

Bundesnetzagentu

TEST REPORT

Test report no.: 1-8617/17-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Applicant

Acconeer AB Ideon Gateway, Scheelevägen 27 223 70 Lund / SWEDEN +46 722212179 Phone: Fax: Contact: Mikael Rosenhed mikael.rosenhed@acconeer.com e-mail: Phone: +46 722212179

Manufacturer

Acconeer AB

Ideon Gateway, Scheelevägen 27 223 70 Lund / SWEDEN

Test standard/s							
47 CFR Part 15	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						
RSS-210, Issue 9	License-Exempt Radio Apparatus						
RSS-Gen	RSS-Gen General Requirements for Compliance of Radio Apparatus						
For further applied test standards please refer to section 3 of this test report.							

Test Item							
Kind of test item:	60 GHz Module for SRD Radar						
Model name:	A111						
FCC ID:	2AQ6KA1001						
IC:	24388-A111	XR112 PB2V1.1					
Frequency:	57 GHz – 64 GHz (RSS) 57 GHz – 71 GHz (FCC)						
Antenna:	2 embedded Dipole Antennas	a((oneer					
Power supply:	1.71 V to 1.89 V DC						
Temperature range:	-40°C to +85°C						

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

p.o.

Geraldy Karsten Lab Manager Radio Communications & EMC

Test performed:

Meheza Walla Lab Manager Radio Communications & EMC

1 Table of contents

1	Tabl	e of contents	2
2	Gene	eral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test	standard/s and references	4
4	Test	environment	5
5	Test	item	5
	5.1 5.2	General description Additional information	
6	Desc	cription of the test setup	7
	6.1 6.3 6.4 6.5	Shielded semi anechoic chamber Radiated measurements, 18 GHz – 50 GHz Radiated measurements > 50 GHz AC conducted	.11 .11
7	Sequ	ence of testing	.14
	7.1 7.2 7.3 7.4 7.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	.15 .16 .17
8	Meas	surement uncertainty	.19
9	Far f	ield consideration for measurements above 18 GHz	.19
10	Su	mmary of measurement results	.20
11	Ме	asurement results	.21
	11.1 11.2 11.3 11.4 11.5	Occupied bandwidth (99%, 20 dB, 23 dB Bandwidth) Maximum E.I.R.P. Peak / Transmitter Output Power Spurious emissions radiated Spurious emissions conducted < 30 MHz (AC power line) Frequency Stability	.24 .30 .38
12		ossary	
13	Do	cument history	.45

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2017-11-09
Date of receipt of test item:	2019-09-30
Start of test:	2019-09-30
End of test:	2019-10-09
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS-210, Issue 9	August 2016	License-Exempt Radio Apparatus
Referenced Standards		
RSS-Gen	Nov 2014	General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

3 Test standard/s and references

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +50 °C during high temperature tests -40 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	1.8 V DC by external power supply1.89 V1.71 V

5 **Test item**

5.1 General description

Kind of test item	:	60 GHz Module for SRD Radar
Type identification	:	A111
HMN	:	-/-
PMN	:	A111
HVIN	:	A111
FVIN	:	2.0.0
S/N serial number	:	-/-
HW hardware status	:	A111
SW software status	:	2.0.0
Frequency band	:	57 GHz – 64 GHz (RSS) 57 GHz – 71 GHz (FCC)
Type of modulation	:	Pulse and Frequency Modulation
Number of channels	:	1
Antenna	:	2 embedded Dipole Antennas
Power supply	:	1.71 V to 1.89 V DC
Temperature range	:	-40°C to +85°C

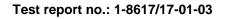
5.2 Additional information

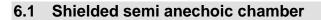
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-8617/19-01-01_AnnexA 1-8617/19-01-01_AnnexB

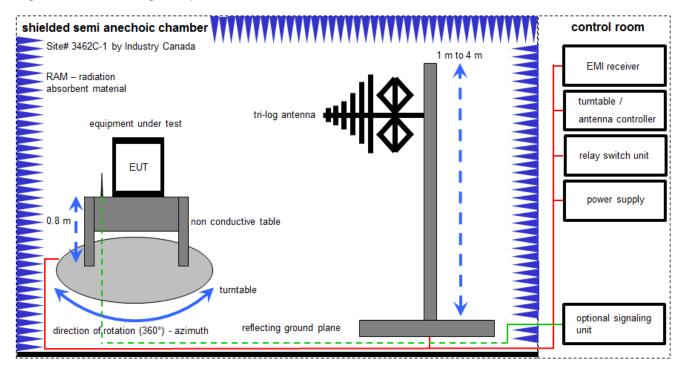
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

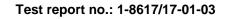
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

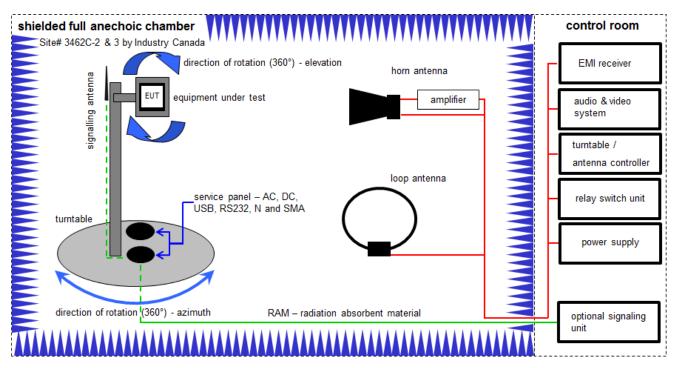
Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$



Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
5	n.a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
6	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	n.a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
10	n. a.	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	17.12.2018	16.12.2019

