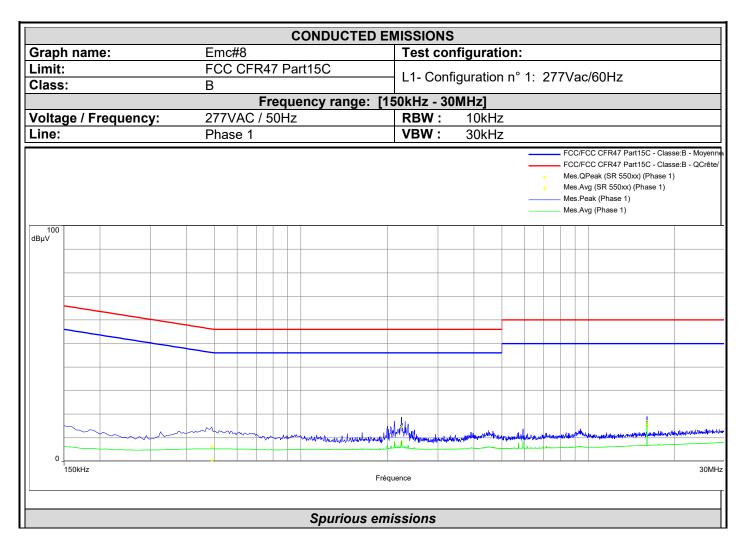
60.0

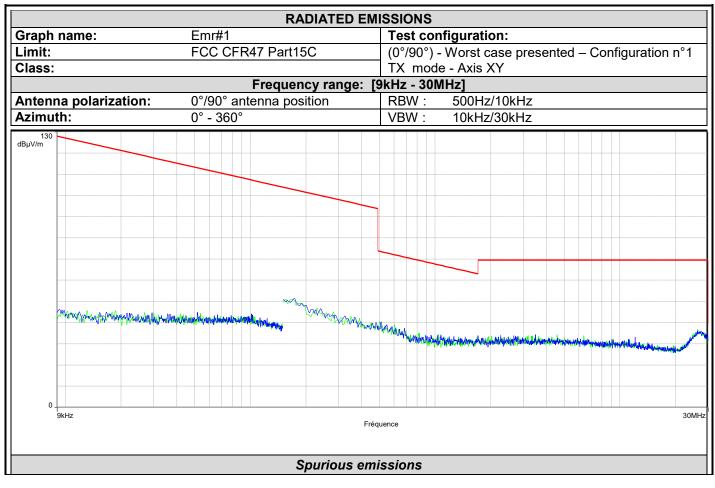
7.7

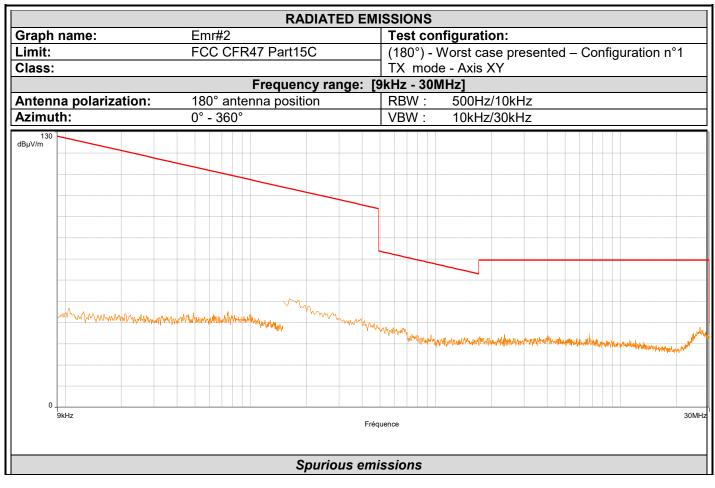

50.0

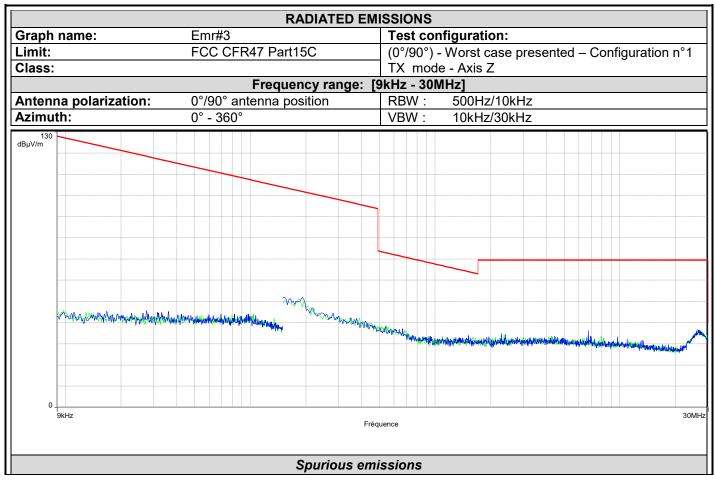
-42.3

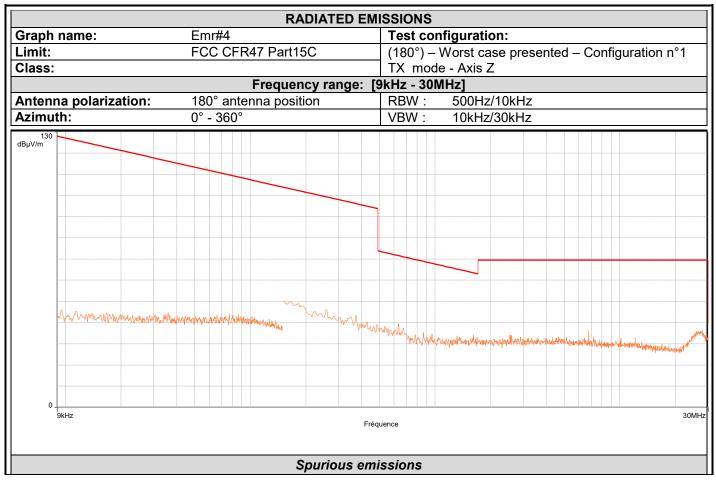
Phase 1

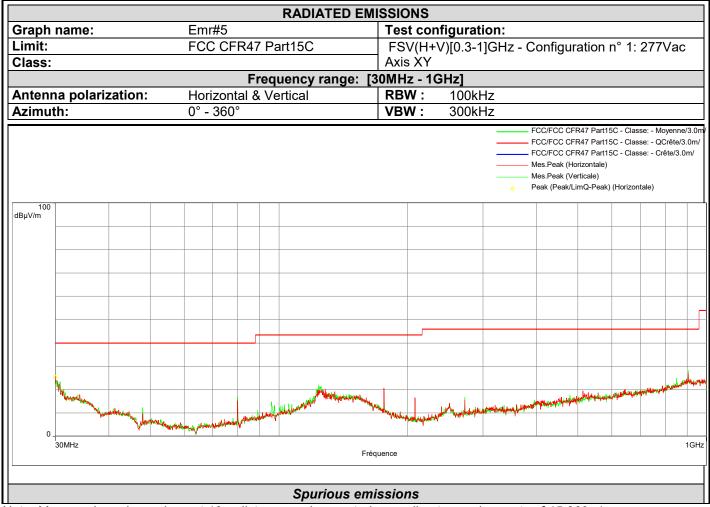

11.1

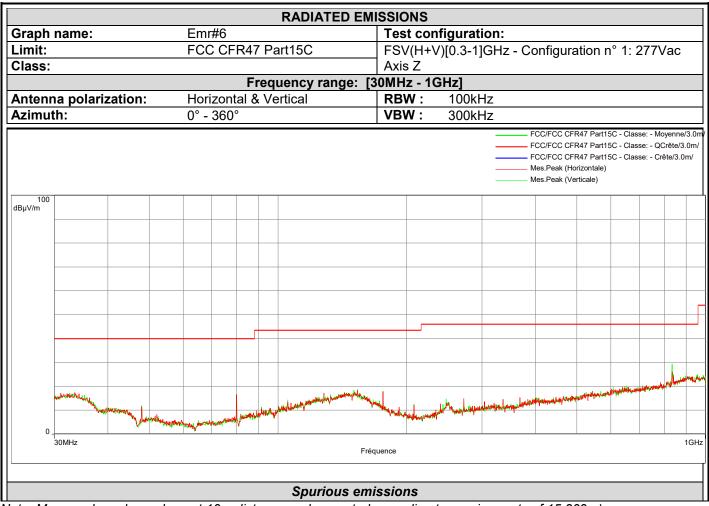

