H@, **&&7 G**@

DATASHEET

Customer confirmation print column				
Customer	Approve	Date		

Reversion History:

Version	Date	Modification
1.0	2020.12.30	First release

1. Overview

The VN: : 44EUN is based on RTL8822CS, Complied with IEEE 802.11a/b/g/n/ac2T2R SDIO3.0 WLAN controller. It combines a WLAN MAC, a 2T2R capable WLANbaseband, BT Protocol Stack (LM, LL, and LE), BT Baseband, modem, and WLAN/BT RFin a single chip. The RTL8822CS provides a complete solution for a high throughputperformance intergrated wireless LAN and Bluetooth device.

2. Features

- Supports 802.11ac 2x2, Wave-2 compliant with MU-MIMO
- 802.11a/b/g/n/ac Draft 3.0 2T2R WLAN and Bluetooth single module
- Complies with SDIO3.0 for WLAN and UART/PCM interface for BT controller
- Support WLAN 2.4GHz and 5GHz band channels
- Support WLAN 20MHz, 40MHz and 80MHz bandwidth transmission
- WLAN maximum PHY data rate 54Mbps in 802.11a/g; and 300Mbps in 802.11n; and 867Mbps in 802.11ac
- Supports Bluetooth Low Energy
- Supports Bluetooth 4.2 LE Secure Connection by upper layer software upgrade

3. Block Diagram

The block diagram is a long-term confidential document and does not reflect

4. General Specification

Model	VŠÌ Ì GOÛŬŠ
Product Name	WLAN 11a/b/g/n/ac SDIO3.0 2T2R + Bluetooth 4.2 module
Major Chipset	RTL8822CS-VL-CG
Standard	802.11a/b/g/n/ac
Modulation Method	BPSK/ QPSK/ 16-QAM/ 64-QAM/256-QAM
Frequency Band	2.4GHz and 5GHz ISM Band
WiFi Interface	SDIO3.0
BT Interface	UART
Operating Temperature	$-20 \text{ C}^{\circ} \sim 70 \text{ C}^{\circ}$
Storage Temperature	$-40 \text{ C}^{\circ} \sim 85 \text{ C}^{\circ}$
Humidity	5% to 90% maximum
Dimension	15x13x1.8 (LxWxH) ±0.3mm

5. Electrical Characteristics 5.1WiFi Section:

A. 2.4GHz RF Specification

Feature	Description			
WLAN Standard	IEEE 802.11a/b/g/n/ac WiFi complian			
Frequency Range	2.400 GHz ~ 2.4835 GHz (2.4 GHz ISM Band)			
Number of Channels	2.4GHz: Ch1 ~	~ Ch14		
Modulation	802.11b : DQP	SK, DBPSK, CCK		
Modulation	802.11 g/n : OF	DM /64-QAM,16-QAM, QPSK, BPSK		
	802.11b /1Mbps	s : 18dBm \pm 1.5 dB @ EVM \leqslant -15dB		
	802.11b /11Mbp	os : 17dBm \pm 1.5 dB @ EVM \leqslant -15dB		
	802.11g /6Mbps	s : 17 dBm \pm 1.5 dB @ EVM \leqslant -5dB		
Output Power	802.11g /54Mbj	ps : 15 dBm \pm 1.5 dB @ EVM \leqslant -28dB		
	802.11n HT20 /	/MCS0 : 17 dBm \pm 1.5 dB @ EVM \leqslant -5dB		
	802.11n HT20/	MCS7 : 14 dBm \pm 1.5 dB @ EVM \leqslant -30dB		
	802.11n HT40 /	802.11n HT40 /MCS0 : 17 dBm \pm 1.5 dB @ EVM \leq -5dB		
	802.11n HT40/MCS7 : 14 dBm \pm 1.5 dB @ EVM \leq -30dB			
Receive	- 1Mbps	PER @ -93 dBm, typical		
Sensitivity	- 2Mbps	PER @ -91 dBm, typical		
(11b,20MHz)	- 5.5Mbps PER @ -88 dBm, typical			
@8% PER	- 11Mbps	PER @ -86 dBm, typical		
	- 6Mbps	PER @ -90 dBm, typical		
	- 9Mbps	PER @ -89 dBm, typical		
Receive	- 12Mbps	PER @ -88 dBm, typical		
	- 18Mbps PER @ -85 dBm, typical			
Sensitivity	- 24Mbps PER @ -82 dBm, typical			
(11g,20MHz)	- 36Mbps PER @ -79 dBm, typical			
@10% PER	- 48Mbps	PER @ -74 dBm, typical		
	- 54Mbps	PER @ -72 dBm, typical		

