

Fig.14 LTE4 1RB 0 offset Phantom Mode Low 0mm

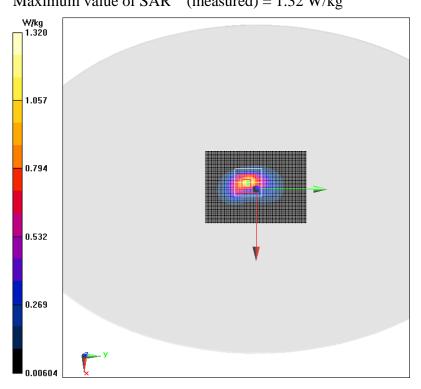

Date/Time: 2018/4/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1720 MHz; $\sigma = 1.488$ S/m; $\varepsilon_r = 55.189$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1720 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.95, 4.95, 4.95); Calibrated: 8/31/2017 LTE4 1RB 0 offset Phantom Mode Low 0mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 3.46 W/kgLTE4 1RB 0 offset Phantom Mode Low 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.375 V/m; Power Drift = 0.12 dBPeak SAR (extrapolated) = 5.77 W/kgSAR(1 g) = 3.26 W/kg; SAR(10 g) = 1.74 W/kgMaximum value of SAR (measured) = 3.66 W/kg

Fig.15 LTE Band 7 20M 1RB 0 offset Bottom Mode Middle 5mm

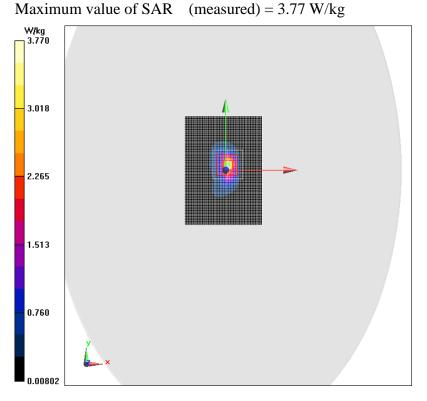
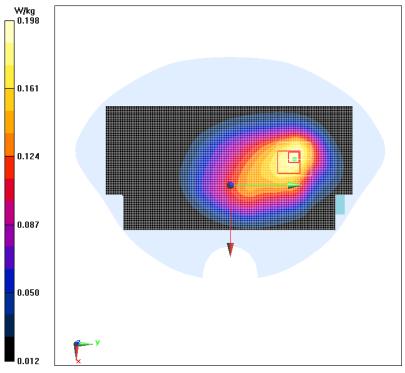

Date/Time: 2018/4/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 2535 MHz; $\sigma = 2.028$ S/m; $\varepsilon_r = 51.796$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 °C Communication System: LTE Band 7 Professional 2600MHz; Frequency: 2535 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.42, 4.42, 4.42); Calibrated: 8/31/2017 LTE Band 7 20M 1RB 0 offset Bottom Mode Middle 5mm/Area Scan (51x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.19 W/kgLTE Band 7 20M 1RB 0 offset Bottom Mode Middle 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.08 V/m; Power Drift = 0.17 dBPeak SAR (extrapolated) = 2.42 W/kgSAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.518 W/kgMaximum value of SAR (measured) = 1.32 W/kg

Fig.16 LTE Band 7 20M 1RB 0 offset Bottom Mode High 0mm

Date/Time: 2018/4/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 2560 MHz; $\sigma = 2.061 \text{ S/m}$; $\varepsilon_r = 51.685$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 7 Professional 2600MHz; Frequency: 2560 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.22, 4.22, 4.22); Calibrated: 8/31/2017 LTE Band 7 20M 1RB 0 offset Bottom Mode High 0mm/Area Scan (51x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 3.57 W/kgLTE Band 7 20M 1RB 0 offset Bottom Mode High 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.09 V/m; Power Drift = -0.19 dBPeak SAR (extrapolated) = 7.53 W/kgSAR(1 g) = 3.02 W/kg; SAR(10 g) = 1.17 W/kg


Fig.17 LTE 17 10MHz 1RB 25offset Phantom Mode Middle 5mm

Date/Time: 2018/4/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 710 MHz; $\sigma = 0.897 \text{ S/m}$; $\varepsilon_r = 57.584$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 17 Professional 750MHz; Frequency: 710 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 8/31/2017 LTE 17 10MHz 1RB 25offset Phantom Mode Middle 5mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.195 W/kgLTE 17 10MHz 1RB 25offset Phantom Mode Middle 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.91 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 0.281 W/kg

Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.186 W/kg; SAR(10 g) = 0.129 W/kg

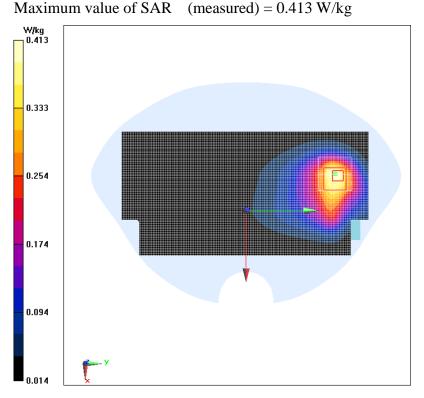

Maximum of SAR (measured) = 0.198 W/kg

Fig.18 LTE 17 10MHz 1RB 25offset Ground Mode Middle 0mm

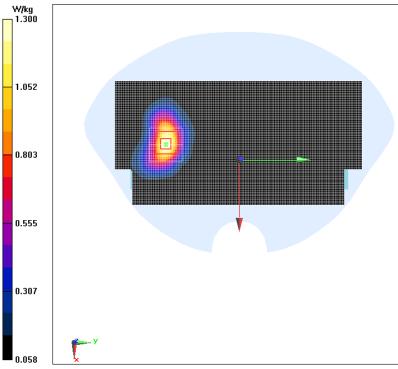

Date/Time: 2018/4/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 710 MHz; $\sigma = 0.897 \text{ S/m}$; $\varepsilon_r = 57.584$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 °C Communication System: LTE Band 17 Professional 750MHz; Frequency: 710 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 8/31/2017 LTE 17 10MHz 1RB 25offset Ground Mode Middle 0mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.415 W/kgLTE 17 10MHz 1RB 25offset Ground Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.246 V/m; Power Drift = 0.12 dBPeak SAR (extrapolated) = 0.723 W/kgSAR(1 g) = 0.393 W/kg; SAR(10 g) = 0.231 W/kg