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

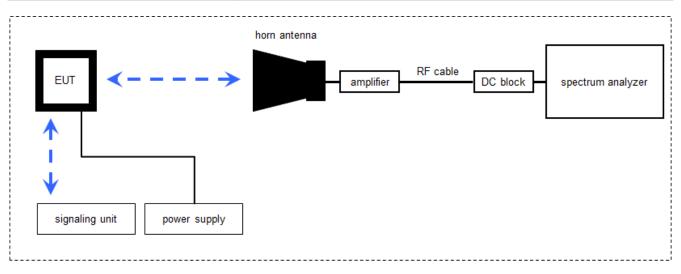
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

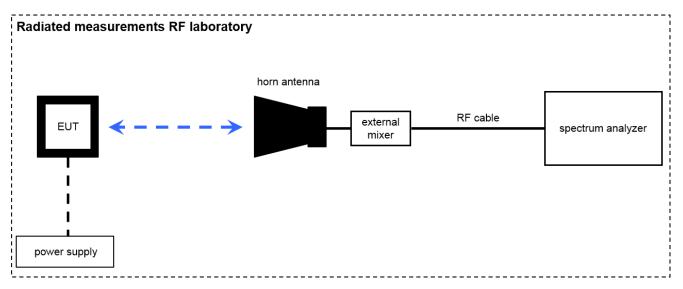
Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	viKi!	27.02.2019	26.02.2021
1	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
3	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vlKl!	14.12.2017	13.12.2020
4	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
6	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
7	n. a.	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
8	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
9	n. a.	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	n. a.	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019
11	n. a.	RF Amplifier	AFS4-00100800-28- 20P-4-R	MITEQ	2008992	300005204	ne	-/-	-/-
12	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

CTC I advanced


member of RWTÜV group

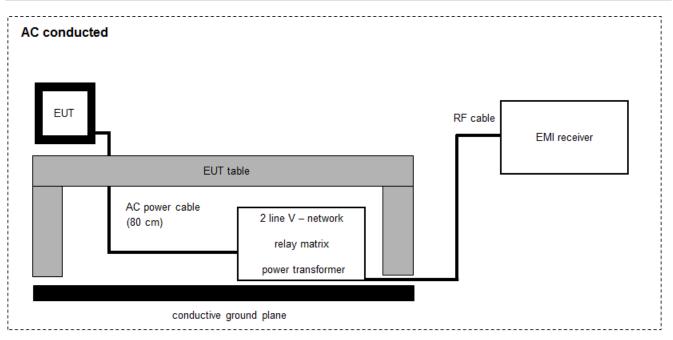
6.3 Radiated measurements, 18 GHz - 50 GHz

6.4 Radiated measurements > 50 GHz

OP = AV + D - G(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation: OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.


Test report no.: 1-8617/17-01-03

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	viKi!	13.12.2017	12.12.2019
2	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
3	n. a.	Std. Gain Horn Antenna 39.3-59.7 GHz	2424-20	Flann	75	300001979	ne	-/-	-/-
4	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
5	n.a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
8	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
10	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
11	n.a.	Harmonic Mixer 2- Port, 50-75 GHz	FS-Z75	R&S	101578	tbd	k	29.05.2019	28.05.2020
12	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	08.05.2019	07.05.2020
13	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	09.05.2019	08.05.2020
14	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	10.07.2019	09.07.2020
15	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	09.07.2019	08.07.2020
16	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	29.05.2019	28.05.2021
17	n.a.	Waveguide amplifier 50 to 67 GHz 30 dB Gain	HLNAV-389	HXI, LLC	2K1701116	Property of Acconeer AB	ev	-/-	-/-

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	27	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	-/-	-/-
4	n. a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	-/-	-/-
5	n. a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	vIKI!	18.12.2017	17.12.2019
6	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	viKi!	15.01.2018	14.01.2020
7	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
8	n. a.	Power Supply DC	NGSM 32/10	Rohde & Schwarz	3939	400000192	vlKl!	31.01.2017	30.01.2020
9	n. a.	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Setup

• The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.

CTC | advanced

- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Measurement uncertainty 8

Test case	Uncertainty
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	± 1 °C
Humidity	± 3 %

Far field consideration for measurements above 18 GHz 9

Far field distance calculation:

 $D_{ff} = 2 \times D^2 / \lambda$

with Far field distance Dff D Antenna dimension λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
110-170	170	0.85	0.18	8.19
170-220	220	0.68	0.14	6.78

In band measurement (EIRP, OBW):

tronuonev	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	far field distance in cm
50-75	64	1.85	0.47	14.6

Test report no.: 1-8617/17-01-03

10	Summai	Summary of measurement results			
	\boxtimes	No deviations from the technical specifications were ascertained			

There were deviations from the technical specifications ascertained

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	FCC 47 CFR Part 15 / IC RSS-210	Passed	2019-10-10	-/-

Test specification clause	Test case	Temperatur e conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.215 RSS-Gen, Clause 6.6	Occupied bandwidth (20dB bandwidth)	Nominal	Nominal					complies
§15.255(b) RSS-210, Annex J.2	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.255(c) RSS-210, Annex J.3	Spurious Emissions	Nominal	Nominal					complies
§15.255(e) RSS-210, Annex J.6	Frequency stability	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

11 Measurement results

11.1 Occupied bandwidth (99%, 20 dB, 23 dB Bandwidth)

Description:

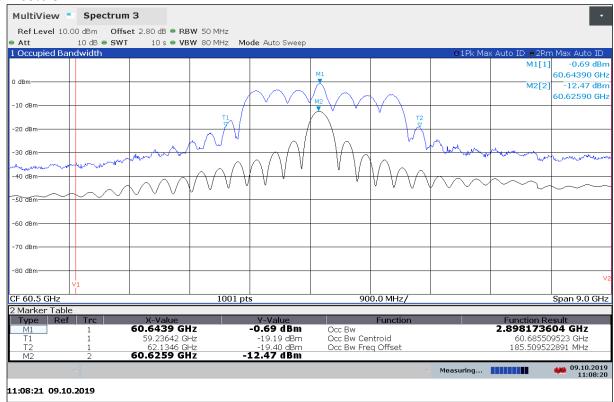
Measurement of the Bandwidth of the wanted signal.