- MCS=0	PER @ -90 dBm, typical

	- MCS=1	PER @ -87 dBm, typical	
Receive	- MCS=2	PER @ -85 dBm, typical	
Sensitivity	- MCS=3	PER @ -81 dBm, typical	
(11n,20MHz)	- MCS=4	PER @ -78 dBm, typical	
@10% PER	- MCS=5	PER @ -73 dBm, typical	
	- MCS=6	PER @ -72 dBm, typical	
	- MCS=7	PER @ -70 dBm, typical	
	- MCS=0	PER @ -87 dBm, typical	
	- MCS=1	PER @ -84 dBm, typical	
	- MCS=2	PER @ -82 dBm, typical	
Receive	- MCS=3	PER @ -79 dBm, typical	
Sensitivity	- MCS=4	PER @ -75 dBm, typical	
(11n,40MHz)	- MCS=5	PER @ -71 dBm, typical	
	- MCS=6	PER @ -69 dBm, typical	
@10% PER	- MCS=7	PER @ -68 dBm, typical	
Maximum Input	802.11b : -10 dBm		
Level	802.11g/n : -20 dBm		
Antenna Reference	Small antennas with 0~2 dBi peak gain		

B. 5GHz RF Specification

Feature	Description
WLAN Standard	IEEE 802.11a/n/ac 2x2, WiFi compliant
Frequency Range	4.900 GHz ~ 5.845 GHz (5.0 GHz ISM Band)
Number of Channels	5.0GHz. Please see the table
	802.11a : OFDM /64-QAM,16-QAM, QPSK, BPSK
Modulation	802.11n : OFDM /64-QAM,16-QAM, QPSK, BPSK
	802.11ac : OFDM /256-QAM
	802.11a /6Mbps : 17 dBm \pm 1.5dB @ EVM \leqslant -5dB
	802.11a /54Mbps : 15 dBm \pm 1.5dB @ EVM \leqslant -25dB
Output Power Receive	802.11n HT20 /MCS0 : 17 dBm \pm 1.5 dB @ EVM \leq -5dB
	802.11n HT20 /MCS7 : 14 dBm \pm 1.5 dB @ EVM \leqslant -28dB
Sensitivity	802.11n HT40 /MCS0 : 17 dBm \pm 1.5 dB @ EVM \leq -5dB
(11a,20MHz) @10%	802.11n HT40 /MCS7 : 14 dBm \pm 1.5 dB @ EVM \leqslant -28dB
	802.11ac VHT20 /MCS0 : 17 dBm \pm 1.5 dB @ EVM \leqslant -5dB
PER	802.11ac VHT20 /MCS8 : 14 dBm \pm 1.5 dB @ EVM \leqslant -30dB
	802.11ac VHT40 /MCS0 : 16dBm \pm 1.5 dB @ EVM \leq -5dB
	802.11ac VHT40 /MCS9 : 13dBm \pm 1.5 dB @ EVM \leqslant -32dB
	802.11ac VHT80 /MCS0 : 16 dBm \pm 1.5 dB @ EVM \leq -32dB
	802.11ac VHT80 /MCS9 : 13 dBm \pm 1.5 dB $@$ EVM \leqslant -32dB