Fig.19 CDMA BC0 Ground Mode Low 5mm

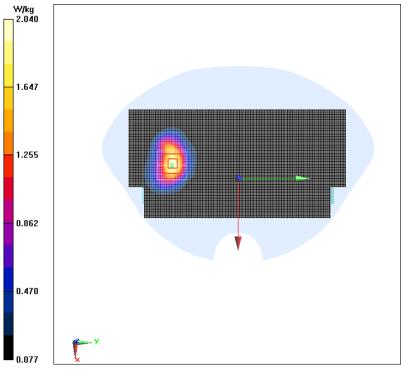

Date/Time: 2018/5/23 Electronics: DAE4 Sn1244 Medium parameters used: f = 825 MHz; $\sigma = 0.989$ S/m; $\varepsilon_r = 56.81$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 °C Communication System: CDMA 835MHz 835MHz; Frequency: 824.7 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/31/2017 CDMA BC0 Ground Mode Low 5mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.36 W/kgCDMA BC0 Ground Mode Low 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.347 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 1.90 W/kgSAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.683 W/kgMaximum value of SAR (measured) = 1.30 W/kg

Fig.20 CDMA BC0 Ground Mode Middle 0mm

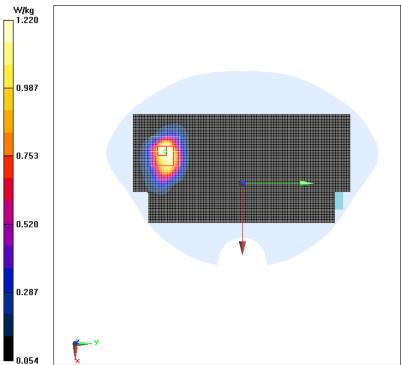

Date/Time: 2018/5/23 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 56.687$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 °C Communication System: CDMA 835MHz 835MHz; Frequency: 836.52 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/31/2017 CDMA BC0 Ground Mode Middle 0mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.05 W/kgCDMA BC0 Ground Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.971 V/m; Power Drift = -0.12 dBPeak SAR (extrapolated) = 3.17 W/kgSAR(1 g) = 1.81 W/kg; SAR(10 g) = 1.01 W/kgMaximum value of SAR (measured) = 2.04 W/kg

Fig.21 CDMA BC1 Ground Mode Low 5mm

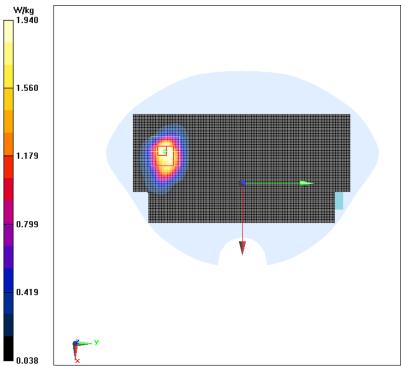

Date/Time: 2018/5/22 Electronics: DAE4 Sn1244 Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r =$ 54.332; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CDMA 1900MHz 1900MHz; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.69, 4.69, 4.69); Calibrated: 8/31/2017 CDMA BC1 Ground Mode Low 5mm/Area Scan (71x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.23 W/kgCDMA BC1 Ground Mode Low 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 2.646 V/m; Power Drift = 0.12 dBPeak SAR (extrapolated) = 1.98 W/kgSAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.701 W/kgMaximum value of SAR (measured) = 1.22 W/kg

Fig.22 CDMA BC1 Ground Mode Middle 0mm

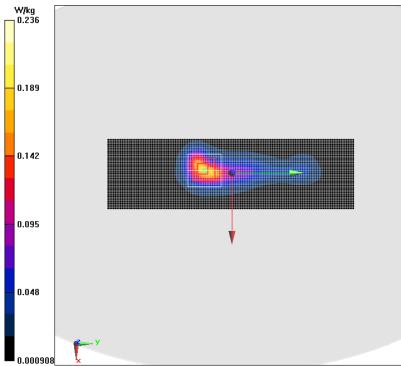

Date/Time: 2018/5/22 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.505 \text{ S/m}$; $\varepsilon_r = 54.218$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CDMA 1900MHz 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.69, 4.69, 4.69); Calibrated: 8/31/2017 CDMA BC1 Ground Mode Middle 0mm/Area Scan (71x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.38 W/kgCDMA BC1 Ground Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.387 V/m; Power Drift = 0.13 dBPeak SAR (extrapolated) = 3.32 W/kgSAR(1 g) = 1.84 W/kg; SAR(10 g) = 1.06 W/kgMaximum value of SAR (measured) = 1.94 W/kg

Fig.23 WIFI2450 Right Mode Middle 5mm

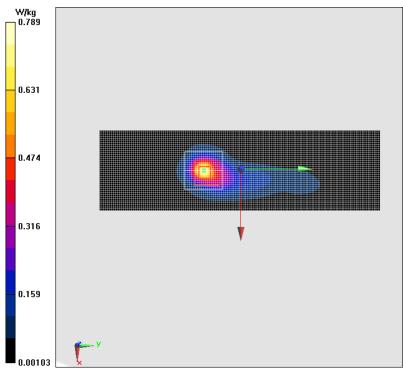
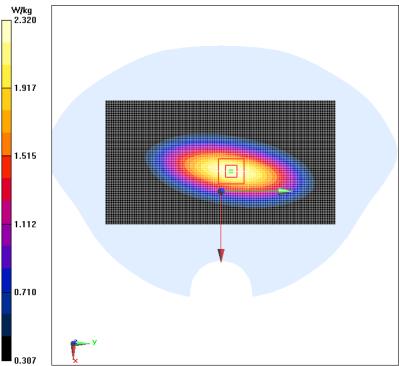

Date/Time: 2018/4/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 2412 MHz; $\sigma = 1.932$ S/m; $\varepsilon_r = 53.144$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: Wifi 2450 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.42, 4.42, 4.42); Calibrated: 8/31/2017 WIFI2450 Right Mode Middle 5mm/Area Scan (41x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.188 W/kgWIFI2450 Right Mode Middle 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.078 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.440 W/kgSAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.236 W/kg