Measurement:

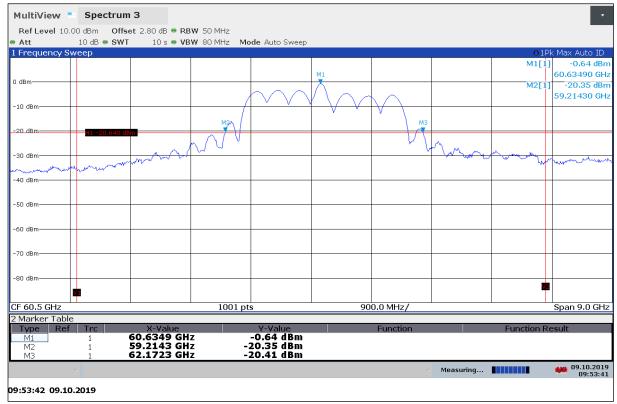
Measurement parameter		
Detector:	Peak	
Sweep time:	10 s	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Span:	9 GHz	
Trace-Mode:	Max Hold	

Limits:

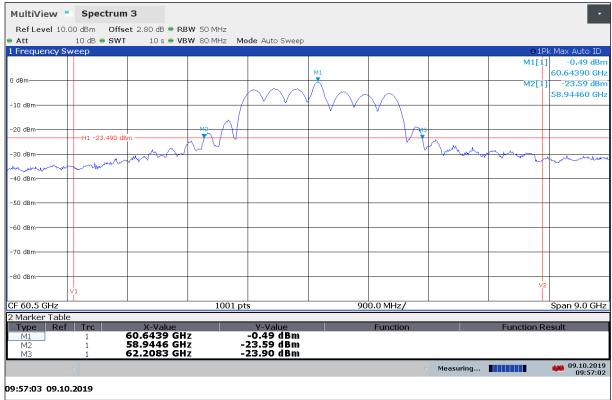
FCC	IC	
CFR Part 15.255	RSS-210 J.1	
The occupied bandwidth from intentional radiators operated within the specified frequency band shall compl with the following:		
Frequency range		
57 GHz – 71 GHz	57 GHz – 64 GHz	


Measurement results:

Test condition T _{nom} / V _{nom}	F∟ in GHz	F _H in GHz	Occupied bandwidth in GHz
99% OBW	59.236 420	62.134 600	2.898
20 dB OBW	59.214 300	62.172 300	2.958
23 dB OBW	58.944 600	62.208 300	3.264
Measurement uncertainty	± span/1000		


Result: The measurement is passed.

Plot 1: 99% OBW



Plot 2: 20 dB OBW

Plot 3: 23 dB OBW

11.2 Maximum E.I.R.P. Peak / Transmitter Output Power

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Limits:

FCC Part 15.255 / RSS-210 J2

(b) Within the 57-71 GHz band, emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):

(1) Products other than fixed field disturbance sensors and short-range devices for interactive motion sensing shall comply with one of the following emission limits, as measured during the transmit interval:

(i) The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm; or

(ii) For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

(A) The provisions in this paragraph for reducing transmit power based on antenna gain shall not require that the power levels be reduced below the limits specified in paragraph (b)(1)(i) of this section.

(B) The provisions of §15.204(c)(2) and (4) that permit the use of different antennas of the same type and of equal or less directional gain do not apply to intentional radiator systems operating under this provision. In lieu thereof, intentional radiator systems shall be certified using the specific antenna(s) with which the system will be marketed and operated. Compliance testing shall be performed using the highest gain and the lowest gain antennas for which certification is sought and with the intentional radiator operated at its maximum available output power level. The responsible party, as defined in §2.909 of this chapter, shall supply a list of acceptable antennas with the application for certification.

(2) For fixed field disturbance sensors that occupy 500 MHz or less of bandwidth and that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

(3) For fixed field disturbance sensors other than those operating under the provisions of paragraph (b)(2) of this section, and short-range devices for interactive motion sensing, the peak transmitter conducted output power shall not exceed -10 dBm and the peak EIRP level shall not exceed 10 dBm.

(4) The peak power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57-71 GHz band and has a video bandwidth of at least 10 MHz. The average emission levels shall be measured over the actual time period during which transmission occurs.

Limits:

RSS-210 J2

Within the band 57-64 GHz, the power of any emissions, measured during in the transmit interval, shall comply with the e.i.r.p. limits in this section.

For the purpose of this standard, the terms" average e.i.r.p." and "peak e.i.r.p." refer to e.i.r.p. with transmitter output power measured in terms of average value or peak value respectively.