	- 6Mbps	PER @ -89 dBm, typical	
	- 9Mbps	PER @ -88 dBm, typical	
	- 12Mbps	PER @ -87 dBm, typical	
Receive Sensitivity	- 18Mbps	PER @ -84 dBm, typical	
	- 24Mbps	PER @ -81 dBm, typical	
(11a,20MHz) @10% PER	- 36Mbps	PER @ -78 dBm, typical	
	- 48Mbps	PER @ -73 dBm, typical	
	- 54Mbps	PER @ -72 dBm, typical	
	- MCS=0	PER @ -89 dBm, typical	
	- MCS=1	PER @ -86 dBm, typical	
	- MCS=2	PER @ -84 dBm, typical	
	- MCS=3	PER @ -81 dBm, typical	
Receive Sensitivity	- MCS=4	PER @ -77 dBm, typical	
(11n,20MHz) @10% PER	- MCS=5	PER @ -72 dBm, typical	
	- MCS=6	PER @ -71 dBm, typical	
	- MCS=7	PER @ -68 dBm, typical	
	- MCS=0	PER @ -86 dBm, typical	
	- MCS=1	PER @ -83 dBm, typical	
	- MCS=2	PER @ -81 dBm, typical	
Receive Sensitivity	- MCS=3	PER @ -78 dBm, typical	
	- MCS=4	PER @ -74 dBm, typical	
(11n,40MHz) @10% PER	- MCS=5	PER @ -70 dBm, typical	
	- MCS=6	PER @ -68 dBm, typical	
	- MCS=7	PER @ -67 dBm, typical	
		1 PER @ -87 dBm, typical	
		1 PER @ -85 dBm, typical	
		1 PER @ -83 dBm, typical	
	- MCS=3, NSS1 PER @ -80 dBm, typical		
Receive Sensitivity		1 PER @ -76 dBm, typical	
(11ac,20MHz) @10% PER - MCS=5, NSS1 PER @ -71 dBm, typical			
		1 PER @ -70 dBm, typical	
		1 PER @ -69 dBm, typical	
	- MCS=8, NSS	1 PER @ -65 dBm, typical	

	- MCS=0, NSS1 PER @ -85 dBm, typical
	- MCS=1, NSS1 PER @ -82 dBm, typical
	- MCS=2, NSS1 PER @ -80 dBm, typical
	- MCS=3, NSS1 PER @ -77 dBm, typical
Receive Sensitivity	- MCS=4, NSS1 PER @ -74 dBm, typical
(11ac,40MHz) @10% PER	- MCS=5, NSS1 PER @ -69 dBm, typical
	- MCS=6, NSS1 PER @ -68 dBm, typical
	- MCS=7, NSS1 PER @ -67 dBm, typical
	- MCS=8, NSS1 PER @ -62 dBm, typical
	- MCS=9, NSS1 PER @ -58 dBm, typical
	- MCS=0, NSS1 PER @ -82 dBm, typical
	- MCS=1, NSS1 PER @ -79 dBm, typical
	- MCS=2, NSS1 PER @ -77 dBm, typical
	- MCS=3, NSS1 PER @ -73 dBm, typical
Receive Sensitivity	- MCS=4, NSS1 PER @ -70 dBm, typical
, ,	- MCS=5, NSS1 PER @ -67 dBm, typical
(11ac,80MHz) @10% PER	- MCS=6, NSS1 PER @ -65 dBm, typical
	- MCS=7, NSS1 PER @ -63 dBm, typical
	- MCS=8, NSS1 PER @ -59 dBm, typical
	- MCS=9, NSS1 PER @ -55 dBm, typical
Maximum Input Level	802.11a/n/ac : -20 dBm
Antenna Reference	Small antennas with 0~2 dBi peak gain

5.2 5GHz(20MHz) Channel table

Band GHz	Operating Channe Numbers	Channel center frequencies(MHz)
	36	5180
	40	5200
5.15GHz~5.25GHz	44	5220
	48	5240
	52	5260
	56	5280
5.25GHz~5.35GHz	60	5300
	64	5320
	100	5500
	104	5520
	108	5540
	112	5560
5.5GHz~5.7GHz	116	5580
5.5GHZ~5.7GHZ	120	5600
	124	5620
	128	5640
	132	5660
	136	5680
	140	5700
	149	5745
	153	5765
5.725GHz~5.825GHz	157	5785
	161	5805
	165	5825