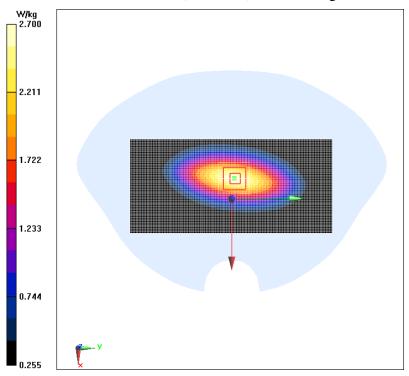
Fig.24 WIFI2450 Right Mode Middle 0mm

Date/Time: 2018/4/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 2412 MHz; $\sigma = 1.932$ S/m; $\varepsilon_r = 53.144$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: Wifi 2450 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.42, 4.42, 4.42); Calibrated: 8/31/2017 WIFI2450 Right Mode Middle 0mm/Area Scan (41x141x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.761 W/kgWIFI2450 Right Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.949 V/m; Power Drift = -0.01 dBPeak SAR (extrapolated) = 1.66 W/kgSAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.274 W/kgMaximum value of SAR (measured) = 0.789 W/kg

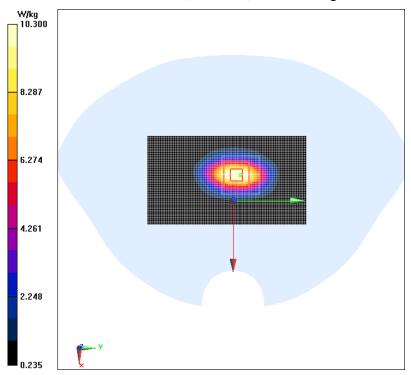


ANNEX B. SYSTEM VALIDATION RESULTS

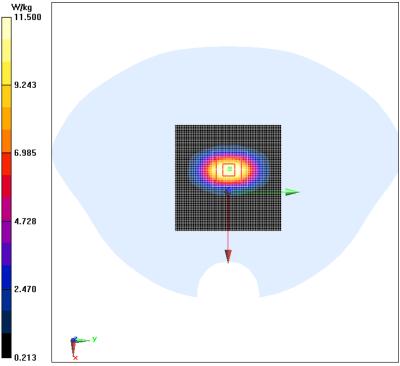
Body 750MHz


Date/Time: 2018/4/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 750 MHz; $\sigma = 0.936 \text{ S/m}$; $\varepsilon_r = 57.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 750MHz; Frequency: 750 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 8/31/2017 System Validation/Area Scan (71x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.32 W/kgSystem Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.15 V/m; Power Drift = 0.03 dBPeak SAR (extrapolated) = 3.07 W/kgSAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.48 W/kgMaximum value of SAR (measured) = 2.32 W/kg

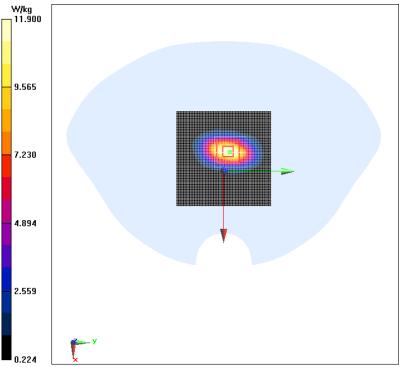
Body 835MHz


Date/Time: 2018/5/23 Electronics: DAE4 Sn1244 Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 56.705$; $\rho = 1000$ kg/m³ Liquid Temperature:22.5 °C Ambient Temperature:22.5 ℃ Communication System: CW 835MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/31/2017 System Validation /Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.64 W/kgSystem Validation /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.01 V/m; Power Drift = 0.11 dBPeak SAR (extrapolated) = 3.63 W/kgSAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.65 W/kgMaximum value of SAR (measured) = 2.70 W/kg

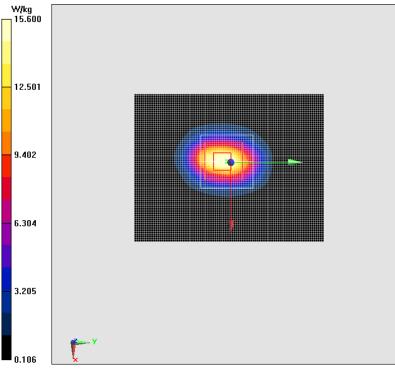
Body 1750MHz


Date/Time: 2018/5/2 Electronics: DAE4 Sn1244 Medium parameters used: f = 1750 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 55.101$; $\rho = 1000 \text{ kg/m}^3$ Liquid Temperature:22.5 °C Ambient Temperature:22.5 ℃ Communication System: CW 1800MHz; Frequency: 1750 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.95, 4.95, 4.95); Calibrated: 8/31/2017 System validation /Area Scan (51x91x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 10.7 W/kgSystem validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.24 V/m; Power Drift = 0.16 dBPeak SAR (extrapolated) = 16.4 W/kgSAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.1 W/kgMaximum value of SAR (measured) = 10.3 W/kg

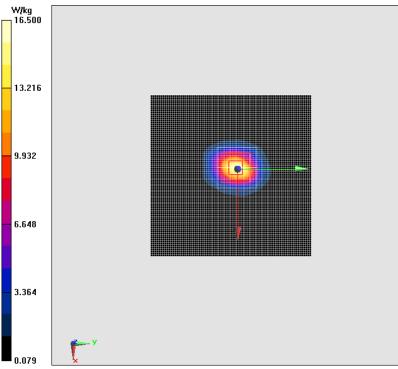
Body 1900MHz


Date/Time: 2018/5/4 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.575 \text{ S/m}$; $\varepsilon_r = 54.533$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.69, 4.69, 4.69); Calibrated: 8/31/2017 System check Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 13.0 W/kgSystem check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.53 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.33 W/kgMaximum value of SAR (measured) = 11.5 W/kg