Limits:

RSS-210 J4

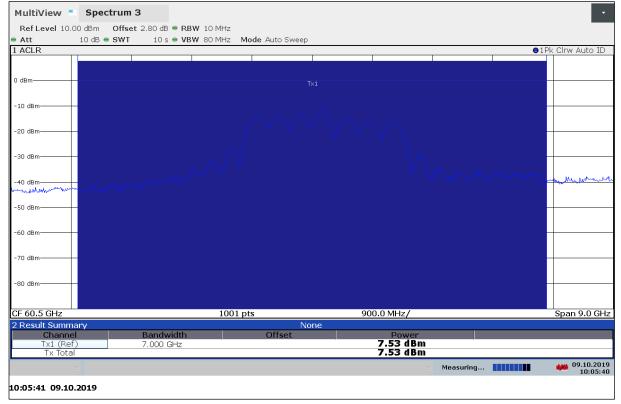
Following are the conditions for peak transmitter output power:

- (a) For devices with an emission bandwidth greater than or equal to 100 MHz, the peak transmitter output power shall not exceed 500 mW. For devices with an emission bandwidth less than 100 MHz, the peak transmitter output power shall be less than the product of 500 mW times their emission bandwidth divided by 100 MHz.
- (b) For the purposes of demonstrating compliance with this RSS, corrections to the transmitter output power may be made to compensate for antenna and circuit loss.
- (c) For the purpose of this standard, emission bandwidth is defined as the instantaneous frequency range occupied by a steady radiated signal with modulation, outside which the radiated power spectral density shall be 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth. The center frequency must be stationary during the measurement interval, even if not stationary normally.

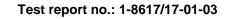
Measurement:

Measurement parameter			
Detector:	Pos-Peak / RMS		
Sweep time:	10 s		
Resolution bandwidth:	See plots		
Video bandwidth:	80 MHz		
Span:	See plots		
Trace-Mode:	Max Hold		
Measurement distance	25 cm		

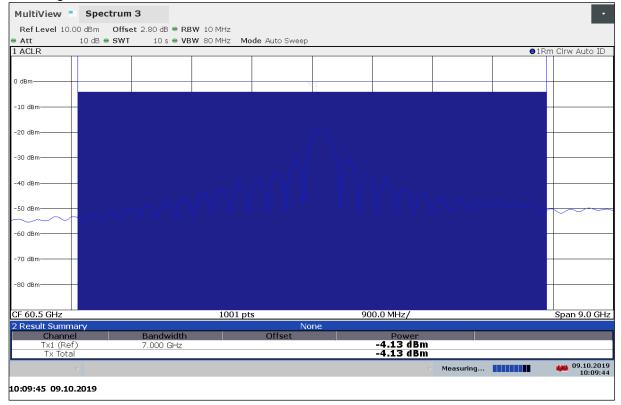
Measurement results:

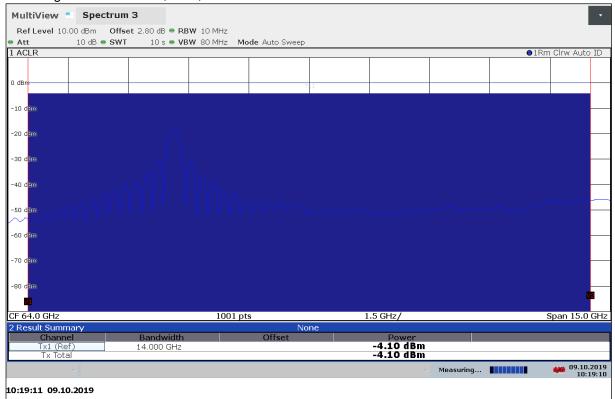

Test condition T _{nom} / V _{nom}	Max E.I.R.P. 10 MHz RBW
Peak-Measurement RSS-210 / 57 GHz – 64 GHz	7.53
Peak-Measurement FCC 15.255 / 57 GHz – 71 GHz	7.67
Average-Measurement RSS-210 / 57 GHz – 64 GHz	-4.13
Average-Measurement FCC 15.255 / 57 GHz – 71 GHz	-4.10
Peak Transmitter Output Power	-10.91
Measurement uncertainty	± 3 dB

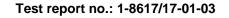
Result: The measurement is passed.



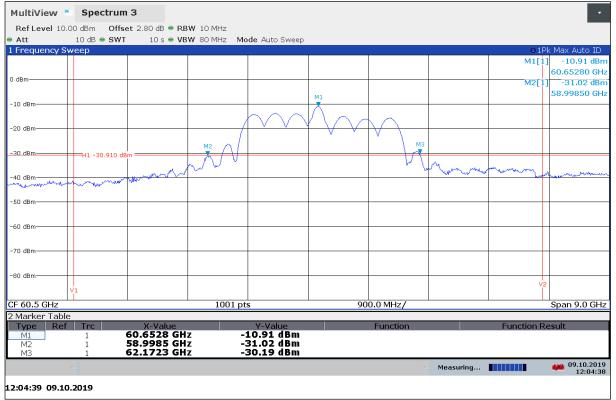
Plot 4: Peak Channel Power, RSS, 10 MHz RBW


Plot 5: Peak Channel Power, FCC, 10 MHz RBW





Plot 6: Average Channel Power, RSS, 10 MHz RBW


Plot 7: Average Channel Power, FCC, 10 MHz RBW

Plot 8: Peak Transmitter Output Power, 10 MHz RBW

11.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode.