53	Bluetooth	Section:
J .J	Dideloolii	Section.

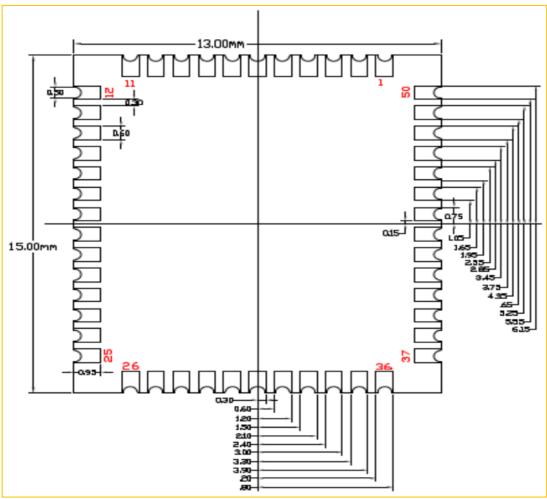
Feature	Description			
General Specification				
Bluetooth Standard	Bluetooth V4.2 of	Bluetooth V4.2 of 1, 2 and 3 Mbps.		
Host Interface	UART			
Antenna Reference	Small antennas w	vith 0∼2 dBi peak gair	1	
Frequency Band	2402 MHz ~ 2480) MHz		
Number of Channels	79 channels			
Modulation	FHSS, GFSK, DF	PSK, DQPSK		
RF Specification				
	Min.	Typical.	Max.	
Output Power (Class 1.5)		10 dBm		
Output Power (Class 2)		2 dBm		
Sensitivity @ BER=0.1%		-89 dBm		
for GFSK (1Mbps)				
Sensitivity @ BER=0.01%				
for π/4-DQPSK (2Mbps)		-86 dBm		
Sensitivity @ BER=0.01%		-83 dBm		
for 8DPSK (3Mbps)				
	GFSK (1Mbps):-20dBm			
Maximum Input Level				
	8DPSK (3Mbps) :-20dBm			

6.Electrical Characteristics

A. Power requirements

symbol	Parameter	Minimum	Typical	Maximum	Units
VCC	3.3V supply voltage	3.135	3.3	3.465	V
VDDIO	I/O supply voltage	1.71	1.8 or 3.3	3.46	V
Current	3.3V rating current			1000	mA

B. Power Consumption


*Note1:Measurement duration condition by 10 sec

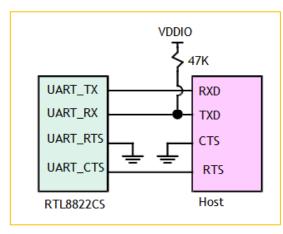
*Note2:SD_CLK=200MHz

*Note3:Non-Associated idle Scan Period=1 min

(Unit:mA@3.3V)				BT	-	
WLAN			Disable	Idle	FTP	FTP
					TX	RX
	Non-Associated	idle	13.8			
Associated idle	DTIM=1	5GHz	4			
		2.4GHz	6			
WoWLAN	DTIM=1	5GHz	2.7			
		2.4GHz	4.8			
	Radio off		NA			
	Disable		1.1			
		Throughput(Mbps)				
Transmit@V	/HT80,11ac	514	562			
Receive@V	/H80,11ac	550	312			
Transmit@V	/HT40,11ac	270	570			
Receive@V	/H40,11ac	250	248			
Transmit@V	/HT20,11ac	129	589			
Receive@V	/H20,11ac	127	210			
Transmit@	HT40,11n	214	615			
Receive@	H40,11n	220	235			
Transmit@	HT20,11n	110	578			
Receive@	H20,11n	107	187			
Transmi	t@54M	29	322			
(g mode)		29	322			
Receive@54M,11n		26	102			
(g mode)		20	192			
Transmit@11M,11n		5	328			
	(b mode)		320			
0	Receive@11M,11n		220			
(b me	ode)	5	220			

7.Footprint Dimension

8.Pin Description

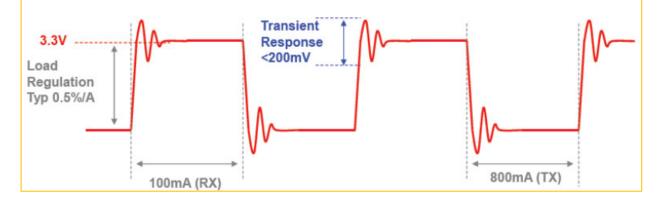

NO.	Name	Туре	Description	
1	GND		Ground connections	
2	ANT0	I/O	WL_RF I/O port chain0	
3	GND		Ground connections	
4	GND		Ground connections	
5	GND	_	Ground connections	
6	GND		Ground connections	
7	GND	_	Ground connections	
8	GND		Ground connections	
9	ANT1	I/O	WL_RF I/O port chain1	
10	GND		Ground connections	
11	GND		Ground connections	
12	ANT2	I/O	BT_RF_IN/OUT(NonSharedAnt-BT)	
13	GND		Ground connections	
14	NC	_	No connect	
15	WL_REG_ON	Ι	WL_EN(GPIO15)	
16	WL_WAKE_HOST	О	WLAN wake host (GPIO10)	
17	SDIO_CMD	I/O	SDIO command line	
18	SDIO_CLK	I/O	SDIO CLK	
19	SDIO_DATA_3	I/O	SDIO DATA3	
20	SDIO_DATA_2	I/O	SDIO DATA2	
21	SDIO_DATA_0	I/O	SDIO DATA0	
22	SDIO_DATA_1	I/O	SDIO DATA1	
23	GND		Ground connections	
24	SDIO_INTERRUPT	Ι	SDIO interrupt signal (GPIO10)	