Mes.QPea Mes.Avg-Frequency Mes.QPea LimQP Correction Mes.Avg LimAvg k-LimQP LimAvg Line (MHz) k (dBµV) (dBµV) (dBµV) (dBµV) (dB) (dB) (dB) 2.240 13.3 56.0 -42.7 46.0 -39.4 10.4 6.6 Neutre 4.185 14.8 56.0 -41.2 7.5 46.0 -38.5 Neutre 10.6 9.320 10.0 60.0 -50.0 5.0 50.0 -45.0 Neutre 11.1 -42.1 16.000 17.9 60.0 16.9 50.0 -33.1 Neutre 12.0

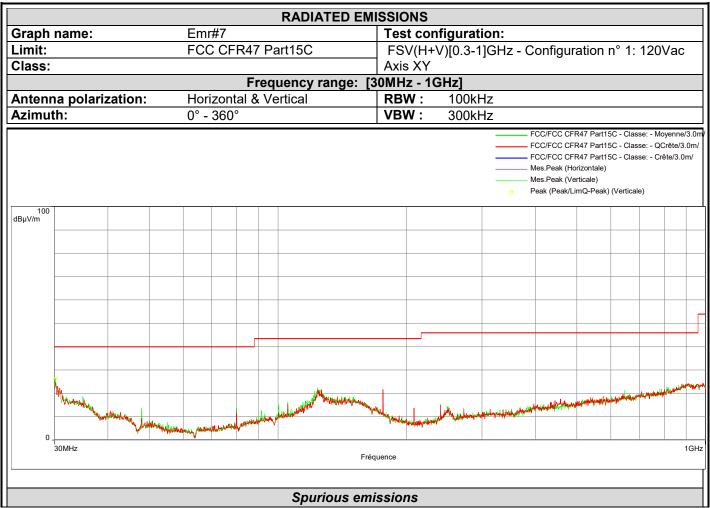

Frequency (MHz)	Mes.QPea k (dBµV)	LimQP (dBµV)	Mes.QPea k-LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correction (dB)
0.490	6.2	56.2	-50.0	0.4	46.2	-45.7	Phase 1	10.2
2.240	14.6	56.0	-41.4	7.8	46.0	-38.2	Phase 1	10.4
16.000	16.8	60.0	-43.2	15.2	50.0	-34.8	Phase 1	12.0