Limits:

FCC Part 15.255 / RSS-210 J3

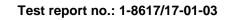
- (c) Limits on spurious emissions:
- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² (-10dBm) at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

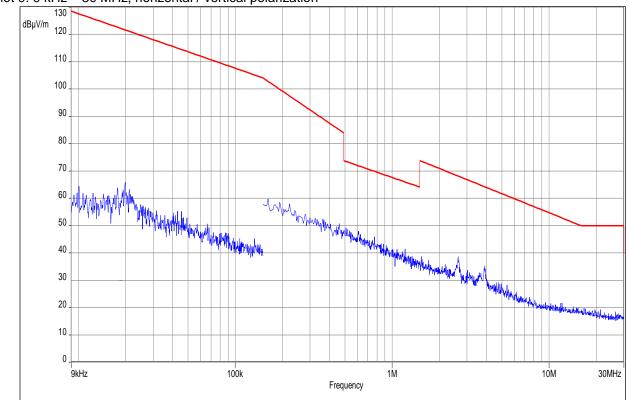
FCC / IC						
CFF	CFR Part 15.209(a) / RSS-210 J.3/ RSS-Gen					
	Radiated Spurious Emissions					
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.						
Frequency (MHz) Field Strength (dBµV/m) Measurement distance						
0.009 – 0.490	2400/F(kHz)	300				
0.490 – 1.705	0.490 – 1.705 24000/F(kHz) 30					
1.705 – 30.0	1.705 – 30.0 30 30					
30 88	30 88 30.0 10					
88 – 216	88 – 216 33.5 10					
216 – 960	216 – 960 36.0 10					
Above 960	54.0	3				

Limit conversion:

 $P[dBm] = 10 \times log(4 \times \pi \times d^2 \times P[W/m^2])$

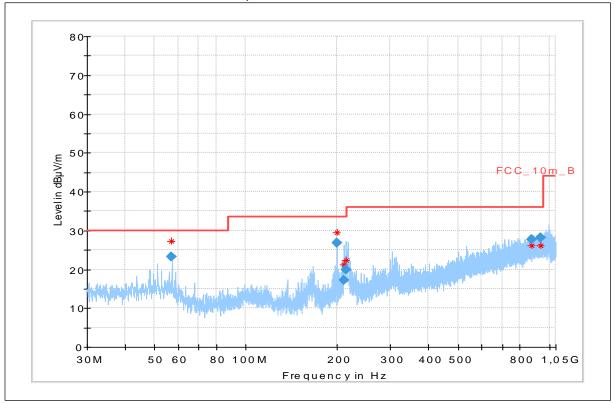
d = distance of the limit defined in W/m^2

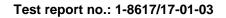

With this calculation an emission limit of 90 pW/cm² corresponds to -10 dBm.

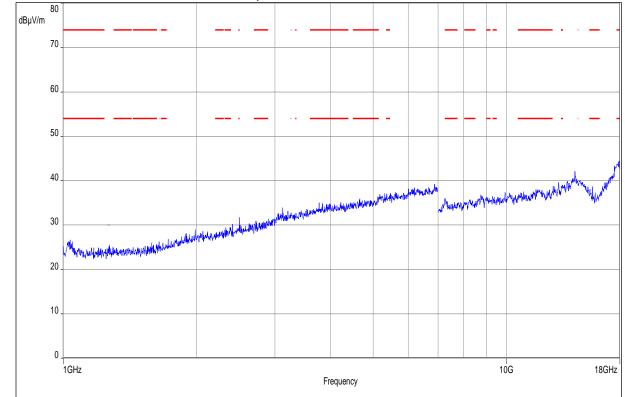

Measurement:

Measurement parameter			
Detector:	Peak / Quasi Peak		
Sweep time:	Auto		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Video bandwidth:	Auto		
Frequency range:	30 MHz to 100 GHz		
Trace-Mode:	Max Hold		

Measurement distance for	measurements above 18 GHz
Frequency rance in GHz	Distance in m
18-26.5	0.2
26.5-40	0.2
40-50	0.2
50-75	0.2
75-110	0.1
110-170	0.1
170-220	0.1


<u>Result:</u> The measurement is passed.





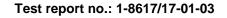
Plot 9: 9 kHz - 30 MHz, horizontal / vertical polarization

Plot 10: 30 MHz - 1 GHz, horizontal / vertical polarization

Plot 11: 1 GHz - 18 GHz, horizontal / vertical polarization

Plot 12: 18 GHz - 26.5 GHz, horizontal / vertical polarization

MultiView 🎫 Spec	trum X Spec	trum 2 🗙	Spectrum 3	× Spectru	um 4 🛛 🗙	Contract (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Ref Level 94.30 dB	uV Offset -12.70 dB	RBW 1 MHz		_	_	-		_
			Mode Auto Swee	p				
Frequency Sweep)						●1Pk M	ax 🛛 2Rm Max
90 dBµV							M1[1]	
90 uвµv								25.78250 Gł
							M2[2]	
30 dBµV								25.79100 G
4 dBuV 70 dBµV								
о ивру								
50 dBµV								
4 dBuV								
50 dBµV								
40 dBµV								-
an drugg								M1
10 dBUV	mound & man grammed	wanterwant	mulanaham	monthemation	when we has a partition	malementer	ment the ward and	about he was all when all
				, i i i i i i i i i i i i i i i i i i i				
20 dBµV								M2
			~	·			+	phone-
LO dBμV								
) dBµV								+
18.0 GHz		1001	ots	85	0.0 MHz/			26.5 GH
						 Measuring 		04.10.201 04.10.201 04.10
0:18:58 04.10.201								2012010

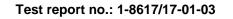

Test r	eport	no.:	1-861	7/17-	01-03
--------	-------	------	-------	-------	-------