Body 1900MHz

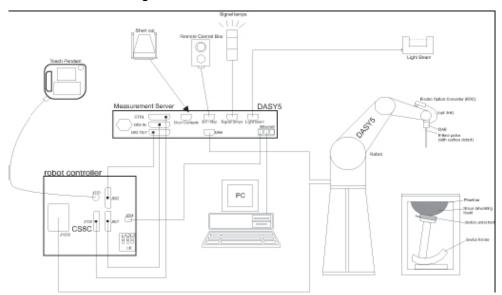

Date/Time: 2018/5/22 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.525 \text{ S/m}$; $\varepsilon_r = 54.133$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.69, 4.69, 4.69); Calibrated: 8/31/2017 System check Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 12.7 W/kgSystem check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.77 V/m; Power Drift = 0.18 dBPeak SAR (extrapolated) = 19.3 W/kgSAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.49 W/kgMaximum value of SAR (measured) = 11.9 W/kg

Body 2450MHz


Date/Time: 2018/5/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 2450 MHz; $\sigma = 1.976 \text{ S/m}$; $\varepsilon_r = 52.926$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.42, 4.42, 4.42); Calibrated: 8/31/2017 System Validation/Area Scan (71x91x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 16.4 W/kgSystem Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.71 V/m; Power Drift = 0.04 dBPeak SAR (extrapolated) = 28.1 W/kgSAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.43 W/kgMaximum value of SAR (measured) = 15.6 W/kg

Body 2600MHz

Date/Time: 2018/5/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 2600 MHz; $\sigma = 2.104 \text{ S/m}$; $\varepsilon_r = 52.516$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.22, 4.22, 4.22); Calibrated: 8/31/2017 Body 2600MHz/Area Scan (81x81x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 16.5 W/kgBody 2600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.47 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 30.0 W/kgSAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.41 W/kgMaximum value of SAR (measured) = 16.5 W/kg



ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy

of the probe positioning.

- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

•	
Model:	ES3DV3,EX3DV4
Frequency	10MHz — 6GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
Dynamic Range	: 10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture7-2 Near-field Probe

Picture 7-3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by

subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².⁻ E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which

is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

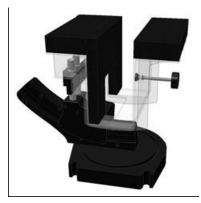
Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point

(ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

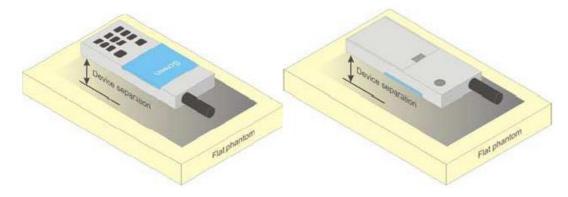
Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

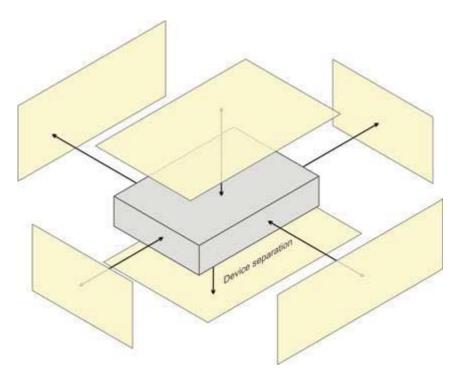
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture C.9: SAM Twin Phantom

ANNEX D. Position of the wireless device in relation to the phantom

D.1. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.1Test positions for body-worn devices

D.2. Generic device

The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in D2. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer.

Picture D.2 Test positions for desktop devices

D.3. DUT Setup Photos

Picture D.3 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		•		-		
Frequency (MHz)	835	835	1900	1900	2450	2450
Frequency (MHZ)	Head	Body	Head	Body	Head	Body
Ingredients (% by v	weight)					
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	١	١	١	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	١	١	١	\
Cellulose	1.0	1.0	١	١	١	١
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22
Dielectric				a-50 0		
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must bevalidated with the SAR system(s) that operates with such components.

System	Probe SN.	Liquid nome	Validation	Frequency	Permittivit	Conductivity
No.	PIODE SIN.	Liquid name	date	point	уε	σ (S/m)
1	3252	Body 750MHz	2018-4-29	750 MHz	57.121	57.121
2	3252	Body 835MHz	2018-5-23	835 MHz	56.705	56.705
3	3252	Body 1750MHz	2018-5-02	1800 MHz	55.101	55.101
4	3252	Body 1900MHz	2018-5-04	1900 MHz	54.533	54.533
5	3252	Body 1900MHz	2018-5-22	1900 MHz	54.133	54.133
6	3252	Body 2450MHz	2018-5-29	2450 MHz	52.926	52.926
7	3252	Body 2600MHz	2018-5-29	2600 MHz	52.516	52.516

Table	F1·	System	Validation	Part 1
Iable	г. і.	System	vanuation	rait i

Table F.2: System Validation Part 2

	•		
0.11	Sensitivity	PASS	PASS
CW Validation	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
	MOD.type	GMSK	GMSK
Mod	MOD.type	OFDM	OFDM
Validation	Duty factor	PASS	PASS
	PAR	PASS	PASS

ANNEX G. Probe and DAE Calibration Certificate

Client , EC	hinattl.com Http	: +86-10-62304633-2209 :://www.chinattl.cn Certificat	e No: Z17-97266	
CALIBRATION	CERTIFICA	TE		
Object	DAE4	- SN: 1244		
Calibration Procedure(s	FF-Z	11-002-01 ration Procedure for the Data Acqu x)	isition Electronics	
Calibration date:	Decer	mber 04, 2017		
humidity<70%.				
Primary Standards	Marganesi yan	for calibration) al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859)	Scheduled Calibration June-18	
Primary Standards	ID # C	al Date(Calibrated by, Certificate No.)		
Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by:	ID # C. 1971018 Name	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function		
Primary Standards	ID # C	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859)	June-18	
Primary Standards Process Calibrator 753 Calibrated by:	ID # C 1971018 Name Yu Zongying	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer	June-18	

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97266

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Re	solution nomin	nal		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Mea	asuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	403.862 ± 0.15% (k=2)	$403.603 \pm 0.15\%$ (k=2)	404.516 ± 0.15% (k=2)
Low Range	3.95366 ± 0.7% (k=2)	3.96972 ± 0.7% (k=2)	3.97929 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	22.5° ± 1 °
	22.0 I I