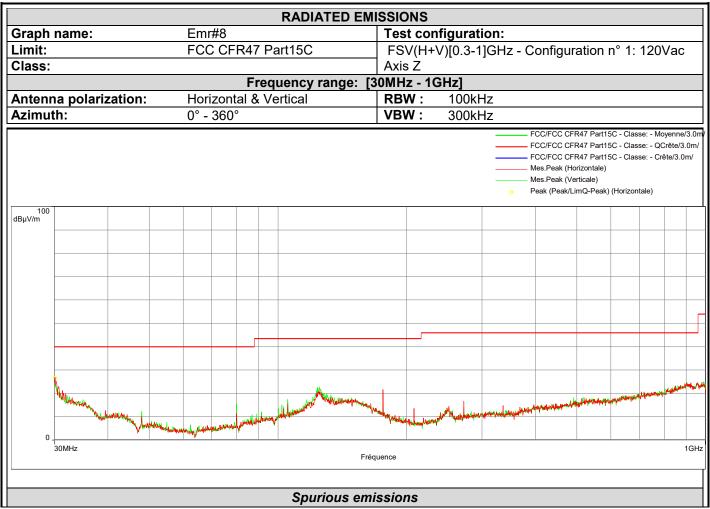

Frequency (MHz)	QPeak Level (dBµV/m)	Polarization	Correction (dB)			
No significant frequency observed in 20dB below limit of restricted frequency bands						


Frequency (MHz)	QPeak Level (dBµV/m)	Polarization	Correction (dB)			
No significant frequency observed in 20dB below limit of restricted frequency bands						


Frequency (MHz)	QPeak Level (dBµV/m)	Polarization	Correction (dB)			
No significant frequency observed in 20dB below limit of restricted frequency bands						


Frequency (MHz)	QPeak Level (dBµV/m)	Polarization	Correction (dB)			
No significant frequency observed in 20dB below limit of restricted frequency bands						


Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)


Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

	RADIATED	EMISSIONS				
Graph name:	Emr#9	Test configuration:				
Limit:	FCC CFR47 Part15C	(H+V) - Worst case presented CMin -				
Class:		TX mode - Axis XY Configuration n° 1: 120Vac				
	Frequency range	: [1GHz - 14GHz]				
Antenna pola		RBW: 1MHz				
Azimuth:	0° - 360°	VBW: 3MHz				
		FCC/FCC CFR47 Part15C - Classe: - Moyen FCC/FCC CFR47 Part15C - Classe: - QCrête FCC/FCC CFR47 Part15C - Classe: - Crête/3 Niveau (Suspect Manuel) (Horizontale) Niveau (Suspect Manuel) (Verticale) Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Horizontale) Mes.Avg (Verticale)	e/3.0m			
110 dBµV/m		FOURCE CERT PartSC - Class FOURCE CERT PartSC - CLAST FOURCE CERT PARTSC - CLAS				
1/cche_0491	have a second a s		ntroum			
10 1GF	Hz	Fréquence	14GF			
	Spurious	emissions				

Spurious emissions

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
7214.801	50.6	74	-23.4	49.3	54	-4.7	Horizontal	-19.8
13220.186	54.3	74	-19.7	41.8	54	-12.2	Horizontal	-13.6
13634.932	54.7	74	-19.3	42.1	54	-11.9	Horizontal	-13.0
13965.342	54.2	74	-19.8	42.6	54	-11.4	Horizontal	-12.5
4809.398	47.5	74	-26.5	47.5	54	-6.5	Vertical	-24.7
5184.062	48.6	74	-25.4	39.4	54	-14.6	Vertical	-24.0
7215.224	58.7	74	-15.3	49.6	54	-4.4	Vertical	-19.8
13605.472	53.9	74	-20.1	42.3	54	-11.7	Vertical	-12.9
13904.689	53.6	74	-20.4	42.6	54	-11.4	Vertical	-12.7

	RADIATED EMI	SSIONS					
Graph name:	Emr#10	Test configuration:					
Limit:	FCC CFR47 Part15C	(H+V) - Worst case presented CMin					
Class:		- TX mode - Axis Z Configuration n° 1: 120Vac					
	Frequency range: [1						
Antenna polar		RBW: 1MHz					
Azimuth:	0° - 360°	VBW: 3MHz					
		FCC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m FCC/FCC CFR47 Part15C - Classe: - QCrête/3.0m/ FCC/FCC CFR47 Part15C - Classe: - Crête/3.0m/ Niveau (Suspect Manuel) (Horizontale) Niveau (Suspect Manuel) (Verticale) Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Horizontale) Mes.Avg (Verticale) Peak (Peak/LimAvg) (Horizontale)					
110 dBµV/m		FCO/FCC ¢FR47 Part SC - Classe: - Crête/3 Or					
10 1GHz		quence 14GHz					
	Spurious emis	ssions					