Ref Level 9	Spectru	m 3 ×	Spectrum 4	×					
Att	0.00 авµV От 0 dB = SV		VBW/3MHz N	Inda Auto Swee					
I Frequency		103		Idde Adto Swee	.р			o 1Pk Ma	ax ⊜2Rm Ma×
,] 33.60 dB
								_	37.2690 G
80 dBµV								M2[2]21.80 dBj
									37.7810 GF
4 dBuV									
70 dBµ∨									
									I
60 dBµ∨									
									I
4 dBuV 50 dBµV									
50 ивру —									
									I
40 dBµ∨									
							M N		I
BB/dBpWWww	a por soame	and the second	mannhumm	monterrander	mannether	annewskine where the part	dentember how we	an when a provide	havenunnen
and and a state of the state of		and the second and the second s							I.
								M2	I
20_dBµV					+				
									I
ιο dBμV									
									I
									I
) dBµV									
									I
			1001		· .				40.0.01
26.5 GHz			1001 pt	s	1	.35 GHz/			40.0 GH
							Measuring		# 04.10.201 10:24:2

Plot 13: 26.5 GHz - 40 GHz, horizontal / vertical polarization

Plot 14: 40 GHz - 50 GHz, antenna vertical / horizontal

Att	0 dB 👄 SWT	t 0.55 dB • RBV 10 s • VBV	VI3 MHz Mode	Auto Sweep					
1 Frequency								o 1Pk M	lax 😑 2Rm Max
							M1	[1]	-58.23 dB
									41.86300 G
-10-dBm							M2	[2]	-69.76 dB
0013233									41.88300 G
-20 dBm									
N305550									
N305550									
40 dBm									
-50 dBm									
	M1								
	Υ.								
-60 dBm	me the Man war	more mouth market here	mannaman						+
	M2			morener	where the bendmin beren	wanderwardshi	mannamande	marganotration	manhander
-70 dBm									Anna I
_									
-80 dBm									+
-90 dBm									
Jo abin									
									1
40.0 GHz		1	1001 pt	 s	1	.0 GHz/			50.0 G
	V		1001 pt	<u>,</u>	1	10 01127	Measuring		04.10.20



Plot 15: 40 GHz - 50 GHz, antenna vertical / horizontal

MultiView	- Spectrum	13							
Ref Level 0.0		t 0.55 dB 😐 RBV	V 1 MHz						
Att	0 dB 🖷 SWT	10 s 🖷 VBV	VI 3 MHz Mode	Auto Sweep					
1 Frequency S	Sweep	1			1	1			ax ⊜2Rm Max
							M	1[1]	-58.23 dBm
									41.86300 GHz
-10-dBm FCC15255							M:	2[2]	-69.76 dBm
0013233									41.88300 GHz
-20 dBm									
00 dbw									
EN305550									
-40 dBm									
-50 dBm									
	M1								
-60 dBm	- Marine - Marine								
and all all and and all all all all all all all all all al	w New Marine	an a manufacture	annon	we wante where the walk to	march to a second	day in A bi	- 11. 6 4 1	mannahan	1.14
	M2				and the second second	MAN THE ACCOUNT AND	- mar to vitalite and a	mannahalutan	manchanter
-70 dBm									
-80 dBm									
-90 dBm								+	
40.0 GHz			1001 pts	<u> </u>	1	0 GHz/		<u> </u>	50.0 GHz
1010 0112	~		1001 pt.	-	1		Measuring		04.10.2019 10:28:16
									10.20.10
10:28:17 04.1	0.2019								

Plot 16: Out of Band FCC 15.255, 50 GHz - 75 GHz, antenna vertical / horizontal.

MultiView	Spectrum	13							
Ref Level 10	.00 dBm Offs	et 2.80 dB 🖷 RI	3W 1 MHz						_
🖷 Att	10 dB 👄 SWT	10 s 👄 VE	3WF3 MHz Mod	e Auto Sweep					
1 Frequency S	weep				_		●1Pk Ma	x Auto ID 😐 2Rn	n Max Auto ID
								M1[1]	
									60.6270 GHz
0 dBm								M2[2]	
									60.6020 GHz
-10-dBm FCC15255									
				M1 X					
-20 dBm				-					
				M2					
-30 dBm			~	NNA					
			1	" "W					
-40 dBm			MAN	N NA. W	MMmm	And underson	water	and the new m	non when when
Marananahar	www.hohodow	mount			100000		/		~
-60 dBm	~~~		\mathbb{W}	<u>, i i i i i i i i i i i i i i i i i i i</u>	WWW how	m			
-70 dBm									
-80 dBm									
-ou uBm									
50 0 CU -			1001+						75.0 GHz
50.0 GHz			1001 pt	, 		.5 GHz/	Measuring		75.0 GHZ 09.10.2019 10:54:47
10:54:48 09.10	0.2019								10.54:47

MultiView		rum 3			-	,						
Ref Level 10	0.00 dBm	Offset 2.8	30 dB 🖷 R	BW 1 MHz								
Att	10 dB 👄 :			BW 3 MHz N	lode A	uto Sweep						
1 Frequency S	Sweep									o1Pk M	ax Auto ID 🗧 2Rm	n Max Auto ID
											M1[1]	-16.74 dBm
												60.6270 GHz
0 dBm					_						M2[2]	
												60.6020 GHz
10 10												
FCC15255_RSS210	0					1						
						,						
-20 dBm					+	}						
					- 1.6							
-30 dBm					-IN	NΛ						
					~V 1	MAA						
-40 dBm				^		1.1						
				1 ANN	- 1 / { }	$ \Lambda \rangle \Lambda \rangle$					ma Munimum	which a writing
					- ALV	IN IN	WWW	MAN	As a submitted	manne or	Mark Comment	1 hm
-50 dBm-	umunto	menny	an wW	᠕ᡧᠮ᠋ᡰ᠋᠈᠕	ANN			t A A A	Y Y WAYNAM ZWYYM			
WHE WANT MAN	1 Martin Contractor		V U V		J Y Y J -	THUAA,					L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \sim$
-60 dBm				- AAAAAA	Ι III ·		1/1/1/1/1	~~~~				L
				MAAAA			ľ	/\/ -				
				`								
-70 dBm												
-80 dBm												
00 0011												
50.0 GHz				1001	nts				2.5 GHz/			75.0 GHz
0010 0112	~			1001	різ			2	-10 OHZ/ V	Measuring		09.10.2019 10:53:21
10.52.21 00 1	0.0010											
10:53:21 09.1	.0.2019											

Plot 17: Out of Band RSS-210, 50 GHz - 75 GHz, antenna vertical / horizontal.