Certificate No: Z17-97266


Page 3 of 3

TI		ration with e a g ION LABORATORY	中国认可 国际互认 校准 CALIBRATIO
Tel: +86-10-623046 E-mail: cttl@chinat	33-2218 Fax: 4 tl.com <u>Http:/</u>	trict, Beijing, 100191, China -86-10-62304633-2209 /www.chinattl.cn	CNAS L0570
Client ECI	ſ	Certificate No: Z17-	97112
CALIBRATION CE	ERTIFICAT	E	
Object	ES3DV	/3 - SN:3252	
Calibration Procedure(s) FF-		-004-01	
	Calibra	tion Procedures for Dosimetric E-field Probes	
Calibration date:	August	31, 2017	
measurements(SI). The mean pages and are part of the ce	asurements and rtificate.	traceability to national standards, which real the uncertainties with confidence probability a the closed laboratory facility: environment	re given on the following
Calibration Equipment used	(M&TE critical f	or calibration)	
Primary Standards	ID #	Cal Data (Calibrated by Castificate No.)	
		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Scheduled Calibration Jun-18
Power sensor NRP-Z91	101547		
Power sensor NRP-Z91 Power sensor NRP-Z91	101547 101548	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857)	Jun-18 Jun-18 Jun-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	101547 101548 18N50W-10d8	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL,No.J16X01547)	Jun-18 Jun-18 Jun-18 Mar-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	101547 101548 18N50W-10d8 18N50W-20d8	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL,No.J16X01547)	Jun-18 Jun-18 Jun-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	101547 101548 18N50W-10dB 18N50W-20dB SN 7433	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	101547 101548 18N50W-10d8 18N50W-20d8	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	101547 101548 18N50W-10dB 18N50W-20dB SN 7433	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.)	Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549 ID #	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05858)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549 ID # 6201052605	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101547 101548 18N50W-10d8 18N50W-20d8 SN 7433 SN 549 ID # 6201052605 MY46110673	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05858) 13-Jan-17 (CTTL, No.J17X00285)	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-18 Jan -18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549 ID # 6201052605 MY46110673 Name	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05858) 13-Jan-17 (CTTL, No.J17X00285) Function	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-18 Jan -18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05858) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer SAR Test Engineer	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-18 Jan -18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101547 101548 18N50W-10df 18N50W-20df SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao	27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 27-Jun-17 (CTTL, No.J17X05857) 3 13-Mar-16(CTTL, No.J16X01547) 3 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05858) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer	Jun-18 Jun-18 Jun-18 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-18 Jan -18 Signature

Certificate No: Z17-97112

Page 1 of 11

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209

Http://www.chinattl.cn

Glossary:

TSL

DCP

CF

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:


- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No: Z17-97112

Page 2 of 11

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209

Http://www.chinattl.cn

Glossary:

TSL

DCP

CF

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No: Z17-97112

Page 2 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.32	1.40	1.37	±10.0%
DCP(mV) ^B	101.5	101.9	101.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	278.4	±2.5%
		Y	0.0	0.0	1.0		287.4	-
		Z	0.0	0.0	1.0		284.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution

and is expressed for the square of the field value.

Certificate No: Z17-97112

Page 4 of 11

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.25	6.25	6.25	0.50	1.25	±12.1%
835	41.5	0.90	6.19	6.19	6.19	0.32	1.66	±12.1%
900	41.5	0.97	6.16	6.16	6.16	0.36	1.62	±12.1%
1750	40.1	1.37	5.30	5.30	5.30	0.42	1.62	±12.1%
1900	40.0	1.40	5.11	5.11	5.11	0.73	1.18	±12.1%
2000	40.0	1.40	4.97	4.97	4.97	0.76	1.19	±12.1%
2300	39.5	1.67	4.90	4.90	4.90	0.90	1.10	±12.1%
2450	39.2	1.80	4.75	4.75	4.75	0.90	1.10	±12.1%
2600	39.0	1.96	4.44	4.44	4.44	0.90	1.15	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z17-97112

Page 5 of 11

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3252

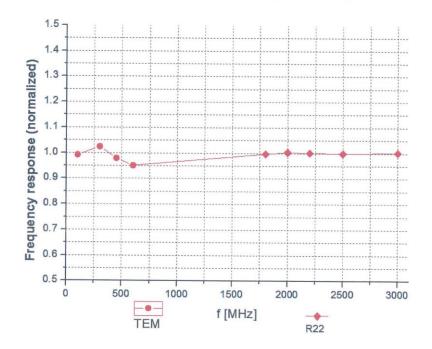
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.34	6.34	6.34	0.60	1.20	±12.1%
850	55.2	0.99	6.14	6.14	6.14	0.38	1.63	±12.1%
900	55.0	1.05	6.06	6.06	6.06	0.46	1.49	±12.1%
1750	53.4	1.49	4.95	4.95	4.95	0.49	1.52	±12.1%
1900	53.3	1.52	4.69	4.69	4.69	0.67	1.33	±12.1%
2000	53.3	1.52	4.89	4.89	4.89	0.69	1.25	±12.1%
2300	52.9	1.81	4.58	4.58	4.58	0.57	1.65	±12.1%
2450	52.7	1.95	4.42	4.42	4.42	0.68	1.42	±12.1%
2600	52.5	2.16	4.22	4.22	4.22	0.56	1.66	±12.1%

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

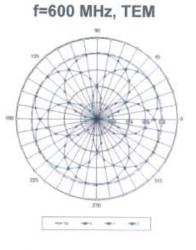
^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