25	NC		No connect	
26	NC		No connect	
27	PCM_SYNC	I/O	PCM sync signal	
28	PCM_IN	Ι	PCM DATA INPUT	
29	PCM_OUT	Ι	PCM DATA OUTPUT	
30	PCM_CLK	I/O	PCM CLK	
31	LPO	_	No connect	
32	GND		Ground connections	
33	NC		No connect	
34	VDDIO	Р	I/O Voltage supply input 1.8V or 3.3V	
35	NC		No connect	
36	VCC	Р	3.3V INPUT	
37	NC		No connect	
38	BT_REG_ON		BT_EN(GPIO11)	
39	GND		Ground connections	
40	UART_TXD	О	Bluetooth UART interface	
41	UART_RXD	Ι	Bluetooth UART interface	
42	UART_RTS_N	0	Bluetooth UART interface	
43	UART CTS N	Ι	Bluetooth UART interface	
44	SD_RESET		No connect	
45	NC	_	No connect	
46	GND		Ground connections	
47	NC		No connect	
48	GND		Ground connections	
49	HOST_WAKE_BT		HOST_WAKE_BT(GPIO13)	

50	BT_WAKE_HOST	0	BT_WAKE_HOST (GPIO14)					
9.Sche	9.Schematic design guide							
	Schematics a	are long-term co	nfidential information					
			··· ~ ·					

- 1. RF reserves C-L-C components for impedance matching fine tuning.
- 2. SDIO 3.0: VDDIO connects 1.8V.
- 3. Pull high resistance is reserved for SDIO signal line.
- 4. BT HCI is the UART interface, the connection is as follows, UART_RX is

recommended to add Pull High resistor.


SCH - 3.3V Source Transient Requirements

- Module 3.3V power supply requires a dedicated voltage regulator and cannot be shared with other circuits.
- Line regulation:0.05% Load Regulation: 0.5%
- Transient response: Transient chopping amplitude of 100/800mA step load variation

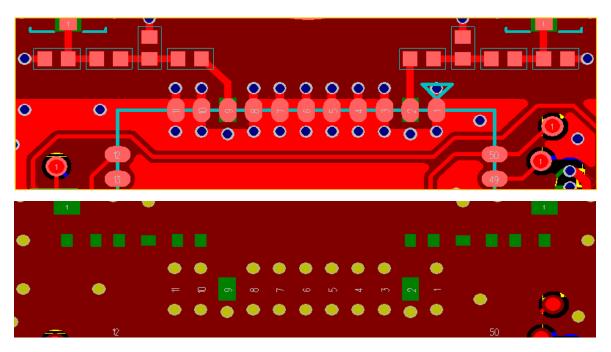
should be less than 200mVpp, and transient chopping should be stable within 3 natural frequency response periods.

Regulator noise and stability: It is necessary to confirm that the regulator has no

abnormal noise or low frequency oscillation that is difficult to observe.

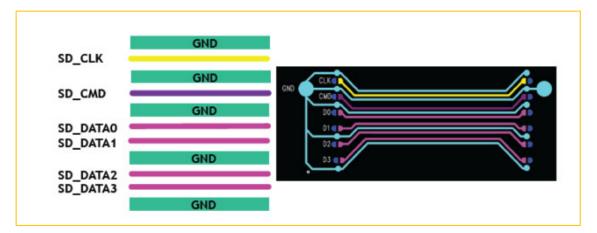
10.PCB design guide

- The following table provides recommendations for the layout of the 2-layer, 4-layer, and 6-layer PCBs.
- Except the 2-layer board, Layer 2 must be a full GND, providing a complete reference ground for the RF trace of Layer 1 and isolating noise from other layers.
- The characteristic impedance of the RF trace must be 50 +/- 10% ohms. Please ask the


board supplier to provide a dicing report to confirm compliant	nce.
--	------

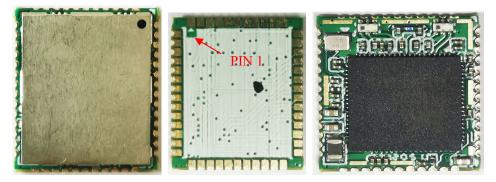
Layer	Layer 2 Design Advice	Layer 4Design Advice	Layer 6 Design Advice
Layer 1	Component placement / RF signal routing	Component placement / RF signal routing	Component placement / RF signal routing
Layer 2	GND/Power supply	GND	GND