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
7206.379	55.6	74	-18.4	48.1	54	-5.9	Horizontal	-19.8
4809.398	45.1	74	-28.9	39.7	54	-14.3	Vertical	-24.7
7214.957	55.9	74	-18.1	48.2	54	-5.8	Vertical	-19.8
9619.783	51.6	74	-22.4	41.6	54	-12.4	Vertical	-18.6

RADIATED EMISSIONS									
Graph name: Emr#11	Test configuration:								
Limit: FCC CFR47 Part15C	(H+V) - CMin - TX mode - Axis XY								
Class:	Configuration n° 1: 120Vac								
Frequency rang	je: [14GHz - 26GHz]								
Antenna polarization:	RBW: 1MHz								
Azimuth: 0° - 360°	VBW: 3MHz								
	FCC/FCC CFR47 Part15C - Classe: - Moyenne/1.0m/ FCC/FCC CFR47 Part15C - Classe: - Crête/1.0m/ Niveau (Suspect Manuel) (Verticale) Niveau (Suspect Manuel) (Verticale) Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Horizontale)								
100 dBµV/m									
and the second se	a har a h								
0									
14GHz	26GHz Fréquence								

Spurious emissions

 Spurious emissions

 Note: Measure have been done at 1m distance and corrected according to requirements of 15.209.e)

 (M@1m = M@10m+20dB)

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
17000	51.5	83.5	-32	41.6	63.5	-21.9	Horizontal	-2.3
17825	51.6	83.5	-31.9	41.5	63.5	-22	Horizontal	-1.8
15797	50.7	83.5	-32.8	39.7	63.5	-23.8	Vertical	-2.3
18794	45.6	83.5	-37.9	35.2	63.5	-28.3	Vertical	-2.1
22631	48.5	83.5	-35	37.1	63.5	-26.4	Vertical	-0.6
24935	49.1	83.5	-34.4	37.8	63.5	-25.7	Vertical	0.4

	RADIATED EM	VISSIONS
Graph name:	Emr#12	Test configuration:
Limit:	FCC CFR47 Part15C	(H+V) - CMin - TX mode - Axis Z
Class:		Configuration n° 1: 120Vac
	Frequency range: [1/	14GHz - 26GHz]
Antenna polariza	ation:	RBW: 1MHz
Azimuth:	0° - 360°	VBW: 3MHz
		FCC/FCC CFR47 Part15C - Classe: - Moyenne/1.0m/ FCC/FCC CFR47 Part15C - Classe: - Crête/1.0m/ Niveau (Suspect Manuel) (Verticale) Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Horizontale) Mes.Avg (Verticale)
100 dBµV/m		
Connect Mension	ningen ander her eine eine her eine her eine eine eine eine eine eine eine ei	
		والماسين المالية المحالية المحال
0 14GHz	Fréqu	quence 26GHz

Spurious emissions

 Spurious emissions

 Note: Measure have been done at 1m distance and corrected according to requirements of 15.209.e)

 (M@1m = M@10m+20dB)

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Avg Level (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Polarization	Correction (dB)
14039	57.7	83.5	-25.8	47.1	63.5	-16.4	Vertical	5.5
17749	52.5	83.5	-31	41.1	63.5	-22.4	Vertical	-1.5
17876	51.6	83.5	-31.9	40.8	63.5	-22.7	Vertical	-2.2
19739	46.2	83.5	-37.3	34.1	63.5	-29.4	Vertical	-2.2
20690	45.2	83.5	-38.3	34.3	63.5	-29.2	Vertical	-1.9
25588	48.3	83.5	-35.2	37.4	63.5	-26.1	Vertical	0.4

11. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / <i>Wide uncertainty</i> <i>laboratory</i> (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.51 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.26 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.45 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	3.09 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.20 dB	6.3 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.