Plot 18: 75 GHz - 110 GHz, antenna vertical / horizontal

fulti¥iew Spum	Spm2	Spem3	× Spem4	× Spem5	Spem6	Spem7	×	
Ref Level 0.00 dBm	Offset 31.40 dB 🖷	RBW 1 MHz	_				_	
	SWT 10 s 🖷	• VBW 3 MHz	Mode Auto Swe	ep				
Inp: ExtMix W Frequency Sweep						o 1 Dk Ma	x Auto ID ⊜2R	m May Auto II
Trequency Sweep						O I K MG	M2[2]	
								100.3320 G
10-dBm 							M1[1]	
								102.7450 G
29-98 gb								
1305550								
20. dbm								
30 dBm							-	
						M		
40 dBm					when mark warmen and	we was a second and the second and the second se	Marken Marken Mark	and many when
while man which wh	manuneropen	mangeneration	Monownhatten	www.anna	where we want the ward	M2		
50 dBm								
		1			~~~~			
60 dBm								
70 dBm								
/o dbin								
80 dBm								
90 dBm								
75.0 GHz		10	01 pts		3.5 GHz/			110.0 G
		10	01 pt5		010 01127	Measuring		04.10.20 09:31:
						measuring		09:31:

Test	report	no.:	1-861	7/17-01-0	3
------	--------	------	-------	-----------	---

Ref Level 20.00 dBm		VBW 3 MHz Mod	le Auto Sweep					
Inp: ExtMix D								
Frequency Sweep						0 1 PK Ma	ax Auto ID ⊜2Rr M1[1]	1
							WILLI	165.1150 GF
0 dBm							M2[2]-	-45,54 dB
								165.7140 GH
dBm								
iBm								
P-dBm 15255								
0 dBm								
305550								M1
								and many many
A MARINA A				Mannah	when the whether when the work of the second	and wathing the and	enter and a monthly the	- mumme
D dBm that and an all and a second	har shake .		manyadamina	monore	when when the many			M2
\[an sea be me a shere for she	and an and all and a second						
D dBm					\rightarrow		1	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
0 dBm								
'O dBm								
= 140.0 GHz		1001 pt	5		6.0 GHz/			Span 60.0 GH
						Measuring		04.10.2019 09:39:23

### Plot 19: 110 GHz - 170 GHz, antenna vertical / horizontal

# Plot 20: 170 GHz - 220 GHz, antenna vertical / horizontal

MultiView Sp., t	ım 🗙 Sp	m2 × Sp	em3 🗙	Spem4	Spem5	🗙 Spemб	Spem7	×	
Ref Level 20.		et 36.60 dB 🖷 RE							
Inp: ExtMix G	● SWT	10 s 🖶 VE	W 3 MHz Mo	de Auto Sweep					
1 Frequency S	weep			1			o1Pk Ma	x Auto ID 😐 2Rr	1
10 dBm								M1[1] M2[2]	-31.29 dBm 194.1010 GHz -43.37 dBm
10 ubm									197.9470 GHz
0 dBm									
FCC15295									
-20 dBm									
EN305550				M1					
hendroppen	When manders	and and the second	chelline and a company of the second	mannews	align ward and a strand strand	monorman	monteren	approximation and a second	whenderedowned
-40 dBm					M2 				
-50 dBm									
-60 dBm									
-70 dBm									
170.0 GHz	~		1001 pt	s	5	.0 GHz/	Measuring		220.0 GHz 04.10.2019 09:49:08
09:49:08 04.10	0.2019								09:49:08



# 11.4 Spurious emissions conducted < 30 MHz (AC power line)

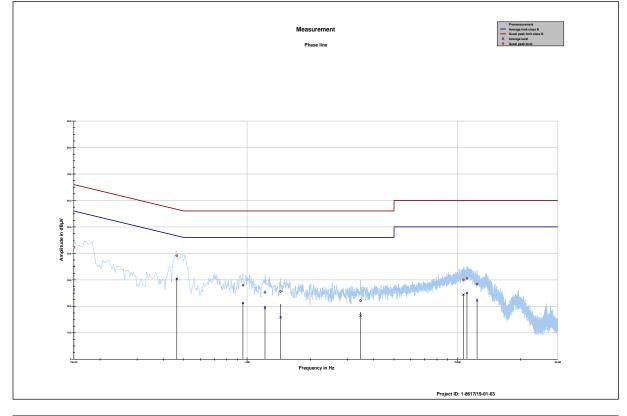
# **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

## Measurement:

Measurement parameter			
Detector:	Peak - Quasi Peak / Average		
Sweep time:	Auto		
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Span:	9 kHz to 30 MHz		
Trace-Mode:	Max Hold		