Layer 3	Х	Power supply/signal routing	Analogy power supply/signal routing
Layer 4	Х	Power supply/signal routing/GND	GND
Layer 5	Х	Х	Digital power supply/signal
Layer 6	Х	Х	GND

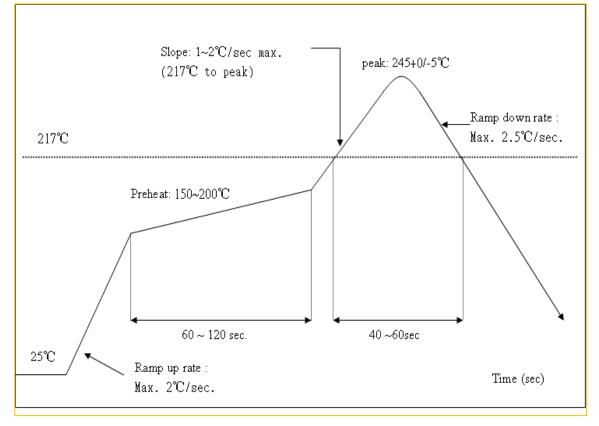

■ The characteristic impedance of the RF signal traces must be 50 ohm.

■ 4L PCB RF foot Pad must keep out >=10mil in the TOP layer, and for Pad with larger width (>=1.3 times line width), the GND of L2 just under it must be hollowed out with equal area, as shown below.
■ 2L PCB RF wire must be covered with copper foil, and the copper spacing is recommended to be 4mil

- 3.3V voltage regulator supply to the module, power supply pin routing should be as thick as possible and short circuit resistance should be as much as possible <0.05 ohm.</p>
- 10uF power supply capacitance must be placed close to the module pin.
- SDIO traces.
 - 1. Keep the characteristic impedance of SDIO traces ~50 ohm.
 - 2. The traces(CLK, CMD, D0~D3)difference shall be kept +/-100 mil, the total length shall be <2.5 inches.
 - 3. All traces shall go along with the reference GND, and there must be no shunt stubs on those traces.
 - 4. There must be less than 4 via on each signal trace(CLK, CMD, D0~D3).


- 5. Keep the CLK trace away from CMD and DATA traces and have it go along (better shielded) with GND track.
- 6. For 2L PCB, it is better to have GND traces. The end points of both ends of this GND line must be connected directly to the GND of the module and Host.

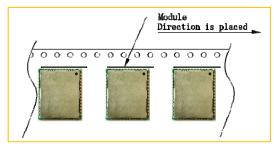
11.Suplier


Secondary supplier list				
Material name Supplier brand				
Wifi IC	Realtek			
Crystal TKD , TXC				
РСВА	A, O, S, I			
Diplexer	TDK, ACX, Walsin, GLEAD, Sunlord			
Power inductance	Sunlord, CHILISIN, SAMWHA			
Capacitance	SAMSUNG /EYANG			
Resistance	UniOhm /YAGEO/Walsin			