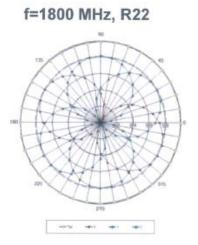
Certificate No: Z17-97112

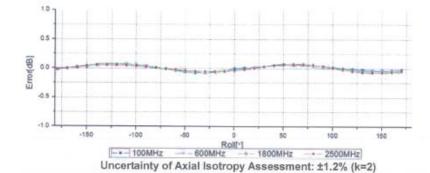

Page 6 of 11

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

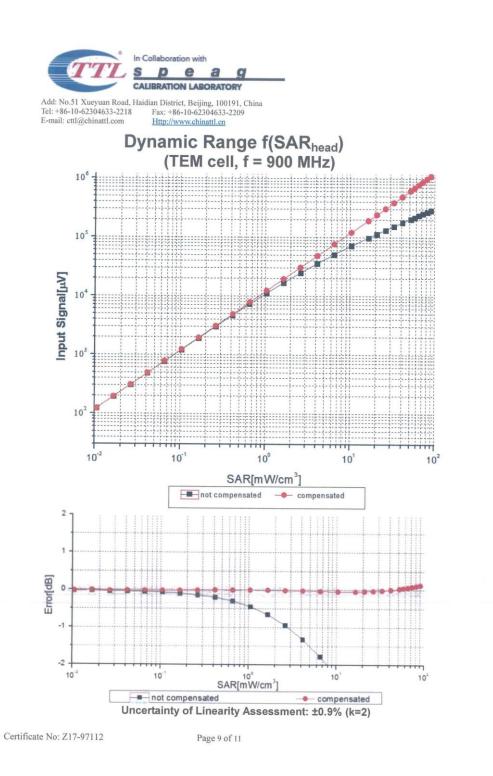
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

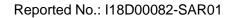

Certificate No: Z17-97112


Page 7 of 11

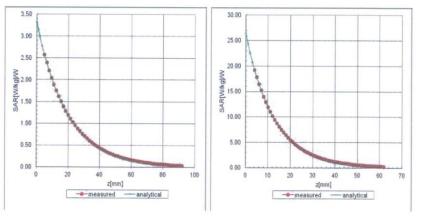


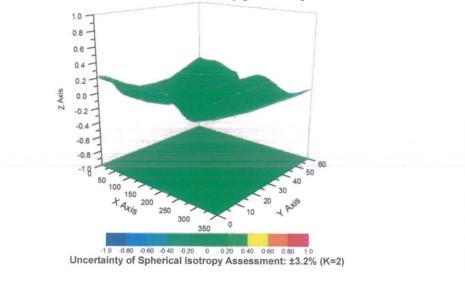
Receiving Pattern (Φ), θ=0°




Certificate No: Z17-97112

Page 8 of 11




Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z17-97112

Page 10 of 11

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3252

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	130.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z17-97112

Page 11 of 11

ccredited by the Swiss Accredita he Swiss Accreditation Service ultilateral Agreement for the re	e is one of the signatorie	s to the EA	Accreditation No.: SCS 0108
lient TMC-SH (Aude			No: D750V3-1144_Aug15
CALIBRATION C	ERTIFICATE		
Dbject	D750V3 - SN: 11	44	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits a	bove 700 MHz
Calibration date:	August 03, 2015		
The measurements and the unce	ertainties with confidence p	onal standards, which realize the physical robability are given on the following pages y facility: environment temperature (22 ± 3	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages y facility: environment temperature (22 \pm 3	and are part of the certificate. J)°C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	ertainties with confidence p	robability are given on the following pages	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	rtainties with confidence p cted in the closed laborator ITE critical for calibration)	robability are given on the following pages y facility: environment temperature (22 ± 3 Cal Date (Certificate No.)	and are part of the certificate. t)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	and are part of the certificate. t)°C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5057.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5057.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. DAE4-601_Aug14)	and are part of the certificate. s)°C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	and are part of the certificate. s)°C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
The measurements and the unce	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	and are part of the certificate. s)°C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Signature
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (2	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	and are part of the certificate. s)°C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Signature
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5057.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	and are part of the certificate. and are part of the certificate. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1144_Aug15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.07 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.29 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.3 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.60 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.46 W/kg

Certificate No: D750V3-1144_Aug15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 1.5 jΩ	
Return Loss	- 27.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω - 3.3 jΩ	
Return Loss	- 29.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.032 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 28, 2015

Certificate No: D750V3-1144_Aug15

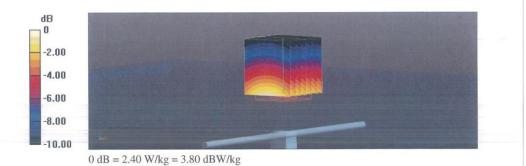
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 03.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144

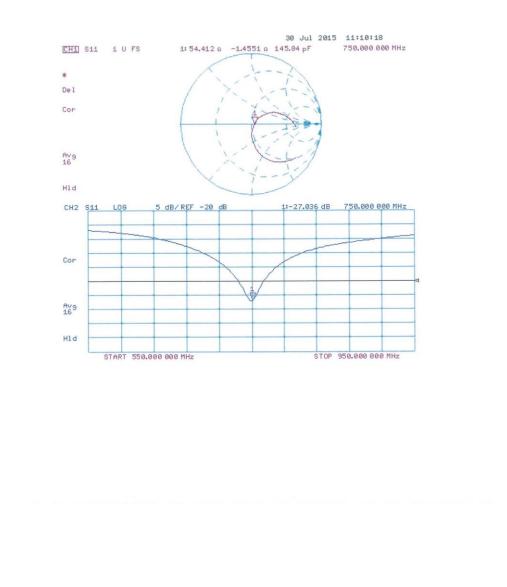

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.93 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.34 W/kg Maximum value of SAR (measured) = 2.40 W/kg



Certificate No: D750V3-1144_Aug15

Page 5 of 8

Certificate No: D750V3-1144_Aug15

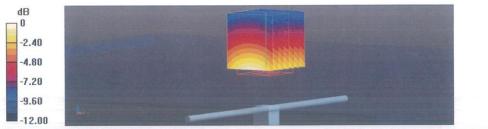
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 03.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144