# Limits:

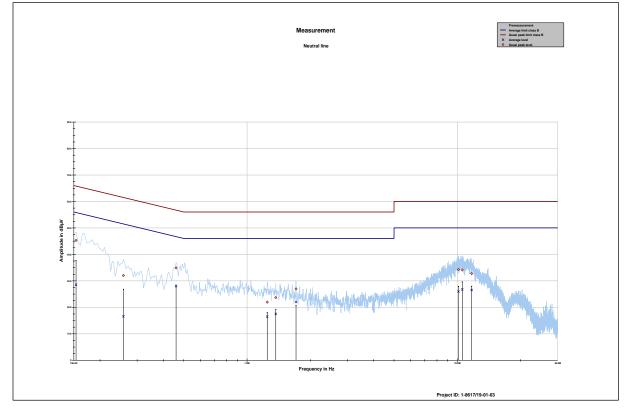

FCC			IC
CFR Part 15.207(a)		RSS-Gen 8.8	
	Conducted Spurious	Emissions < 30 MHz	
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBµV/m)
0.15 – 0.5	79 to 69* (Class A) 66 to 56* (Class B)		79 to 69* (Class A) 56 to 46* (Class B)
0.5 – 5	73 (Class A) 56 (Class B)		63 (Class A) 46 (Class B)
5 - 30.0	73 (Class A) 60 (Class B)		63 (Class A) 50 (Class B)

*Decreases with the logarithm of the frequency

Result: The measurement is passed.

# Test report no.: 1-8617/17-01-03

Plot No. 21: Phase line




Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150000	42.26	23.74	66.000	26.31	29.69	56.000
0.463425	39.09	17.54	56.631	30.29	16.76	47.045
0.955950	27.97	28.03	56.000	21.23	24.77	46.000
1.217137	25.28	30.72	56.000	19.34	26.66	46.000
1.444744	25.65	30.35	56.000	15.81	30.19	46.000
3.467081	22.13	33.87	56.000	16.45	29.55	46.000
10.690781	29.95	30.05	60.000	24.37	25.63	50.000
11.112412	30.59	29.41	60.000	25.02	24.98	50.000
12.410887	28.43	31.57	60.000	22.26	27.74	50.000



# Test report no.: 1-8617/17-01-03

Plot No. 22: Neutral line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.153731	45.30	20.49	65.796	28.52	27.37	55.893
0.258206	32.01	29.48	61.489	16.58	36.33	52.908
0.459694	34.88	21.81	56.698	28.16	18.99	47.152
1.246987	21.94	34.06	56.000	16.50	29.50	46.000
1.370119	23.67	32.33	56.000	17.52	28.48	46.000
1.709663	26.96	29.04	56.000	22.00	24.00	46.000
10.127363	34.27	25.73	60.000	25.95	24.05	50.000
10.556456	34.14	25.86	60.000	26.74	23.26	50.000
11.698219	32.78	27.22	60.000	26.52	23.48	50.000





# **11.5 Frequency Stability**

## **Description:**

Measurement of the radiated spurious emissions in transmit mode.

### Limits:

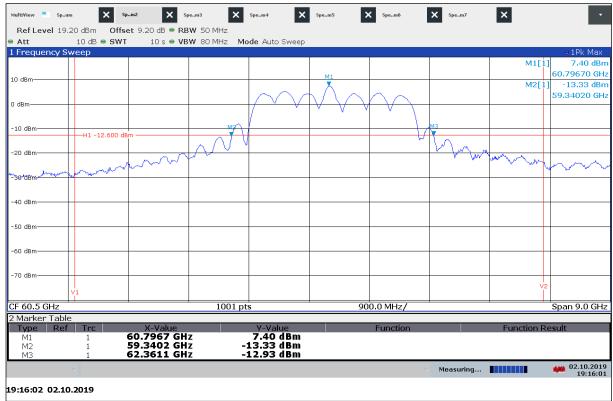
(e) *Frequency stability.* Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

FCC	IC		
CFR Part 15.255 RSS-210 J.1			
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:			
Frequency range			
57 GHz – 71 GHz	57 GHz – 64 GHz		

#### Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	10 s	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Span:	9 GHz	
Trace-Mode:	Max Hold	
Temperature:	-40 °C / +85 °C	

#### **Measurement Results:**


Test condition	F _L in GHz	F _H in GHz	
T _{min}	59.340 200	62.361 100	
T _{max}	59.106 400	62.010 500	
V _{min}	59.196 300	62.181 300	
V _{max}	59.187 300	62.163 300	

**Note:** The corresponding plots show a Max-Hold trace over 10 minutes after the EUT is powered on at the corresponding Temperature/Voltage. Therefore the plots show the worst case results of the frequency stability after 2, 5 and 10 minutes.

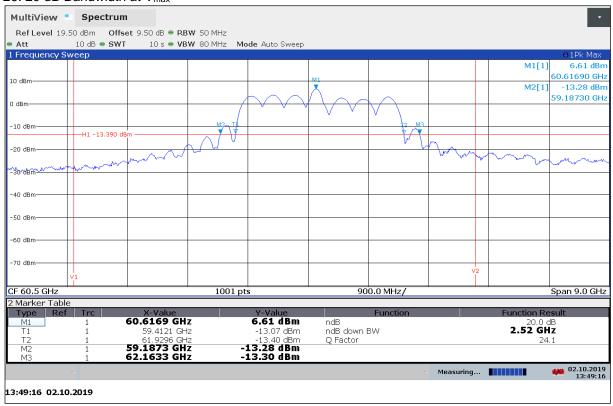
#### Result: The measurement is passed.



Plot 23: 20 dB-Bandwidth at Tmin



## Plot 24: 20 dB Bandwidth at T_{max}






#### Plot 25: 20 dB-Bandwidth at Vmin



#### Plot 26: 20 dB Bandwidth at Vmax





EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
ETSI	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

# 13 Document history

Version	Applied changes	Date of release
-/-	Initial release - DRAFT	2019-10-07
-/-	DRAFT2 (In-band Offset updated)	2019-10-09
-/-	Minor changes	2019-10-10