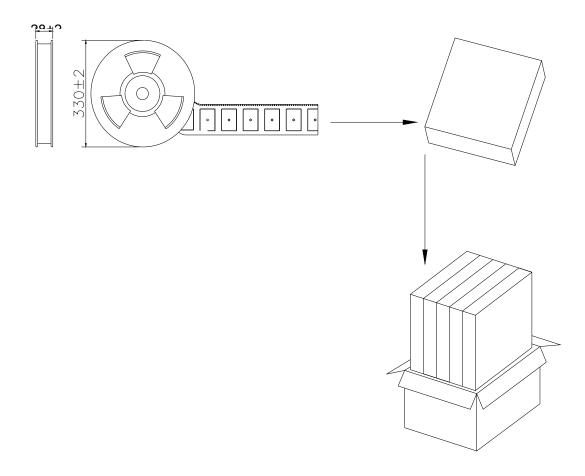
12.Module Photo

13.Recommended Reflow Profile

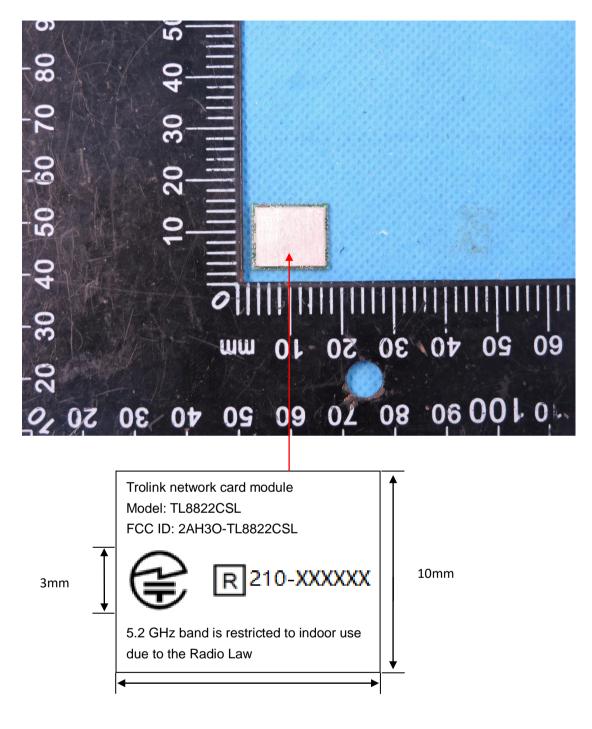
Referred IPC/JEDEC standard. Peak Temperature :<250 · C Number of Times : 2 ti**m**es



14.Packing information


14.1 Carrier size Detail:

14.2 Packaging Detail:



8.Package

The D1822CS-00 is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although A1_8822CS is with built-in ESD protection circuitry, please handle with care to avoid the permanent malfunction or the performance degradation.

10mm

Black font on a white label

Antenna Specification

Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
Rapsodo	TL8822CSL	Dipole	N/A	2.4G: 2dBi, 5G: 4.3dBi	WIFI/BT Antenna

FCC Statement

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The modular can be installed or integrated in mobile or fix devices only. This modular cannot be installed in any portable device.

FCC Radiation Exposure Statement

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This modular must be installed and operated with a minimum distance of 20 cm between the radiator and user body.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2AH3O-TL8822CSL Or Contains FCC ID: 2AH3O-TL8822CSL"

When the module is installed inside another device, the user manual of the host must contain below warning statements;

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product.

Any company of the host device which install this modular with Single modular approval should perform the test of radiated emissionand spurious emission according to FCC part 15C : 15.247 and 15.209 requirement, Only if the test result comply with FCC part 15C : 15.247 and 15.209 requirement, then the host can be sold legally.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

Information that must be placed in the end user manual:

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

2.2 List of applicable FCC rules

List the FCC rules that are applicable to the modular transmitter. These are the rules that specifically establish the bands of operation, the power, spurious emissions, and operating fundamental frequencies. DO NOT list compliance to unintentional-radiator rules (Part 15 Subpart B) since that is not a condition of a module grant that is extended to a host manufacturer. See also Section 2.10 below

concerning the need to notify host manufacturers that further testing is required.3 Explanation: This module meets the requirements of FCC part 15C(15.247).

2.3 Summarize the specific operational use conditions

Describe use conditions that are applicable to the modular transmitter, including for example any limits on antennas, etc. For example, if point-to-point antennas are used that require reduction in power or compensation for cable loss, then this information must be in the instructions. If the use condition limitations extend to professional users, then instructions must state that this information also extends to the host manufacturer's instruction manual. In addition, certain information may also be needed, such as peak gain per frequency band and minimum gain, specifically for master devices in 5 GHz DFS bands.

Explanation: The EUT No Antenna, The dipole antenna was used for the test .

2.4 Limited module procedures

If a modular transmitter is approved as a "limited module," then the module manufacturer is responsible for approving the host environment that the limited module is used with. The manufacturer of a limited module must describe, both in the filing and in the installation instructions, the alternative means that the limited module manufacturer uses to verify that the host meets the necessary requirements to satisfy the module limiting conditions. A limited module manufacturer has the flexibility to define its alternative method to address the conditions that limit the initial approval, such as: shielding, minimum signaling amplitude, buffered modulation/data inputs, or power supply regulation. The alternative method could include that the limited module manufacturer reviews detailed test data or host designs prior to giving the host manufacturer approval.