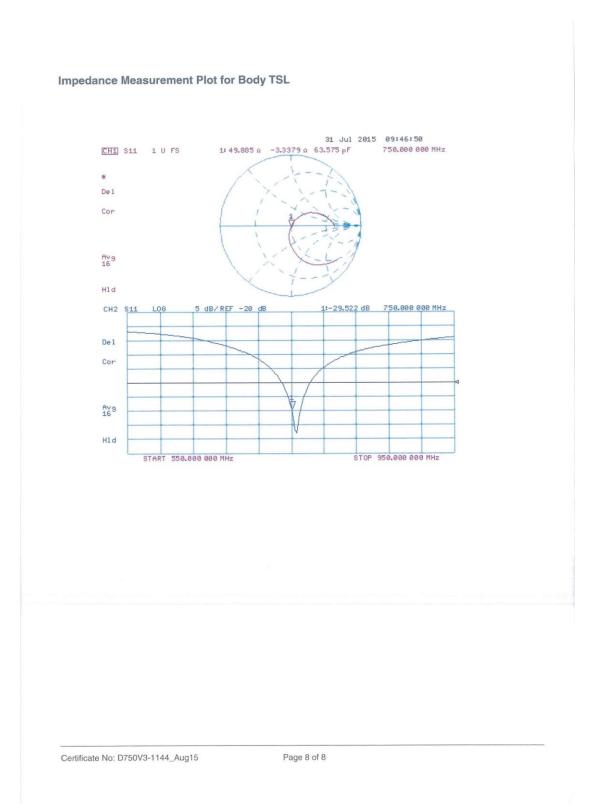

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 56.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.55 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.46 W/kg Maximum value of SAR (measured) = 2.57 W/kg



0 dB = 2.57 W/kg = 4.10 dBW/kg

Certificate No: D750V3-1144_Aug15

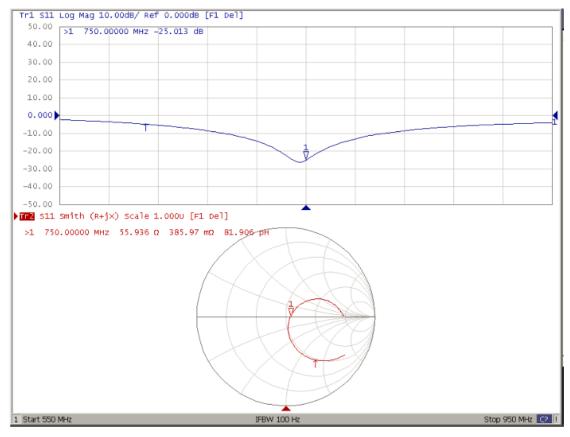
Page 7 of 8

D750V3, Serial No.1144Extended Dipole Calibrations

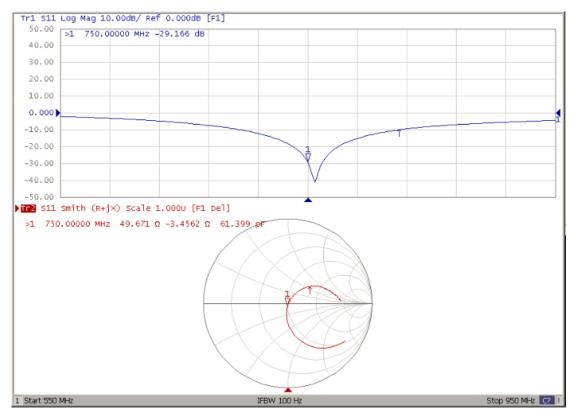
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


		D750	0V3 Serial No.	1144				
	750 Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
08.03.2015	-27.036		54.412		-1.455			
08.02.2016	-25.01	7.49	55.936	1.524	0.386	1.841		

		D750	0V3 Serial No. 750 Body	1144		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
08.03.2015	-29.522		49.885		-3.338	
08.02.2016	-29.116	1.38	49.671	0.214	-3.456	0.118


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

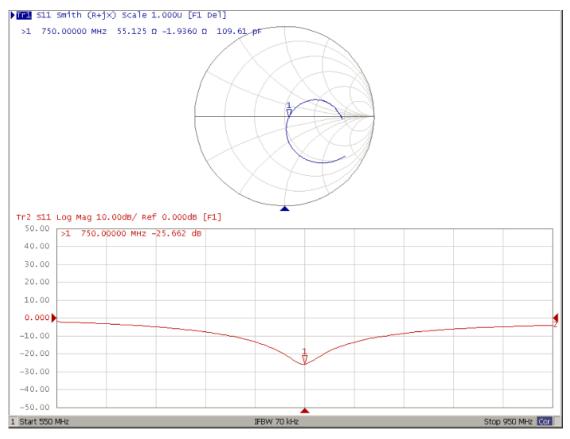
Dipole Verification Data D750V3 Serial No.1144 750MHz-Head

750MHz – Body

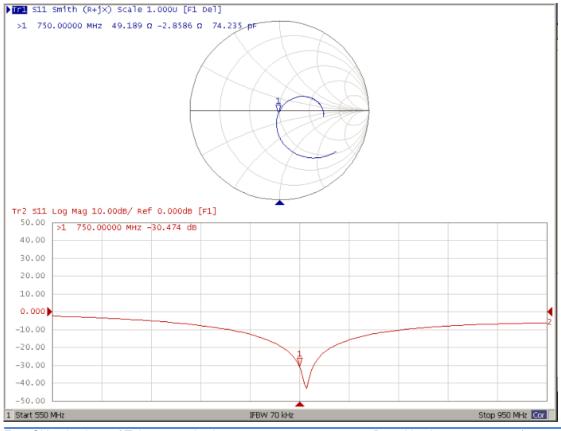
D750V3, Serial No.1144Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

		D750	0V3 Serial No.	1144				
	750 Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
08.03.2015	-27.036		54.412		-1.455			
08.02.2016	-25.01	7.49	55.936	1.524	0.386	1.841		
08.02.2017	-25.662	2.61	55.125	0.811	-1.936	2.322		


		D750	0V3 Serial No.	1144				
750 Body								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
08.03.2015	-29.522		49.885		-3.338			
08.02.2016	-29.116	1.38	49.671	0.214	-3.456	0.118		
08.02.2017	-30.474	4.66	49.189	0.482	-2.859	0.597		

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D750V3 Serial No.1144 750MHz-Head

750MHz – Body



East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 142 of 201 Report Issued Date : June 5, 2018

	CALIBRA	TION LABORATORY	CEMRA, CNAS
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax: +	strict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.en	CALIBRATION No. L0570
Client ECI	Т	Certificate No: Z1	5-97165
CALIBRATION C	ERTIFICAT	E	
Object	D835V	2 - SN: 4d112	
Calibration Procedure(s)	FD-Z11	-2-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Octobe	r 22, 2015	
pages and are part of the ce	ertificate.		
numidity<70%.		the closed laboratory facility: environment	temperature(22±3) [®] and
numidity<70%. Calibration Equipment used	(M&TE critical fo	or calibration)	temperature(22±3)℃ and
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical fo	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fo ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fc ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical fc ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Scheduled Calibration Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer SAR Project Leader	Scheduled Calibration Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16 Signature