This limited module procedure is also applicable for RF exposure evaluation when it is necessary to demonstrate compliance in a specific host. The module manufacturer must state how control of the product into which the modular transmitter will be installed will be maintained such that full compliance of the product is always ensured. For additional hosts other than the specific host originally granted with a limited module, a Class II permissive change is required on the module grant to register the additional host as a specific host also approved with the module. Explanation: The Module is a limited module, Refer to the manual for detailed instructions.

2.5 Trace antenna designs

For a modular transmitter with trace antenna designs, see the guidance in Question 11 of KDB Publication 996369 D02 FAQ – Modules for Micro-Strip Antennas and traces. The integration information shall include for the TCB review the integration instructions for the following aspects: layout of trace design, parts list (BOM), antenna, connectors, and isolation requirements.

a) Information that includes permitted variances (e.g., trace boundary limits, thickness, length, width, shape(s),

dielectric constant, and impedance as applicable for each type of antenna);

b) Each design shall be considered a different type (e.g., antenna length in multiple(s) of frequency, the wavelength, and antenna shape (traces in phase) can affect antenna gain and must be considered); c) The parameters shall be provided in a manner permitting host manufacturers to design the printed circuit (PC) board layout;

d) Appropriate parts by manufacturer and specifications;

e) Test procedures for design verification; and

f) Production test procedures for ensuring compliance.

The module grantee shall provide a notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify the module grantee that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the grantee, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

Explanation: The EUT No Antenna, The dipole antenna was used for the test .

2.6 RF exposure considerations

It is essential for module grantees to clearly and explicitly state the RF exposure conditions that permit a host product manufacturer to use the module. Two types of instructions are required for RF exposure information: (1) to the host product manufacturer, to define the application conditions (mobile, portable – xx cm from a person's body); and (2) additional text needed for the host product manufacturer to provide to end users in their end-product manufacturer is required to take responsibility of the module through a change in FCC ID (new application). Explanation: This module complies with FCC RF radiation exposure limits set forth for an uncontrolled environment, This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body." This module is designed to comply with the FCC statement, FCC ID is: 2AH3O-TL8822CSL.

2.7 Antennas

A list of antennas included in the application for certification must be provided in the instructions. For modular transmitters approved as limited modules, all applicable professional installer instructions must be included as part of the information to the host product manufacturer. The antenna list shall also identify the antenna types (monopole, PIFA, dipole, etc. (note that for example an "omni-directional antenna" is not considered to be a specific "antenna type")).

For situations where the host product manufacturer is responsible for an external connector, for example with an RF pin and antenna trace design, the integration instructions shall inform the installer that unique antenna connector must be used on the Part 15 authorized transmitters used in the host product. The module manufacturers shall provide a list of acceptable unique connectors.

Explanation: The EUT No Antenna, The dipole antenna was used for the test .

2.8 Label and compliance information

Grantees are responsible for the continued compliance of their modules to the FCC rules. This includes advising host product manufacturers that they need to provide a physical or e-label stating "Contains FCC ID" with their finished product. See Guidelines for Labeling and User Information for RF Devices – KDB Publication 784748.

Explanation: The host system using this module, should have label in a visible area indicated the following texts: "Contains FCC ID: 2AH3O-TL8822CSL."

2.9 Information on test modes and additional testing requirements5

Additional guidance for testing host products is given in KDB Publication 996369 D04 Module Integration Guide. Test modes should take into consideration different operational conditions for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product.

The grantee should provide information on how to configure test modes for host product evaluation for different operational conditions for a stand-alone modular transmitter in a host, versus with multiple, simultaneously transmitting modules or other transmitters in a host. Grantees can increase the utility of their modular transmitters by providing special means, modes, or instructions that simulates or characterizes a connection by enabling a transmitter. This can greatly simplify a host manufacturer's determination that a module as installed in a host complies with FCC requirements.

Explanation: Top band can increase the utility of our modular transmitters by providing instructions that simulates or characterizes a connection by enabling a transmitter.

2.10 Additional testing, Part 15 Subpart B disclaimer

The grantee should include a statement that the modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Explanation: The module without unintentional-radiator digital circuity, so the module does not require an evaluation by FCC Part 15 Subpart B. The host shoule be evaluated by the FCC Subpart B.