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1 **DASY Version** DASY52 52.8.8.1222 Extrapolation Advanced Extrapolation Triple Flat Phantom 5.1C Phantom **Distance Dipole Center - TSL** 15 mm with Spacer **Zoom Scan Resolution** dx, dy, dz = 5 mm Frequency 835 MHz ± 1 MHz

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

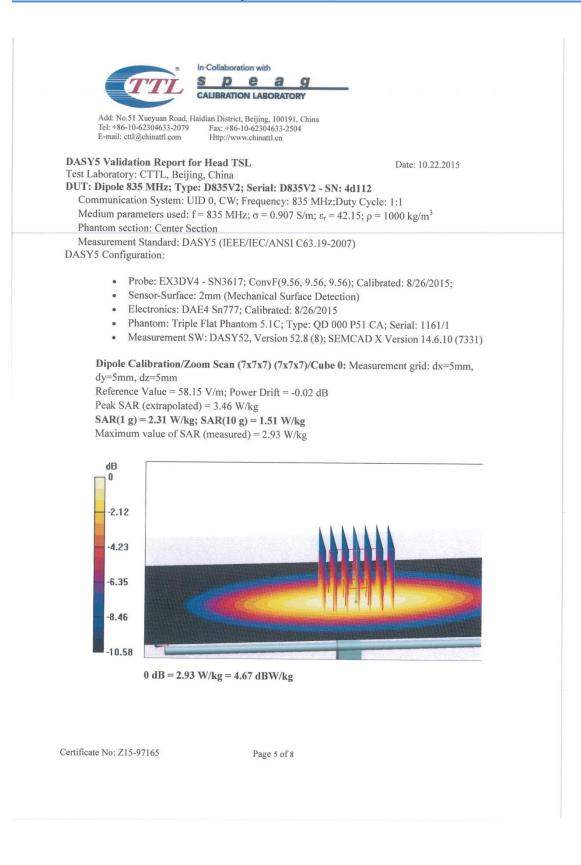
SAR result with Head TSL

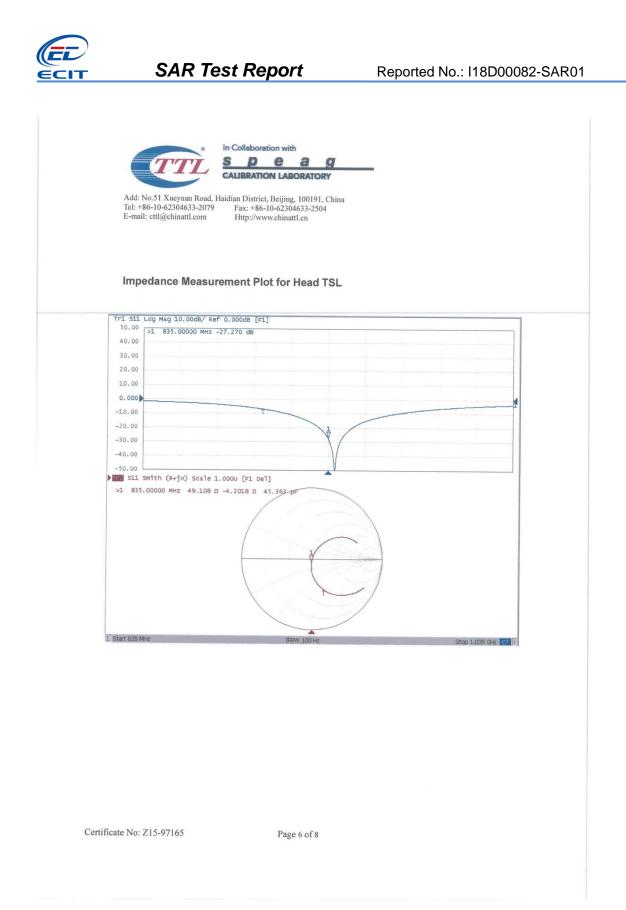
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.22 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.03 mW /g ± 20.4 % (k=2)

Body TSL parameters

	Temperature	Permitti	ivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	55.2		0.97 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ±	6 %	0.96 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C				
R result with Body TSL					
SAR averaged over 1 cm^3 (1 g) of Body TSL	Co	ndition			
SAR measured	250 mW	250 mW input power		2.37 mW / g	
SAR for nominal Body TSL parameters	norma	normalized to 1W		mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm^3 (10 g) of Body T	SL Co	ndition			
SAR measured	250 mW	/ input power		1.56 mW / g	
SAR for nominal Body TSL parameters	normal	lized to 1W	6.29	6.29 mW /g ± 20.4 % (k=2	

Certificate No: Z15-97165


Page 3 of 8


ΕСΙΤ

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com	idian District, Beijing, 1001 Fax: +86-10-62304633- Http://www.chinattl.cn	
Appendix		
Antenna Parameters with	Head TSL	
Impedance, transformed to fee	ed point	49.1Ω- 4.20jΩ
Return Loss		- 27.3dB
Antenna Parameters with	Body TSL	
Impedance, transformed to fee	ed point	46.2Ω- 4.79jΩ
Return Loss		- 23.9dB
General Antenna Paramet	ers and Design	
Electrical Delay (one direction)		
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole	1.502 ns slight warming of the dipole near the feedpoint can e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some a arms in order to improve matching when loaded mont Conditional increases the Adda are not
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not till according to the Standard. s, because they might bend or the soldered
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some a arms in order to improve matching when loaded ement Conditions'' paragraph. The SAR data are not till according to the Standard
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not till according to the Standard. s, because they might bend or the soldered
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not till according to the Standard. s, because they might bend or the soldered
After long term use with 100W r be measured. The dipole is made of standard connected to the second arm of of the dipoles, small end caps a according to the position as exp affected by this change. The ove No excessive force must be app connections near the feedpoint r	adiated power, only a semirigid coaxial cab the dipole. The anter re added to the dipole lained in the "Measur erall dipole length is s lide to the dipole arm	e. The center conductor of the feeding line is directly ina is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded ement Conditions" paragraph. The SAR data are not till according to the Standard. s, because they might bend or the soldered

